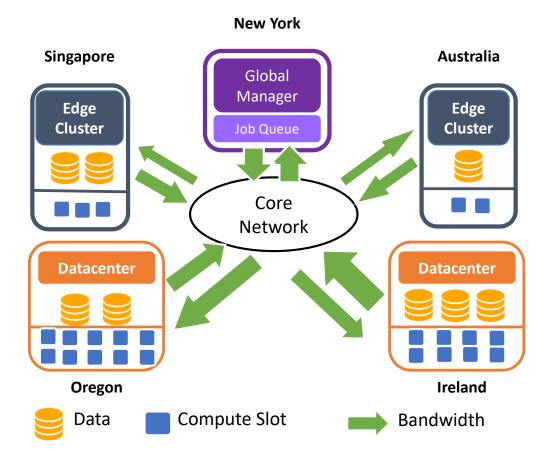
Wide-area Analytics with Multiple Resources

Chien-Chun Hung, Ganesh Ananthanarayanan, Leana Golubchik, Minlan Yu, Mingyang Zhang *USC, Microsoft Research, Harvard April 24th, 2018*

Wide-area Data Analytics Overview

- Application data: *generated, stored* and *processed* across multiple locations
- Fast response time of wide-area data analytics is critical for applications!

Wide-Area Data Analytics Architecture



Heterogeneity

- Num. of slots differ by up to **2** order of magnitude
- Network bandwidths differ by up to 18X – 25X
- Data volumes differ by up to 22X

Schedule Jobs with dataparallel tasks (map, reduce)

- Task placement
- Job scheduling

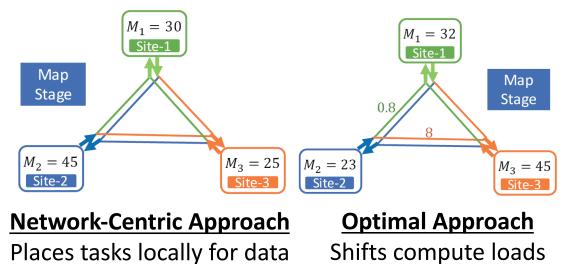
Existing Solutions and Limitations

- Centralized approach
 - Aggregate all required data at *a single site* up front
 - Incur lots of data transfer and significant delay
- In-Place approach
 - Move computation to meet data locality
 - Perform poor under data-resource *mismatch*
- Network-centric approach [Iridium-sigcomm15]
 - Distribute tasks to *minimize network transfer delay*
 - Ignore computation capacity constraint

Challenge 1: Heterogeneity in Resource Distribution, and Mismatch with Resource Demands

Map-task Placement Example

	Site-1	Site-2	Site-3
#Slots	5	1	2
Up BW	10	10	10
Down BW	1	10	10
Input volume	12	18	10
#Map tasks	30	45	25



	Network-Centric		Optimal			
	Site 1	Site 2	Site 3	Site 1	Site 2	Site 3
Netw. duration	0	0	0	0.8	0.88	0.8
Comp. duration	6	45	13	7	23	23
Total duration		45			23.88	

Optimize both network and computation time!

Task Assignment Solution

- Break-down: *network transfer* followed by *computation*
- <u>Network transfer time</u>
 - Transfer time = data size / network bandwidth
 - **N**² data upload and download transfer given **N** sites
 - Focus on minimizing the the bottleneck of all transfer
- <u>Computation time</u>
 - Estimated based on **#waves**, i.e., **#tasks / #slots**
 - Focus on minimizing the bottleneck of computation across sites
- Formulate task placement as an Linear Program (LP) to minimize network transfer time + computation time

Map-task Placement LP

$m_{x,y}$	Fraction of map-tasks placed at site y that read data from site x
T_{aggr}	Network duration for input data transfer
T _{map}	Computation duration for map-stage
S_x , B_x^{up} , B_x^{down} , I_x^{input}	#slots, up/down b/w, data volume at site x; $I^{input} = \sum_{x} I_{x}^{input}$
n_{map} ; t_{map}	#map-tasks; duration of a map-task

$$\begin{split} & \min_{m_{x,y}} T_{aggr} + T_{map} & \text{Minimize total duration (net. + comp.)} \\ & S. t. & \\ & T_{aggr} \geq \frac{l^{input} \times (\sum_{y \neq x} m_{x,y})}{B_x^{up}}, \forall x & \text{Upload transfer duration} \\ & T_{aggr} \geq \frac{l^{input} \times (\sum_{y \neq x} m_{y,x})}{B_x^{down}}, \forall x & \text{Download transfer duration} \\ & T_{map} \geq t_{map} \times \left(\frac{n_{map} \times \sum_{y} m_{y,x}}{S_x}\right), \forall x & \text{Computation duration} \\ & m_{x,y} \geq 0, \sum_{y} m_{y,x} = \frac{l_x^{input}}{l^{input}}, \sum_{x} \sum_{y} m_{x,y} = 1, \forall x, y & \text{Placement constraint} \\ & \text{by data location} \end{split}$$

Reduce-task Placement LP

r_x	Fraction of reduce-tasks placed at site x
T _{shufl}	Network duration for intermediate data shuffling
T _{red}	Computation duration for reduce-stage
S_x , B_x^{up} , B_x^{down} , I_x^{shufl}	#slots, up/down b/w, data volume at site x
n_{red} ; t_{red}	#reduce-tasks; duration of a reduce-task

$$\min_{\substack{r_x \\ S.t.}} T_{shufl} + T_{red}$$
 Minimize total duration (net. + comp.)

$$T_{shufl} \geq \frac{I_x^{shufl} \times (1 - r_x)}{B_x^{up}}, \forall x$$
$$T_{shufl} \geq \frac{(\sum_{y \neq x} I_y^{shufl}) \times r_x}{B_x^{down}}, \forall x$$
$$T_{red} \geq t_{red} \times \left(\frac{n_{map} \times r_x}{S_x}\right), \forall x$$
$$r_x \geq 0, \sum_x r_x = 1, \forall x$$

Upload transfer duration

Download transfer duration

Computation duration

Placement constraint by data location

Challenge 1: Heterogeneity in Resource Distribution, and Mismatch with Resource Demands → Reduce bottleneck of delay, and balance workloads across the sites

Challenge 2: Interdependency between Task Placement and Job Scheduling

Job Scheduling Example

- 3 slots per site; 1GBps upload/download bandwidth
- 100MB data per task; 1s computation time per task

	Job A Placement; Response Time	Job B Placement; Response Time	Average Response Time
Ideal Placement: run exclusively	(0,1,2) → 1s	(2,4,6) → 2s	1.5 s
Run job A first <i>,</i> then job B	(0,1,2) → 1s	(6,4,2) → 2.4s	1.7s
Run job B first, then job A	(3,0,0) → 2.3s	(2,4,6) → 2s	2.15s

- Not all jobs get ideal placement in optimal schedule
- Complex interaction between job scheduling and task placement

Job Scheduling Solution

- Decouple job scheduling and task placement
- Job scheduling
 - Schedule *faster* jobs first to reduce waiting time (SJF)
 - Jobs' durations estimated by task placement model
- <u>Task placement</u>
 - Solve task placement model based on remaining network/compute capacity to minimize computation time
 - Remaining capacity determined by job order
- Faster jobs get as much resource as possible
 - Other jobs may starve...

Incorporating Fairness Scheduling

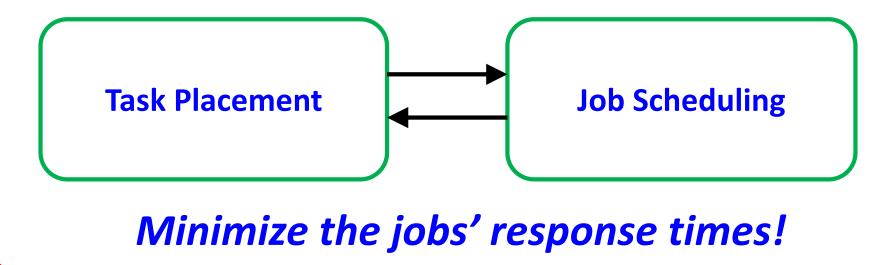
- A control knob ϵ ($0 \le \epsilon \le 1$) balancing *fairness* and *response time*
 - Each job receives at least $(1 \varepsilon)^* (\frac{f_i}{\sum_i f_i})$ slots
 - f_i is job i's remaining number of tasks
 - The number of slots one job can get is capped
 - Total #slots #reserved slots
 - $\epsilon \rightarrow 0$, completely fairness oriented
 - $\epsilon \rightarrow 1$, completely response time oriented

Challenge 2: Interdependency between Task Placement and Job Scheduling → Decouple and solve iteratively

Tetrium: Design Summary

Scheduling Instance

Instantiation: arrival of the available slots, arrival of the new job Input: current jobs, currently available slot distribution, network bandwidth Termination: once all slots are allocated, or all jobs are allocated with slots



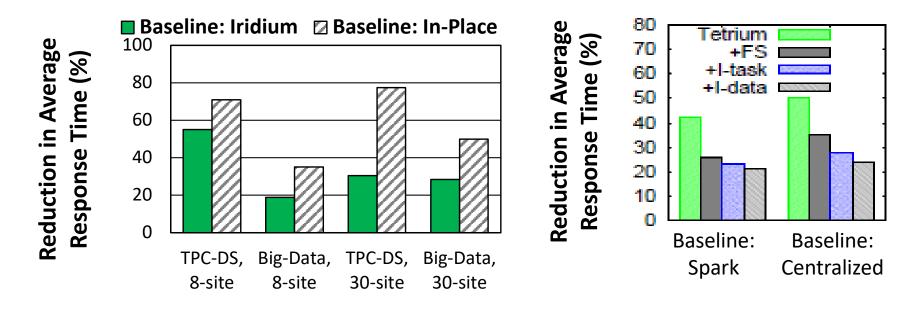
Prototype and Evaluation

- Tetrium **prototype** on top of Spark
 - Inject job scheduling and task placement into scheduler
 - Estimate task running time based on peer tasks
 - Batch available slots to reduce scheduling fluctuation
 - Solve LP optimizations with Gurobi Solver
- Tetrium **deployment** in geo-distributed EC2 cluster
 - TPC-DS (6~16 stages) and Big Data (2~5 stages) Benchmark
- Performance characterization through large-scale tracedriven **simulations**
 - Traces of 3000-machine production cluster

Performance Improvements

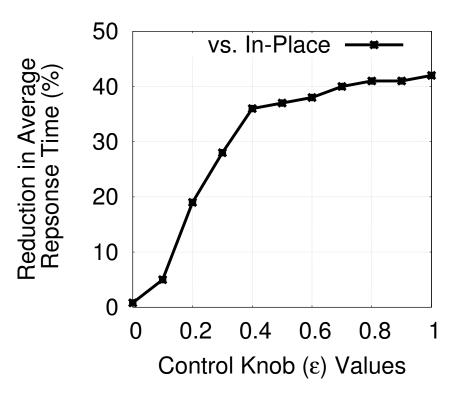
Reduction in average job response time compared to baselines

In-Place (Spark): in-place for task placement; fair scheduling across jobs Iridium: network-centric for task placement; fair scheduling across jobs Centralized: aggregate all data to one power site



- Gains are up to 77% and 55% compared to In-Place and Iridium
- Gains are higher with more sites or with more workloads
- Gains attribute to both job scheduling and task placement

Response Time vs. Fairness



 Comparable gains in response time even when each jobs is guaranteed to be allocated 60% of the proportional slots

Other Key Results

- Gains are universal across all job sizes
 - 50% (36%) improvements for large (small) jobs
- Intermediate-input data ratio
 - More improvements for higher ratio
- Scheduling overhead
 - Scheduling decision ~1s; LP optimization solving ~100ms
 - Keep overhead low by focusing on the faster jobs

Thank you!