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Adding output-length aware scheduling to PREBLE

LLM inference in large data centers can benefit from data 
parallelization, where models are replicated across GPU 
devices that can serve requests in parallel. How should we 
assign requests to GPU workers? Instead of dividing 
requests evenly and randomly, in real-world applications, 
requests exhibit patterns that can be exploited to improve 
performance. These include:

The first approach to benefit from prompt sharing under a distributed 
LLM serving system with data parallelism across multiple GPUs was 
PREBLE (Srivatsa et al., 2024). However, PREBLE sets the expected 
decode output length equal to the average output length of requests 
during scheduling. Therefore, PREBLE may induce imbalanced 
workloads on different GPUs. Here, we extend PREBLE by 
integrating prefix-aware scheduling with output length-aware 
scheduling of S3 (Jin et al., 2024). We extend PREBLE’s simulator of 
LLM inference to benchmark PREBLE vs. baseline prefix-unaware 
schedulers and identify opportunities for improvement. We find that:

Having carefully characterized the scalability challenges associated 
with PREBLE, we sought to improve its performance by leveraging 
both prefix-aware and output length-aware scheduling. We build on 
the E2 scheduler of PREBLE by considering prefix sharing, fairness, 
and output length. As a proof-of-concept, we use a perfect oracle of 
true output length. However, decode length can also be predicted.

To incorporate output length, we modify the global prefix tree of the 
E2 scheduler. We evaluate this modified version of PREBLE on a 
dataset with high variance in token lengths, created using our 
ReAct-based variance-customizable dataset generator.
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Shared prefixes

Variable output length

General purpose chatbots
Embedded language interfaces
Coding
Document-grounded QA
Search engines
Digital workers
Scientific research

Applications with sharing

You are a helpful, respectful, and 
honest assistant. Always answer 
as helpfully as possible, while 
being safe. Your responses 
should not include any harmful…

Shared prefix
Explain the concept of…

Generate a hypothesis…

Solve coding problem…

Write an essay about…

Unique prompts

Request 
scheduler

Long request

Short request

GPU #1

GPU #2

Adapted from Srivatsa et al. (2024)

At high request rates, PREBLE is outperformed by several 
prefix-unaware schedulers.
This effect is exacerbated by an increase in the number of 
GPUs available for inference. 
PREBLE suffers from overhead introduced by its E2 scheduler, 
which scales with both # of GPUs and request rate.
Decode length heterogeneity worsens PREBLE performance.
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Request rate GPU count Scheduling overhead Variance in output length
We evaluated and benchmarked PREBLE across…

Requests per second
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When using output length for per-GPU load calculation, we improve the performance of PREBLE in high-demand settings, 
with 14.31% reduced latency at 64 RPS (0.1223 vs. 0.1427) and 28.89% reduced latency at 128 RPS (0.1820 vs. 0.2559).

Predicting decode length Generating a variance-maximizing benchmark
To understand how decode length 
heterogeneity impacts PREBLE, we 
generated artificial benchmarking 
datasets from ReAct whose output 
lengths can follow any discrete 
distribution, then used this to create 
a benchmark with high variance in 
token lengths (1 vs. 300 tokens).

Fr
eq

ue
nc

y

Request latency (seconds) Time to first token (seconds)

We trained a lightweight 6-layer BERT-based 
all-MiniLM-L6-v2 language model to predict 
decode length on the Alpaca-52K dataset, 
achieving 4.8× performance over random.
Metric Score
Accuracy 0.24
F1 score 0.22
Precision 0.23

Metric Score
Recall 0.24
AUROC 0.85
MCC 0.20


