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■ harm network operation, lead to losses, which
■ increase the tail latency [1]
■ are interpreted as a congestion (TCP), cause throughput reduction [2]

■ significantly increase the overall traffic [3]
■ affect other traffic on shared links in terms of delay and jitter [1]

■ real-time detection is essential for the network performance

Routing loops
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■ 3 categories, classification of the past approaches: 
(based on handling the information needed for detecting loops)

1) keep flow state at switches
2) mirror information at switches
3) store information on packets

■ 3 perspectives to evaluate them:
1) switch overhead,
2) network overhead,
3) real-time detection

Routing loops detection 
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1) On-switch state
■ aggregate flow information at switches
■ periodically export them to a collector
■ keeping state, e.g., up to 100K active flows

■ e.g., FlowRadar [1], Hash IP Traceback [2]

■ switch overhead: high
■ network overhead: low
■ real-time detection: ✗

Routing loops detection approaches (1)
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2) Header Mirroring
■ duplicate the traffic headers
■ sending it to an analyzer

■ e.g., NetSight [1], Everflow [2],
Trajectory Sampling [3]

■ switch overhead: low
■ network overhead: high
■ real-time detection: ✗

Routing loops detection approaches (2)
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3) Full Path Encoding on Packets
■ each switch records its ID in the incoming packet
■ if its ID is already stored, a loop is detected
■ per packet overhead cost grows linearly 

■ e.g., INT [1], PathDump [2], Tiny Program Packets [3]

■ switch overhead: low
■ network overhead: high
■ real-time detection: ✓

Routing loops detection approaches (3)
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Design space
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■ All the existing solutions
■ are either unable to detect loops in real time or
■ have a packet overhead that is linear in the number of hops

■ Can we design an algorithm that detects routing loops
■ in the data plane, 
■ at real time,
■ while keeping low switch and network overheads?

■ INT stores all switches, storing Bloom Filter saves the bandwidth
■ reduces the overhead, but introduces false positives
■ but still encodes IDs of all the visited switches, is it necessary?



Designing Unroller

■ No need to store all switches on the loop !
■ Unroller

■ stores only some switch on the loop
■ the minimum switch ID that it has seen
■ reports the loop when we see repeated switch ID
■ guaranteed detection after two iterations thought the loop

■ A path of switches before reaching the loop !
■ We occasionally reset the stored ID

■ gradually increasing the resetting interval
■ reset after each phase -- bi hops for i=1,2,3,...
■ e.g., for b=2 phases consist of 2, 4, 8, 16, ... hops
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Unroller | Detection time analysis

■ B … the number of hops before the loop
■ L … the number of switches in the loop
■ at least X=B+L hops required for any algorithm

■ We showed that (the proof presented in the paper)

■ after no more than 4.67X hops the packet
reaches a switch that reports the loop

■ lower bound ≈ 3.73X (the minimal number of
hops required by any algorithm that stores a single ID)

■ not far from optimal for deterministic algorithms

9

Detection time varying L and b (for B=5)



■ hashing switch ID into z bits and storing only hash instead 
■ that introduces also false positives (FPs)

■ counting technique to reduce FPs
■ small counter to track the number of times the switch matches the stored ID
■ once the counter reaches the threshold (Th), we report the loop

Unroller | Reducing per-packet overhead
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FPs for compressed IDs (b=4, B=20, L=0) Detection time using counting technique (b=4, B=5)



Implementation
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■ Unroller implemented using P4 and compiled into BMv2
■ number of visited hops, minimum switch ID seen, 
■ value of Th counter, encoded on packets
■ other b, z, Th values preset

■ HW resources quantified
■ compiled for three FPGA-base NICs
■ two Xilinx FPGAs, and one Intel FPGA

■ created Python simulator for evaluation on real topologies

Platform LUTs REGs BRAM Frequency

Virtex 7 
(XCVH580T)

26 234 
(7.23%)

29 944 
(4.13%)

396 kb 
(1.17%) 224 MHz

Virtex US+ 
(XCVU7P)

26 221 
(7.23%)

30 520 
(4.21%)

684 kb 
(2.02%) 225 MHz

Stratix 10
(1SG280HU)

21 917 
(1.17%)

45 907 
(1.22%)

301 kb 
(0.12%) 189 MHz

Lightweight Unroller implementation,
requiring less than 8% of chip resources

Open sourced and available on GitHub: https://github.com/kucejan/unroller

https://github.com/kucejan/unroller


Evaluation
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■ Sensitivity analysis 
how different parameters (b, B, z, ...) affect Unroller performance (presented above)

■ Comparing to state-of-the-art solutions
■ Comparison of false positives between Unroller and Bloom filter
■ Comparison of per-packet overhead on real topologies

Topology # of
Nodes

Dia- 
meter

Bloom filter
Overhead

Unroller
Avg Time Overhead

Stanford 16 2 171b 1.74X 25b
BellSouth 51 7 189b 1.56X 25b
GEANT 40 8 608b 2.13X 27b
ATT-NA 25 5 608b 2.13X 27b

UsCarrier 158 35 2466b 2.47X 28b
FatTree4 20 4 414b 1.73X 28b

Comparison of Unroller and other real-time detections on real topologies 

* over 3M runs so that there are no FPs
6x-100x



Conclusion
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■ Detecting Routing Loops in the Data Plane

■ Unroller = a lightweight loop detection solution
■ easily deployable on programmable switches
■ encodes only a small subset of the switches along the path
■ using a minimal bit-overhead on packets
■ does not store state on switches
■ identifies loops in real time
■ without a remote analysis node
■ detection in a bounded number of hops

jan.kucera@cesnet.cz

Questions ?



Unroller | Trading bandwidth for convergence

■ storing multiple identifiers on packets (c·H in total)
■ H ∈ ℕ, the number of hash functions (parallel runs of the algorithm)

■ multiple switches can have “minimum IDs” with respect to some hash function
■ c ∈ ℕ, the number of phase chunks (partitioning each phase its chunks)

■ each of the c identifier tracks the minimum only on a 1/c fraction of the phase
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Detection time for different c (number of chunks) and H (number of hashes) configurations (b=4, B=5, L=20, z=32)


