
Wide-area Analytics
with Multiple Resources

Chien-Chun Hung, Ganesh Ananthanarayanan,
Leana Golubchik, Minlan Yu, Mingyang Zhang

USC, Microsoft Research, Harvard
April 24th, 2018

Wide-area Data Analytics Overview

• User session logs analysis
• System health monitoring,

troubleshooting

• Application data: generated, stored and processed across multiple locations
• Fast response time of wide-area data analytics is critical for applications!

Wide-Area Data Analytics Architecture

Core
Network

Data Compute Slot Bandwidth

Datacenter

Edge
Cluster

Datacenter

Edge
Cluster

Global
Manager

Job Queue

IrelandOregon

Singapore Australia

New York
Heterogeneity
• Num. of slots differ by up

to 2 order of magnitude
• Network bandwidths

differ by up to 18X – 25X
• Data volumes differ by up

to 22X

Schedule Jobs with data-
parallel tasks (map, reduce)
• Task placement
• Job scheduling

Existing Solutions and Limitations
• Centralized approach

• Aggregate all required data at a single site up front
• Incur lots of data transfer and significant delay

• In-Place approach
• Move computation to meet data locality
• Perform poor under data-resource mismatch

• Network-centric approach [Iridium-sigcomm15]
• Distribute tasks to minimize network transfer delay
• Ignore computation capacity constraint

Challenge 1:
Heterogeneity in Resource Distribution,
and Mismatch with Resource Demands

Map-task Placement Example
Site-1 Site-2 Site-3

#Slots 5 1 2

Up BW 10 10 10

Down BW 1 10 10

Input volume 12 18 10

#Map tasks 30 45 25

Network-Centric Optimal
Site 1 Site 2 Site 3 Site 1 Site 2 Site 3

Netw. duration 0 0 0 0.8 0.88 0.8

Comp. duration 6 45 13 7 23 23
Total duration 45 23.88

Optimize both network and computation time!

Network-Centric Approach
Places tasks locally for data

Optimal Approach
Shifts compute loads

Task Assignment Solution

• Break-down: network transfer followed by computation
• Network transfer time

• Transfer time = data size / network bandwidth
• N2 data upload and download transfer given N sites
• Focus on minimizing the the bottleneck of all transfer

• Computation time
• Estimated based on #waves, i.e., #tasks / #slots
• Focus on minimizing the bottleneck of computation across sites

• Formulate task placement as an Linear Program (LP) to
minimize network transfer time + computation time

Map-task Placement LP

min
$%,'

()**+ + ($)-
.. 0.
()**+ ≥

234567× ∑':% $%,'

;%65
, ∀=

()**+ ≥
234567× ∑':% $',%

;%>?@4
, ∀=

($)- ≥ 0$)-×
ABC5× ∑'$',%

D%
, ∀=

EF,G ≥ 0, ∑GEG,F =
2%34567

234567
, ∑F ∑GEF,G = 1, ∀=, K

Upload transfer duration

Download transfer duration

Computation duration

Minimize total duration (net. + comp.)

Placement constraint
by data location

LM,N Fraction of map-tasks placed at site y that read data from site x

()**+ Network duration for input data transfer

($)- Computation duration for map-stage

OF, PFQ-, PFRSTA, UFVA-QW #slots, up/down b/w, data volume at site x; UVA-QW = ∑F UFVA-QW

X$)-; 0$)- #map-tasks; duration of a map-task

Reduce-task Placement LP

min
$%

&'()*+ + &$-.

/. 1.

&'()*+ ≥
3%
45678× :;$%

<%
6= , ∀@

&'()*+ ≥
∑BC% 3B

45678 ×$%

<%
DEFG , ∀@

&$-. ≥ 1$-.×
HIJ=×$%

K%
, ∀@

LM ≥ 0, ∑M LM = 1, ∀@

Upload transfer duration

Download transfer duration

Computation duration

Minimize total duration (net. + comp.)

Placement constraint by data location

QR Fraction of reduce-tasks placed at site x
&'()*+ Network duration for intermediate data shuffling

&$-. Computation duration for reduce-stage

SM, TM
)U, TM

.VWH, XM
'()*+ #slots, up/down b/w, data volume at site x

Y$-.; 1$-. #reduce-tasks; duration of a reduce-task

Challenge 1:
Heterogeneity in Resource Distribution,
and Mismatch with Resource Demands
à Reduce bottleneck of delay,
and balance workloads across the sites

Challenge 2:
Interdependency between
Task Placement and Job Scheduling

Job Scheduling Example

Job A Placement;
Response Time

Job B Placement;
Response Time

Average
Response Time

Ideal Placement:
run exclusively

(0,1,2) à 1s (2,4,6) à 2s 1.5s

Run job A first,
then job B

(0,1,2) à 1s (6,4,2) à 2.4s 1.7s

Run job B first,
then job A

(3,0,0) à 2.3s (2,4,6) à 2s 2.15s

• 3 slots per site; 1GBps upload/download bandwidth
• 100MB data per task; 1s computation time per task

• Not all jobs get ideal placement in optimal schedule
• Complex interaction between job scheduling and task placement

Job Scheduling Solution

• Decouple job scheduling and task placement
• Job scheduling

• Schedule faster jobs first to reduce waiting time (SJF)
• Jobs’ durations estimated by task placement model

• Task placement
• Solve task placement model based on remaining

network/compute capacity to minimize computation time
• Remaining capacity determined by job order

• Faster jobs get as much resource as possible
• Other jobs may starve…

• A control knob ε 0 ≤ ε ≤ 1 balancing fairness and
response time
• Each job receives at least 1 − & *('(

∑* '(
) slots

• fi is job i’s remaining number of tasks
• The number of slots one job can get is capped

• Total #slots - #reserved slots
• εà 0, completely fairness oriented
• εà 1, completely response time oriented

Incorporating Fairness Scheduling

Challenge 2:
Interdependency between
Task Placement and Job Scheduling
à Decouple and solve iteratively

Tetrium: Design Summary

Task Placement Job Scheduling

Scheduling Instance

Instantiation: arrival of the available slots, arrival of the new job
Input: current jobs, currently available slot distribution, network bandwidth
Termination: once all slots are allocated, or all jobs are allocated with slots

Minimize the jobs’ response times!

Prototype and Evaluation
• Tetrium prototype on top of Spark

• Inject job scheduling and task placement into scheduler
• Estimate task running time based on peer tasks
• Batch available slots to reduce scheduling fluctuation
• Solve LP optimizations with Gurobi Solver

• Tetrium deployment in geo-distributed EC2 cluster
• TPC-DS (6~16 stages) and Big Data (2~5 stages) Benchmark

• Performance characterization through large-scale trace-
driven simulations
• Traces of 3000-machine production cluster

Performance Improvements
Reduction in average job response time compared to baselines

• Gains are up to 77% and 55% compared to In-Place and Iridium
• Gains are higher with more sites or with more workloads

• Gains attribute to both job scheduling and task placement

In-Place (Spark): in-place for task placement; fair scheduling across jobs

Iridium: network-centric for task placement; fair scheduling across jobs

Centralized: aggregate all data to one power site

Re
du

ct
io

n
in

 A
ve

ra
ge

Re

sp
on

se
 T

im
e

(%
)

Baseline:

Spark

Baseline:

Centralized

0

20

40

60

80

100

TPC-DS,

8-site

Big-Data,

8-site

TPC-DS,

30-site

Big-Data,

30-site

Re
du

ct
io

n
in

 A
ve

ra
ge

Re

sp
on

se
 T

im
e

(%
)

Baseline: Iridium Baseline: In-Place

Response Time vs. Fairness

• Comparable gains in response time even when each jobs is
guaranteed to be allocated 60% of the proportional slots

 0

 10

 20

 30

 40

 50

 60

 70

 80

vs.In-Place vs.Centralized

R
e
d
u
ct

io
n
 in

 A
ve

ra
g
e

 R
e
sp

o
n
se

 T
im

e
 (

%
) GRAMR

GRAMR+Fair
Iridium+GRAMR

(a) Response Time

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

C
D

F

Reduction in Response Time (%)

vs. In-Place
vs. Centralized

(b) CDF

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1

R
e
d
u
ct

io
n
 in

 A
ve

ra
g
e

 R
e
p
so

n
se

 T
im

e
 (

%
)

Control Knob (ε) Values

vs. In-Place

(c) Fairness

 20

 30

 40

 50

 60

 10 15 20 25 30 35 40 45 50

µ=0

µ=0.5

µ=1

R
e
d
u
ct

io
n
 in

 M
a
ke

sp
a
n
 (

%
)

Reduction in
Avarage Response Time (%)

vs. In-Place

(d) Makespan
Figure 6: Performance Results from Simulation Experiments.

Map Remote-Spread Local-First Remote-Spread Local-First
Reduce Longest-First Longest-First Random Random
Gains 42% 32% 38% 29%

Table 4: Task Scheduling Strategy Combination

responding to each knob value. GRAMR achieves 23% im-
provement in makespan when it completely favors reducing
response time (µ = 1), and 14% improvements in response
time at the other extreme (µ = 0). As the knob is turned to-
wards µ = 1 (the number of cliques increases), the improve-
ments in response time quickly increase because GRAMR’s
job scheduling heuristic can efficiently identify fast-finishing
cliques and allocate slots to them instead of having them
slowed down by the longer duration cliques.
Task Scheduling Strategy We now verify our task schedul-
ing design choice (see §3). For map-stage task schedul-
ing, we consider the following: (a) Remote-First (Spread):
launching remote tasks first while spreading them across dif-
ferent sites to reduce network contention, as proposed in
§3.1, and (b) Local-First: launching local tasks first, i.e.,
those that read data from the site corresponding to the avail-
able slot. For reduce-stage task scheduling, we consider the
following: (a) Longest-First: first launching the reduce-task
with the longest network transfer time, as proposed in §3.2,
and (b) Random: arbitrarily selecting a reduce-task to run.

Table 4 presents the average performance gains for the 4
combinations of task scheduling strategies, as compared to
the In-Place baseline. The results verify that our proposed
task scheduling methods result in the best combination, with
most of the gains attributed to the map-task scheduling method.
Stage-By-Stage Approach In §3.3 we investigate GRAMR’s
limitation in addressing the mismatch between map and re-
duce task placement, and design an alternative for the sce-
narios in which GRAMR falls short. Here we quantify effects
of this limitation by comparing GRAMR’s (forward) stage-
by-stage approach against a method that selects the best out
of forward and reverse, while the latter is guaranteed to be
better (or at least as good as) GRAMR’s approach. Our results
show that GRAMR achieves 42% improvements against In-
Place baseline, while the mixed method achieves 45%. Be-
cause (i) the difference is marginal and (ii) forward is more
practical to implement in most systems while incuring less
overhead (e.g., it does not require upfront information about

 0

 15

 30

 45

 60

<0.2 0.2-0.5 0.5-1 >1

Ratio of Intermediate/Input Data Size

Queries(%)
Improvement(%)

(a) Intermediate-Input Ratio

 0

 15

 30

 45

 60

<50 51-250 250-1000 >1000

Job Size (Number of Tasks)

Queries(%)
Improvement(%)

(b) Job Size Variation

 0

 15

 30

 45

 60

<0.5 0.5-1.0 1.0-2.0 >2.0

Cross-Site Input Data Skew
(Coefficient of Variation)

Queries(%)
Improvement(%)

(c) Input Data Skew

 0

 15

 30

 45

 60

<0.5 0.5-1.0 1.0-2.0 >2.0

Cross-Site Intermediate Data Skew
(Coefficient of Variation)

Queries(%)
Improvement(%)

(d) Intermediate Data Skew
Figure 7: Distributions of Performance Results.

all stages), we adopt forward stage-by-stage as in GRAMR.

6.3.2 Distribution of The Performance Gains

In this section, we break down our performance results us-
ing several categories, to characterize and better understand
the improvements. We use In-Place in our comparisons as
the results compared to other baselines present similar trends
Intermediate-Input Ratio: Figure 7(a) uses intermediate-
input ratio to characterize improvements, broken down by
percentage of queries (in our traces) that have a particular
ratio. The general trend is, the higher the ratio, the more im-
provements (up to 50%) GRAMR achieves. At the high end
(reduce-heavy), more intermediate data is generated than in-
put data, which incurs more data shuffle across the network
and therefore GRAMR gains more from efficient resource al-
location. At the low end (map-heavy), GRAMR also improves
performance (by at least 31%); we believe this can be at-
tributed to the efficient map-task placement solution, which
also highlights how site-locality falls short.
Job Size Variation: Figure 7(b) illustrates how GRAMR’s
gains increase as the job size (number of tasks) increases.
When a job has more tasks to place across sites, an efficient

11

Other Key Results
• Gains are universal across all job sizes

• 50% (36%) improvements for large (small) jobs

• Intermediate-input data ratio
• More improvements for higher ratio

• Scheduling overhead
• Scheduling decision ~1s; LP optimization solving ~100ms
• Keep overhead low by focusing on the faster jobs

Thank you!

