Carbink: Fault-Tolerant Far Memory
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Memory-Intensive Applications in Data Centers

Graph processing: # of nodes [1]
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Memory provisioning is hard, as memory is limited by server physical boundary
® Over-provisioning memory for peak usage — 40%-60% memory utilization [3]
® Growing data in one process even exceeds single-server memory limit

VOLTDB

Can applications dynamically utilize the unused memory on other servers?

[1] £acki, Jakub, et al. "Connected components at scale via local contractions.” arXiv preprint 2018
[2] Stonebraker, Michael, et al. "The VoltDB Main Memory DBMS." IEEE Data Eng. Bull 2013
[3] Tirmazi, Muhammad, et al. "Borg: the next generation." EuroSys 2020



Background: Far Memory on Commodity Servers [1,2,3,...]
Benefits of far memory:

DB
@® Dynamically provisioning unused

= memory to memory-intensive apps
Node N @® Apps can use much more memory
than single-machine limit

Data center network
(100Gbps, few-us RTT)

[1] Gu, Juncheng, et al. "Efficient memory disaggregation with infiniswap." NSDI 2017
[2] Aguilera, Marcos K., et al. "Remote regions: a simple abstraction for remote memory." ATC 2018
[3] Amaro, Emmanuel, et al. "Can far memory improve job throughput?." EuroSys 2020



Background: Far Memory on Commodity Servers [1,2,3,...]
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[1] Gu, Juncheng, et al. "Efficient memory disaggregation with infiniswap." NSDI 2017
[2] Aguilera, Marcos K., et al. "Remote regions: a simple abstraction for remote memory." ATC 2018
[3] Amaro, Emmanuel, et al. "Can far memory improve job throughput?." EuroSys 2020



Application Interface: Remotable Pointers

Application-Integrated Far Memory [1]
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What if remote nodes fail?
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[1] Ruan, Zhenyuan, et al. "AIFM: High-performance, application-integrated far memory." OSDI'20



The Must-Have Feature: Fault Tolerance
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How to build a fault-tolerant far memory system?

... assume fail-stop faults and no partial network failures 6



Talk Outline

Direction: in-memory erasure coding for fault tolerance

Carbink: making erasure coding work in practice

Evaluation: performance and cost of Carbink



Replication vs. Erasure Coding
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Replication

@® High memory overheads (3x)

nodes

SSD vs. Memory

SSD would become bottleneck during
bursty workloads or failure recovery [1]

[1] Lee, Youngmoon, et al. "Hydra: Resilient and Highly Available Remote Memory." FAST'22
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Erasure coding (EC)

® Much smaller memory usage (1.5x)
@ Single core achieves 4GB/s encoding tput [1]

In-memory erasure coding
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Talk Outline

Direction: in-memory erasure coding for fault tolerance

@® High performance & low memory usage

Carbink: making erasure coding work in practice

Evaluation: performance and cost of Carbink



Challenge 1: Remotable Objects Have Different Sizes

Erasure coding irregular-sized objects is hard

Padding: objects aligned
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Splitting: small objects
incurs large metadata

Carbink approach: grouping similar-sized objects into spans (like TCMalloc [1])
@® Spans are page-aligned and regular-sized

[1] Hunter, Andrew Hamilton, et al. "Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory allocator.” OSDI'21 10



Grouping Similar-Sized Objects into Spans
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Span-centric memory pooling

@® Applying spans to object management and data swapping
@® Spans are page-aligned, and never end with a partial object
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Challenge 2: Efficient Swapping under Erasure Coding

EC-Split (Hydra [1]): EC-Batch (Carbink):
erasure codes individual spans erasure codes spansets
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Multiple network 10s to swap-in/out a span Single network 10 to swap-in a span
@® Stressing network stack — slow swapping @® Fast swapping and low tail latency

@® Stragglers — high tail latency

[1] Lee, Youngmoon, et al. "Hydra: Resilient and Highly Available Remote Memory." FAST'22 12



Swap-In&Out Granularity Mismatch — Remote Fragmentation
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Swap-In&Out Granularity Mismatch — Remote Fragmentation
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Remote Compaction for Defragmentation
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Talk Outline

Direction: in-memory erasure coding for fault tolerance
@® High performance & low memory usage
Carbink: making erasure coding work in practice

@® Span-centric memory pooling — managing arbitrary-sized objects
@® Erasure coding spansets — achieving swapping efficiency

Evaluation: performance and cost of Carbink
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Evaluation Overview

Workloads:
® Aninternal transactional KV-store doing TPC-A transactions
@® Graph connected components (skipped here due to time limit)
® A microbenchmark dereferencing remotable objects

Metrics: throughput, tail latency, memory usage

Testbed:
@ Servers with 50 Gbps NIC and PonyExpress [1] user-space network stacks
® One-sided RMAs for span swapping; RPCs for remote compaction

[1] Marty, Michael, et al. "Snap: A microkernel approach to host networking." SOSP’19
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Throughput (KV-store)
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Tail Latency (Microbenchmark)

99 percentile latency (us)
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Other Results

Remote memory usage:

@® EC-Batch consumes at most 35% more memory than EC-Split
@® ... but still only % of replication memory usage

More in the paper!

® Remote compaction resource usage
@® Failure recovery times
@® AIFM (swapping individual objects) vs. Carbink
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Carbink Summary

Fault tolerance is a must-have feature for applications to use far memory

Carbink: making erasure coding FT work in practice for far memory system
@® Grouping objects into spans — handle arbitrary-sized objects
® Erasure coding spansets — single network 10 data-fetch

Up to 1.5x application speedup and 1.4x tail latency reduction with up to 35% more
memory usage (compared to state-of-the-art EC-Split)

Keys to Enabling Memory Disaggregation

J Carbink
[ Performance ] [Fault Tolerance ]4/'




Thank You!

Carbink: making erasure coding FT work in practice for far memory system

Up to 1.5x application speedup and 1.4x tail latency reduction with up to 35%
more memory usage (compared to state-of-the-art EC-Split)
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