
Electrode: Accelerating Distributed
Protocols with eBPF

* Yang Zhou

Harvard University
1

* Zezhou Wang

Peking University

Sowmya
Dharanipragada

Cornell University

Minlan Yu

Harvard University

* Co-primary author

Cloud applications need consensus protocols for high availability

2

✓
✓

✓ ❌

❌

Kafka Hadoop Kubernetes

ZooKeeper etcd

This talk: accelerating consensus protocol implementations for cloud apps

Request
Requests

Example: a simplified Multi-Paxos consensus protocol

3

Client

Leader

Follower 1

Follower 2

Follower 3

Follower 4
Request Broadcasting

preparation
Acknowledging

Execution

Response

Commit

In this example, the leader node invokes networking APIs 14 times per request

Waiting on quorum

... we target in-memory data replication (i.e., without persistence)

Kernel networking: Multi-Paxos incurs high kernel overhead

4

User space

Kernel space Network stack

NIC Driver

NIC Hardware

Traffic Control
…

UDP Stack
Socket Layer

25% CPU

44% CPU time

19% CPU1 on context switching

[1] Experiment settings: Multi-Paxos with 5 replicas using socket APIs from Linux kernel 5.8.0, measured on leader node.

Kernel bypassing: does it solve all problems?

5

DPDK: moving stacks to user space,
using busy polling instead of interrupt

+ Good performance
- Security and isolation vulnerability
- Not cloud-friendly: Busy polling discourages CPU sharing
- High maintenance overhead: compatibility with others

NIC Hardware
Kernel net. stack

Kernel bypassing is not a panacea

Kernel customization for apps High Medium - High

Approaches

Kernel

Kernel bypassing

Can we achieve both?

6

[1] Bershad, Brian N., et al. "Extensibility safety and performance in the SPIN operating system." SOSP 1995
[2] Engler, Dawson R., et al. "Exokernel: An operating system architecture for application-level resource management."
ACM SIGOPS Operating Systems Review 1995
[3] Zhong, Yuhong, et al. "XRP: In-Kernel Storage Functions with eBPF." OSDI 2022

1-3

Electrode demonstrates it on modern Linux kernels without kernel modifications or rebooting.
… we target UDP-based applications inside data centers.

Security, isolation, cloud-
friendly, ease maintenance

High

Low

Performance

Low

High

Talk Outline

7

High-level methodology and challenges

Electrode: three kernel customizations for Paxos

Evaluation

Talk Outline

8

High-level methodology and challenges

Electrode: three kernel customizations for Paxos

Evaluation

Leveraging eBPF to accelerate Paxos implementation

9

eBPF is a mechanism to offload functions to existing kernel at runtime and safely
o It achieves safety via static verification

NIC Hardware
NIC Driver

Traffic Control
…

UDP Stack
Socket Layer

44% CPU on kernel
overhead

-offloaded Paxos ops

+ Good performance
+ Secure, isolate well: kernel-native
+ Cloud-friendly: no busy polling
+ Reusing kernel networking stack

... in lower layers of kernel stacks,
avoiding most kernel overhead

NIC Driver
Traffic Control

…
UDP Stack

Socket Layer

NIC Hardware

Paxos on eBPF

eBPF was commonly used for simple network functions:
o Packet filtering, monitoring, load balancing

Now we are using it for application functions:
o A Paxos message is usually small enough to fit into a single packet

10

TC--kernel-exposed hook point

XDP--vendor-exposed hook point

packets

Challenges of processing Paxos messages in eBPF

eBPF programming model is constrained because of static verification for safety
o Limited # of instructions, bounded loops, static memory allocation
o Challenging to support complex pointer arithmetics for memory accesses

11

What’s the right division of labor between user and kernel
o that can greatly reduce kernel overhead
o while being implementable in eBPF for offloaded ops?

Client

Leader

Follower 1

Follower 2

Follower 3

Follower 4

Division of labor between user and kernel

12

Perf-critical and simple to kernel

Client-facing ser/deserialization
(complex pointer arithmetics)

Application ops
(dynamic memory allocation)

Failure, msg loss/reordering
(too complex for static verification)

Broadcasting Acknowledging Wait-on-quorum

Complex to user

❌

Talk Outline

13

High-level methodology and challenges

Electrode: three kernel customizations for Paxos

Evaluation

o Leveraging eBPF to offload perf-critical and simple ops to the kernel

Talk Outline

14

High-level methodology and challenges
o Leveraging eBPF to offload perf-critical and simple ops to the kernel

Electrode: three kernel customizations for Paxos

Evaluation

NIC Driver
Traffic Control

…
UDP Stack

Socket Layer

NIC Hardware
NIC Driver

Traffic Control
…

UDP Stack
Socket Layer

NIC Hardware

Electrode offload #1: message broadcasting

15

4 send() 1 send()

Perf-critical: # of context switching and stack traversing is linear to # of replicas
Simple for eBPF: TC to clone and modify packets (using bpf_clone_redirect())
o Incur only once context switching and upper stack traversing
o Handle message loss in user space by resending messages (unlikely events)

NIC Driver
Traffic Control

…
UDP Stack

Socket Layer

NIC Hardware
NIC Driver

Traffic Control
…

UDP Stack
Socket Layer

NIC Hardware

Electrode offload #2: fast acknowledging

16
1 recv() 1 send()

Async
poll

Perf-critical: incurring twice the kernel latency on the critical path
Simple for eBPF: XDP to buffer log entries and quickly ack back
o Remove the kernel latency from the critical path
o Detect special cases (e.g., message loss, full buffer) and forward to user space

Append log

Append log to
in-kernel ringbuf

1 recv() 1 send()

NIC Driver
Traffic Control

…
UDP Stack

Socket Layer

NIC Hardware
NIC Driver

Traffic Control
…

UDP Stack
Socket Layer

NIC Hardware

Electrode offload #3: waiting on quorum

17

4 recv() 1 recv()

Perf-critical: leader recv ACKs from all followers, each incurring kernel overhead
Simple for eBPF: XDP to maintain # of ACKs in the driver layer
o Filter unnecessary ACKs: only the quorum-reaching ACK incurs kernel overhead
o Use bitset instead of counter to avoid double counting

State synchronization challenge

18

NIC Driver
Traffic Control

…
UDP Stack

Socket Layer

NIC Hardware

No shared memory between eBPF and user space for kernel safety
o Communicate by copying data back and forth

next_seq

Handling reordered
messages

Our approach 1: detaching eBPF program
Our approach 2: using eBPF map as an on-off switch
Details in the paper

Talk Outline

19

High-level methodology and challenges
o Leveraging eBPF to offload perf-critical and simple ops to the kernel

Electrode: three kernel customizations for Paxos

Evaluation
o Broadcasting, fast ack’ing, waiting on quorum beneath network stacks

Talk Outline

20

High-level methodology and challenges
o Leveraging eBPF to offload perf-critical and simple ops to the kernel

Electrode: three kernel customizations for Paxos
o Broadcasting, fast ack’ing, waiting on quorum beneath network stacks

Evaluation

Evaluation overview

Workloads:
o Multi-Paxos on 3/5/7 replicas
o Transactional replicated key-value store on 3/5/7 replicas (skipped here)

21

Metrics: we vary # of clients and measure:
o Throughput, median/99th-tail latency, and CPU utilization

Testbed:
o Bare metal machines from Cloudlab xl170

o Stock Linux kernel 5.8.0 and ubuntu 20.04
o Mellanox ConnectX-4 25Gbps NIC

o We do not use IP multicast (Cloudlab does not support either)

0

50

100

150

200

250

M
ed
ia
n
la
te
nc
y
(�
s) Linux kernel

+ Electrode

0 20 40 60
Through ut (K req/s)

0

50

100

150

200

250

99
th
-ta

il
la
te
nc
y
(�
s) Linux kernel

+ Electrode

Load-latency curves (5 replicas)

22

2x throughput
improvement

20% latency
reduction

14 times context switching
and stack traversing

5 times

Electrode

Other results

7 replicas: 2.3x throughput improvement and 40% tail latency reduction

23

Comparison to kernel-bypassing:
o Around half performance of DPDK-based one (throughput and latency)

o Hard-to-offload operations in Paxos
o eBPF with XDP/TC cannot beat DPDK, as it is interrupt-driven

o Electrode is a kernel-native approach (i.e., security, isolation, cloud-friendly, etc)

More in the paper!
o Improvement on the transactional replicated key-value store
o Performance contribution of each eBPF optimization
o Reduction of CPU usage

Electrode Summary

o Consensus protocols under kernel stacks suffer from high kernel overhead

24

o We design a set of eBPF-based kernel customizations to reduce such overhead
o Without kernel modifications or rebooting
o Up to 2.3x throughput speedup and 40% latency reduction for Multi-Paxos

Kernel Kernel bypassingSecurity, isolation,
cloud-friendly Performance

Kernel customization
for applications

Thank You!

