Carbink: Fault-Tolerant Far Memory

Yang Zhou"™ Hassan M. G. Wassel? Sihang Liu®" Jiagi Gao' James Mickens' Minlan Yu'"?2
Chris Kennelly? Paul Turner? David E. Culler? Henry M. Levy?4 Amin Vahdat?

'Harvard University 2Google
3University of Virginia “University of Washington
g

§ ”é
‘ '

* Contributed to this work during internships at Google.

Memory-Intensive Applications in Data Centers

Graph processing: # of nodes [1]
Webpages
Videos
Fares o Clueweb
854B

Memory provisioning is hard, as memory is limited by server physical boundary
® Over-provisioning memory for peak usage — 40%-60% memory utilization [3]
® Growing data in one process even exceeds single-server memory limit

VOLTDB

Can applications dynamically utilize the unused memory on other servers?

[1] £acki, Jakub, et al. "Connected components at scale via local contractions.” arXiv preprint 2018
[2] Stonebraker, Michael, et al. "The VoltDB Main Memory DBMS." IEEE Data Eng. Bull 2013
[3] Tirmazi, Muhammad, et al. "Borg: the next generation." EuroSys 2020

Background: Far Memory on Commodity Servers [1,2,3,...]
Benefits of far memory:

DB
@® Dynamically provisioning unused

= memory to memory-intensive apps
Node N @® Apps can use much more memory
than single-machine limit

Data center network
(100Gbps, few-us RTT)

[1] Gu, Juncheng, et al. "Efficient memory disaggregation with infiniswap." NSDI 2017
[2] Aguilera, Marcos K., et al. "Remote regions: a simple abstraction for remote memory." ATC 2018
[3] Amaro, Emmanuel, et al. "Can far memory improve job throughput?." EuroSys 2020

Background: Far Memory on Commodity Servers [1,2,3,...]

Local node === > Remote node1
\\ \\ S
A SN S
AN Y S S
S S S

\ N N S -

oS ' Remote node2
\ N
\ \\
\\ ~.
N\
\ ™ Remote node3
N\
N\
N\
\ L]
\

N\

\
Remote node N

[1] Gu, Juncheng, et al. "Efficient memory disaggregation with infiniswap." NSDI 2017
[2] Aguilera, Marcos K., et al. "Remote regions: a simple abstraction for remote memory." ATC 2018
[3] Amaro, Emmanuel, et al. "Can far memory improve job throughput?." EuroSys 2020

Application Interface: Remotable Pointers

Application-Integrated Far Memory [1]

flemote node1

@ Remotable pointer

§!emote node2) Remotable object

\ N
2N \‘I Remote node3
\\
\
. :

\

What if remote nodes fail?

\
‘I Remote node N

[1] Ruan, Zhenyuan, et al. "AIFM: High-performance, application-integrated far memory." OSDI'20

The Must-Have Feature: Fault Tolerance

Local node |(g: ——————————— > Remote node1

S S o
\\\\\\\\\\

N\ \\ \\\\ oge o .

o | Remote nodes w Probability of a.ppllcatlo.n crash

SR) grows almost linearly with N
N
\ N

\ e
AN
' “I Remote node3
\

\
\
\
\

AN
‘I Remote node N

How to build a fault-tolerant far memory system?

... assume fail-stop faults and no partial network failures 6

Talk Outline

Direction: in-memory erasure coding for fault tolerance

Carbink: making erasure coding work in practice

Evaluation: performance and cost of Carbink

Replication vs. Erasure Coding

node

(@) (e
Loca d
data

ﬁennote

Replication

@® High memory overheads (3x)

nodes

SSD vs. Memory

SSD would become bottleneck during
bursty workloads or failure recovery [1]

[1] Lee, Youngmoon, et al. "Hydra: Resilient and Highly Available Remote Memory." FAST'22

B P —
Loca — |

node il |
- Remote
artty nodes

Erasure coding (EC)

® Much smaller memory usage (1.5x)
@ Single core achieves 4GB/s encoding tput [1]

In-memory erasure coding

vV

Talk Outline

Direction: in-memory erasure coding for fault tolerance

@® High performance & low memory usage

Carbink: making erasure coding work in practice

Evaluation: performance and cost of Carbink

Challenge 1: Remotable Objects Have Different Sizes

Erasure coding irregular-sized objects is hard

Padding: objects aligned

|

e [

o3

mj but wasting memory
|

ES |

Splitting: small objects
incurs large metadata

Carbink approach: grouping similar-sized objects into spans (like TCMalloc [1])
@® Spans are page-aligned and regular-sized

[1] Hunter, Andrew Hamilton, et al. "Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory allocator.” OSDI'21 10

Grouping Similar-Sized Objects into Spans

8KB span
A

1KB

~\ rﬁl ~
==

24KB span
A

e (NEDEDIRERIRES

Span-centric memory pooling

@® Applying spans to object management and data swapping
@® Spans are page-aligned, and never end with a partial object

11

Challenge 2: Efficient Swapping under Erasure Coding

EC-Split (Hydra [1]): EC-Batch (Carbink):
erasure codes individual spans erasure codes spansets
| | > > | |
(o) . | : o |
Loca L | Lodse spani |
node L | nodeEkS CHESE. |
: Remote p2Remote
Parity nodes [__nodes
Multiple network 10s to swap-in/out a span Single network 10 to swap-in a span
@® Stressing network stack — slow swapping @® Fast swapping and low tail latency

@® Stragglers — high tail latency

[1] Lee, Youngmoon, et al. "Hydra: Resilient and Highly Available Remote Memory." FAST'22 12

Swap-In&Out Granularity Mismatch — Remote Fragmentation

Spanset1

span3
span4

Local node

13

Swap-In&Out Granularity Mismatch — Remote Fragmentation

Spanset1

1

Spanset2

spans
spané

span3
span4

S

S

Local node

14

Remote Compaction for Defragmentation

Spanset1 W_/\ Spanset3| (free)
\

-——

No impacts on span swapping perf: off

1 spam spand| T~ . .
S0 | Foane Spond the critical path of swap-ins/outs
span3 span3
spand] {—" Penalty: may consume more memory;

dead spans not compacted immediately

(

ispan4i

Spanset map

Zero-copy span merging

Spanset3: span5,6,3,4

LocC

15

Talk Outline

Direction: in-memory erasure coding for fault tolerance
@® High performance & low memory usage
Carbink: making erasure coding work in practice

@® Span-centric memory pooling — managing arbitrary-sized objects
@® Erasure coding spansets — achieving swapping efficiency

Evaluation: performance and cost of Carbink

16

Evaluation Overview

Workloads:
® Aninternal transactional KV-store doing TPC-A transactions
@® Graph connected components (skipped here due to time limit)
® A microbenchmark dereferencing remotable objects

Metrics: throughput, tail latency, memory usage

Testbed:
@ Servers with 50 Gbps NIC and PonyExpress [1] user-space network stacks
® One-sided RMAs for span swapping; RPCs for remote compaction

[1] Marty, Michael, et al. "Snap: A microkernel approach to host networking." SOSP’19

17

Throughput (KV-store)

|Working set size
60 .
~ < EC-Split
—
X -+ EC-Batch
) Perform similarly because
& 40 — working set fits local memory
=
>
Q.
< 20 - EC-Batch achieves up to 1.5x
g) — speedup over EC-Split
O
S
<
0 | | I
0 25 50 75 100

Local memory (% of 50GB)

Tail Latency (Microbenchmark)

99 percentile latency (us)

100 -

o

N W

o o

o o
l

<~ EC-Split

~| EC-Batch

ap *

EC-Batch achieves 1.2x-1.4x tail latency
reduction over EC-Split (before knee point)

o

|
2

|
4

Offered load (Mops)

19

Other Results

Remote memory usage:

@® EC-Batch consumes at most 35% more memory than EC-Split
@® ... but still only % of replication memory usage

More in the paper!

® Remote compaction resource usage
@® Failure recovery times
@® AIFM (swapping individual objects) vs. Carbink

20

Carbink Summary

Fault tolerance is a must-have feature for applications to use far memory

Carbink: making erasure coding FT work in practice for far memory system
@® Grouping objects into spans — handle arbitrary-sized objects
® Erasure coding spansets — single network 10 data-fetch

Up to 1.5x application speedup and 1.4x tail latency reduction with up to 35% more
memory usage (compared to state-of-the-art EC-Split)

Keys to Enabling Memory Disaggregation

J Carbink
[Performance] [Fault Tolerance]4/'

Thank You!

Carbink: making erasure coding FT work in practice for far memory system

Up to 1.5x application speedup and 1.4x tail latency reduction with up to 35%
more memory usage (compared to state-of-the-art EC-Split)

22

