
Detecting Routing Loops
in the Data Plane

Jan Kučera
jan.kucera@cesnet.cz
CESNET, a.l.e.

In collaboration with:
Ran Ben Basat (Harvard University),
Mário Kuka (CESNET), Gianni Antichi (Queen Mary University of London),
Minlan Yu (Harvard University) and Michael Mitzenmacher (Harvard University)

1

CoNEXT 2020
Conference on emerging Networking 

EXperiments and Technologies



■ harm network operation, lead to losses, which
■ increase the tail latency [1]
■ are interpreted as a congestion (TCP), cause throughput reduction [2]

■ significantly increase the overall traffic [3]
■ affect other traffic on shared links in terms of delay and jitter [1]

■ real-time detection is essential for the network performance

Routing loops

2

[1] Detection and Analysis of Routing Loops in Packet Traces. Urs Hengartner, Sue Moon, Richard Mortier, Christophe Diot. In IMW 2002.
[2] Packet Loss Impact on TCP Throughput in ESnet. http://fasterdata.es.net/network-tuning/tcp-issues-explained/packet-loss/ 
[3] Packet-Level Telemetry in Large Datacenter Networks. Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, et al. In SIGCOMM 2015.

http://fasterdata.es.net/network-tuning/tcp-issues-explained/packet-loss/


■ 3 categories, classification of the past approaches: 
(based on handling the information needed for detecting loops)

1) keep flow state at switches
2) mirror information at switches
3) store information on packets

■ 3 perspectives to evaluate them:
1) switch overhead,
2) network overhead,
3) real-time detection

Routing loops detection 

3



1) On-switch state
■ aggregate flow information at switches
■ periodically export them to a collector
■ keeping state, e.g., up to 100K active flows

■ e.g., FlowRadar [1], Hash IP Traceback [2]

■ switch overhead: high
■ network overhead: low
■ real-time detection: ✗

Routing loops detection approaches (1)

4

[1] FlowRadar: A Better NetFlow for Data Centers. Yuliang Li, Rui Miao, Changhoon Kim, Minlan Yu. In NSDI 2016.
[2] Hash-based IP Traceback. Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fabrice Tchakountio, et al. In SIGCOMM 2001.



2) Header Mirroring
■ duplicate the traffic headers
■ sending it to an analyzer

■ e.g., NetSight [1], Everflow [2],
Trajectory Sampling [3]

■ switch overhead: low
■ network overhead: high
■ real-time detection: ✗

Routing loops detection approaches (2)

5

[1] FlowRadar: A Better NetFlow for Data Centers. Yuliang Li, Rui Miao, Changhoon Kim, Minlan Yu. In NSDI 2016.
[2] Packet-Level Telemetry in Large Datacenter Networks. Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, et al. In SIGCOMM 2015.
[3] Trajectory Sampling for Direct Traffic Observation. N. G. Duffield and M. Grossglauser. In Transactions on Networking 2001, Vol: 9, Issue: 3.



3) Full Path Encoding on Packets
■ each switch records its ID in the incoming packet
■ if its ID is already stored, a loop is detected
■ per packet overhead cost grows linearly 

■ e.g., INT [1], PathDump [2], Tiny Program Packets [3]

■ switch overhead: low
■ network overhead: high
■ real-time detection: ✓

Routing loops detection approaches (3)

6

[1] In-band Network Telemetry (INT) Dataplane Specification. https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report.pdf
[2] Simplifying Datacenter Network Debugging with Pathdump. Praveen Tammana, Rachit Agarwal, and Myungjin Lee. In OSDI 2016.
[3] Millions of Little Minions: Using Packets for Low Latency Network Programming and Visibility. Vimalkumar Jeyakumar, et al. In SIGCOMM 2014.

https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report.pdf


Design space

7

■ All the existing solutions
■ are either unable to detect loops in real time or
■ have a packet overhead that is linear in the number of hops

■ Can we design an algorithm that detects routing loops
■ in the data plane, 
■ at real time,
■ while keeping low switch and network overheads?

■ INT stores all switches, storing Bloom Filter saves the bandwidth
■ reduces the overhead, but introduces false positives
■ but still encodes IDs of all the visited switches, is it necessary?



Designing Unroller

■ No need to store all switches on the loop !
■ Unroller

■ stores only some switch on the loop
■ the minimum switch ID that it has seen
■ reports the loop when we see repeated switch ID
■ guaranteed detection after two iterations thought the loop

■ A path of switches before reaching the loop !
■ We occasionally reset the stored ID

■ gradually increasing the resetting interval
■ reset after each phase -- bi hops for i=1,2,3,...
■ e.g., for b=2 phases consist of 2, 4, 8, 16, ... hops

8



Unroller | Detection time analysis

■ B … the number of hops before the loop
■ L … the number of switches in the loop
■ at least X=B+L hops required for any algorithm

■ We showed that (the proof presented in the paper)

■ after no more than 4.67X hops the packet
reaches a switch that reports the loop

■ lower bound ≈ 3.73X (the minimal number of
hops required by any algorithm that stores a single ID)

■ not far from optimal for deterministic algorithms

9

Detection time varying L and b (for B=5)



■ hashing switch ID into z bits and storing only hash instead 
■ that introduces also false positives (FPs)

■ counting technique to reduce FPs
■ small counter to track the number of times the switch matches the stored ID
■ once the counter reaches the threshold (Th), we report the loop

Unroller | Reducing per-packet overhead

10

FPs for compressed IDs (b=4, B=20, L=0) Detection time using counting technique (b=4, B=5)



Implementation

11

■ Unroller implemented using P4 and compiled into BMv2
■ number of visited hops, minimum switch ID seen, 
■ value of Th counter, encoded on packets
■ other b, z, Th values preset

■ HW resources quantified
■ compiled for three FPGA-base NICs
■ two Xilinx FPGAs, and one Intel FPGA

■ created Python simulator for evaluation on real topologies

Platform LUTs REGs BRAM Frequency

Virtex 7 
(XCVH580T)

26 234 
(7.23%)

29 944 
(4.13%)

396 kb 
(1.17%) 224 MHz

Virtex US+ 
(XCVU7P)

26 221 
(7.23%)

30 520 
(4.21%)

684 kb 
(2.02%) 225 MHz

Stratix 10
(1SG280HU)

21 917 
(1.17%)

45 907 
(1.22%)

301 kb 
(0.12%) 189 MHz

Lightweight Unroller implementation,
requiring less than 8% of chip resources

Open sourced and available on GitHub: https://github.com/kucejan/unroller

https://github.com/kucejan/unroller


Evaluation

12

■ Sensitivity analysis 
how different parameters (b, B, z, ...) affect Unroller performance (presented above)

■ Comparing to state-of-the-art solutions
■ Comparison of false positives between Unroller and Bloom filter
■ Comparison of per-packet overhead on real topologies

Topology # of
Nodes

Dia- 
meter

Bloom filter
Overhead

Unroller
Avg Time Overhead

Stanford 16 2 171b 1.74X 25b
BellSouth 51 7 189b 1.56X 25b
GEANT 40 8 608b 2.13X 27b
ATT-NA 25 5 608b 2.13X 27b

UsCarrier 158 35 2466b 2.47X 28b
FatTree4 20 4 414b 1.73X 28b

Comparison of Unroller and other real-time detections on real topologies 

* over 3M runs so that there are no FPs
6x-100x



Conclusion

13

■ Detecting Routing Loops in the Data Plane

■ Unroller = a lightweight loop detection solution
■ easily deployable on programmable switches
■ encodes only a small subset of the switches along the path
■ using a minimal bit-overhead on packets
■ does not store state on switches
■ identifies loops in real time
■ without a remote analysis node
■ detection in a bounded number of hops

jan.kucera@cesnet.cz

Questions ?



Unroller | Trading bandwidth for convergence

■ storing multiple identifiers on packets (c·H in total)
■ H ∈ ℕ, the number of hash functions (parallel runs of the algorithm)

■ multiple switches can have “minimum IDs” with respect to some hash function
■ c ∈ ℕ, the number of phase chunks (partitioning each phase its chunks)

■ each of the c identifier tracks the minimum only on a 1/c fraction of the phase

14

Detection time for different c (number of chunks) and H (number of hashes) configurations (b=4, B=5, L=20, z=32)


