
Sundial: Fault-tolerant Clock
Synchronization for Datacenters

OSDI 2020

Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan Wassel, Peter Hochschild,
Dave Platt, Simon Sabato, Minlan Yu, Nandita Dukkipati, Prashant Chandra, Amin Vahdat

● Simplify or improve existing applications
○ Distributed databases

○ Consistent snapshots

● Enable new applications
○ Network telemetry, e.g., per-link loss/latency, network snapshot
○ One-way delay measurement for congestion-control
○ Distributed logging and debugging

● And more, if synchronized clocks with tight bound are available

FaRMv2

2

Need for synchronized clocks in datacenter

Spanner

T Wait to ensure others pass T

Read X

Time-uncertainty bound (ε)
decides how much to wait

Wait: a common op for
ordering & consistency

T-1

Write X

Read X

Need for time-uncertainty bound (ε)

3

timeServer 1

timeServer 2

Network Processingε

ε

Even 10~20µs ε causes 25% extra median latency*!

Sundial: ~100ns time-uncertainty bound even under failures
 2 to 3 orders of magnitude better than existing designs

RDMA: <10µs
FPGA: <10µs
SmartNIC: <10µs
NVMe: ~10µs

*FaRMv2 [SIGMOD’ 19]

Need for tighter time-uncertainty bound (ε)

4

≈ RTT/2

offset = TA + d - TB
TA

TB

d Clock A

Clock B

Variable and asymmetric delay (d≠RTT/2):
1. Forward vs. Reverse paths
2. Queuing delay

Sync between neighboring devices
Fixed and symmetric delay (d=RTT/2)

Spanning tree:
Clock values distributed along tree edges

Calculate offset
Between 2 clocks

Path of messages

Network-wide
synchronization

Clocks can drift apart over time, so
periodic synchronization is needed

Periodic
synchronization

State-of-the-art clock synchronization

5

max_drift_
rate

now-Tlast_sync

Tlast_sync now

ε

time

ε = (now - Tlast_sync) × max_drift_rate + c

Connectivity failures:
- link/device failure that break

the spanning tree

Frequency-related failures:
- Cooling, voltage fluctuations

Calculation of time-uncertainty bound ε

6

● Clocks drift as oscillator frequencies vary with temperature, voltage, etc.
○ E.g., frequency ±100ppm between -40~80 °C from an oscillator specification.
○ Various failures cause frequency variations: cooling failure, fire, voltage fluctuations, etc.

● max_drift_rate is set conservatively in production (200ppm in Google TrueTime)
● Reason: must guarantee correctness

○ What if we set it more aggressively? A large number of clock-related errors (application
consistency etc.) during cooling failures!

1. Need very frequent synchronization

< 100ns 200ppm< 500µs
ε = (now - Tlast_sync) × max_drift_rate+c

Impact of failures on max_drift_rate

7

Other nodes:
Large ε all the time
to prepare for
unnoticed failures

Don’t know about
the link failure

Root’s direct children:
Large ε when affected by failure

2. Need fast recovery from connectivity failures

B

ANeeds controller to recover:
If recovery takes 100x, now-Tlast_sync grows 100x

Connectivity
recovery time

Impact of failures on now-Tlast_sync

Continue to synchronize

8

 Centralized Controller

 Device

 Hardware:
- Message sending & processing
- Failure detection

1. Frequent synchronization

 Software:
- Enable the backup plan

2. Fast recovery from connectivity failures

 Software:
- Pre-compute the backup plan

Failure
report

Config < 500µs
local recovery

Non-critical
path

Sundial design overview

9

Hardware-software codesign w/ two
salient features:

whole subtree

Synchronous
Messaging

Every ~100µs

Timeout

Normal time After failure Recovery

rx

tx

Pre-assigned by
the controller

Turn to
backup parent

 3 key
aspects

Frequent messages
Every ~100µs

Fast failure detection
Small timeout

Remote failure detection
Synchronous messaging

Sundial hardware design

10

Option 1 Option 2

Multiple options for
the backup parent

Device can’t distinguish
different failures

Generic to
different
failures

1 backup parent per device

Controller: pre-compute the backup plan
Sundial software design

11

● Any single link failure
● Any single device failure
● Root device failure
● Any fault-domain (e.g., rack, pod, power) failure:

multiple devices/links go down

Controller: pre-compute the generic backup plan
Sundial software design

1 backup parent per device

Backup plan
1 backup root

12

Backup root: elect itself as the new root when root fails (normal device otherwise)

Backup root

Root

Backup root

Root

Non-root failure: continue receiving msg Root failure: no msg

? How to distinguish root failure from other failures?
 ! Get independent observation from other nodes

[backup root only] 2nd timeout: elect itself as the new root

Backup plan that handles root failure

13

If one domain failure:
1. Breaks connectivity
2. Takes down backup parent

Avoid this case when computing the backup plan

Backup plan that handles fault-domain failures

14

● Testbed: 552 servers, 276 switches
● Compare with state-of-the-art plus ε

○ PTP+ε, PTP+DTP+ε, Huygens+ε

● Metrics: ε
● Scenarios:

○ Normal time (no failure)
○ Inject failure: link, device, domain

Evaluation

15

> 100x lower

Time-uncertainty bound distribution over all devices

Time-uncertainty bound (ns)43ns

During normal time (w/o failures)

C
D

F
(%

)

16

>2 orders of magnitudes lower during normal time

Ti
m

e-
un

ce
rt

ai
nt

y
b

ou
nd

(n

s)

During failures

Time (s)

17

>2 orders of magnitudes lower during failures

Time series of time-uncertainty bound

Time (s)

PTP+ε

+frequent messages every ~100µs

+synchronous messaging

+backup plan (=Sundial)

failure

Ti
m

e-
un

ce
rt

ai
nt

y
b

ou
nd

(n

s)
How Sundial’s different techniques help

18

● Spanner: 3-4x lower commit-wait latency

● Swift congestion control: with use of one-way-delays, 60% higher
throughput under reverse-path congestion

● Working on more applications using Sundial

Sundial improves application performance

19

● Time-uncertainty bound is the key metric
○ Existing sub-µs solutions fall short because of failures

● Sundial: hardware-software codesign
○ Device hardware: frequent message, synchronous messaging, fast failure detection
○ Device software: fast local recovery based on the backup plan
○ Controller: pre-compute the backup plan generic to different failures

Conclusion

20

First system: ~100ns time-uncertainty bound

Improvements on real applications

