
Motivation Benchmarking PREBLE

Prefix and output-length aware scheduling
for efficient online LLM inference

Iñaki Arango,1,2,3 Ayush Noori,1,2,3 Yepeng Huang,3 Rana Shahout,2 Minlan Yu 3
1 Harvard College; 2 Harvard John A. Paulson School of Engineering and Applied Sciences; 3 Harvard Medical School

Adding output-length aware scheduling to PREBLE

LLM inference in large data centers can benefit from data
parallelization, where models are replicated across GPU
devices that can serve requests in parallel. How should we
assign requests to GPU workers? Instead of dividing
requests evenly and randomly, in real-world applications,
requests exhibit patterns that can be exploited to improve
performance. These include:

The first approach to benefit from prompt sharing under a distributed
LLM serving system with data parallelism across multiple GPUs was
PREBLE (Srivatsa et al., 2024). However, PREBLE sets the expected
decode output length equal to the average output length of requests
during scheduling. Therefore, PREBLE may induce imbalanced
workloads on different GPUs. Here, we extend PREBLE by
integrating prefix-aware scheduling with output length-aware
scheduling of S3 (Jin et al., 2024). We extend PREBLE’s simulator of
LLM inference to benchmark PREBLE vs. baseline prefix-unaware
schedulers and identify opportunities for improvement. We find that:

Having carefully characterized the scalability challenges associated
with PREBLE, we sought to improve its performance by leveraging
both prefix-aware and output length-aware scheduling. We build on
the E2 scheduler of PREBLE by considering prefix sharing, fairness,
and output length. As a proof-of-concept, we use a perfect oracle of
true output length. However, decode length can also be predicted.

To incorporate output length, we modify the global prefix tree of the
E2 scheduler. We evaluate this modified version of PREBLE on a
dataset with high variance in token lengths, created using our
ReAct-based variance-customizable dataset generator.

R.S. and M.Y. are partially supported by NSF CNS NeTS 2107078. This
work was supported in part by ACE, one of the seven centers in JUMP 2.0, a
Semiconductor Research Corporation (SRC) program sponsored by DARPA.

inaki.io www.ayushnoori.com
{inakiarango, anoori}@college.harvard.edu

Shared prefixes

Variable output length

General purpose chatbots
Embedded language interfaces
Coding
Document-grounded QA
Search engines
Digital workers
Scientific research

Applications with sharing

You are a helpful, respectful, and
honest assistant. Always answer
as helpfully as possible, while
being safe. Your responses
should not include any harmful…

Shared prefix
Explain the concept of…

Generate a hypothesis…

Solve coding problem…

Write an essay about…

Unique prompts

Request
scheduler

Long request

Short request

GPU #1

GPU #2

Adapted from Srivatsa et al. (2024)

At high request rates, PREBLE is outperformed by several
prefix-unaware schedulers.
This effect is exacerbated by an increase in the number of
GPUs available for inference.
PREBLE suffers from overhead introduced by its E2 scheduler,
which scales with both # of GPUs and request rate.
Decode length heterogeneity worsens PREBLE performance.

1

2

3

4

Request rate GPU count Scheduling overhead Variance in output length
We evaluated and benchmarked PREBLE across…

Requests per second

Av
er

ag
e

no
rm

al
iz

ed
 la

te
nc

y

When using output length for per-GPU load calculation, we improve the performance of PREBLE in high-demand settings,
with 14.31% reduced latency at 64 RPS (0.1223 vs. 0.1427) and 28.89% reduced latency at 128 RPS (0.1820 vs. 0.2559).

Predicting decode length Generating a variance-maximizing benchmark
To understand how decode length
heterogeneity impacts PREBLE, we
generated artificial benchmarking
datasets from ReAct whose output
lengths can follow any discrete
distribution, then used this to create
a benchmark with high variance in
token lengths (1 vs. 300 tokens).

Fr
eq

ue
nc

y

Request latency (seconds) Time to first token (seconds)

We trained a lightweight 6-layer BERT-based
all-MiniLM-L6-v2 language model to predict
decode length on the Alpaca-52K dataset,
achieving 4.8× performance over random.
Metric Score
Accuracy 0.24
F1 score 0.22
Precision 0.23

Metric Score
Recall 0.24
AUROC 0.85
MCC 0.20

