
A Comparison of Performance and Accuracy of
Measurement Algorithms in Software

Omid Alipourfard, Masoud Moshref1, Yang Zhou2, Tong Yang2, Minlan Yu3

Yale University, Barefoot Networks1, Peking University2, Harvard University3

Network function virtualization is trending

Data centers Edge networks

Use cloud to manage cloud

Firewall Load balancer

Mini-clouds at the edge

CDN NAT

2

WAN opt.

Network function virtualization is trending

Data centers Edge networks

Use cloud to manage cloud

Firewall Load balancer

Mini-clouds at the edge

CDN NAT

3

WAN opt.

Virtualization, dynamic scale-out, fast iterations ...

Network function virtualization is trending

Firewall Load balancer CDN WAN opt. NAT

4

Measurement

Control loop

Measurement Task Tree/Heap Sketch Hash table

Heavy hitter ANCS ’11, ICDT’ 05 NSDI’ 13, SIGCOMM’ 17 SIGCOMM’ 02

Super spreader SIGCOMM’ 17, PODS’ 05 IMC’ 10, NDSS’ 05

Flow size distrib. SIGMETRICS’ 04 IMC’ 10

Change detection CoNEXT’ 13 TON’ 07 IMC’ 10

Entropy estimation COLT’ 11 SIGMETRICS’ 06

Quantiles SIGMOD’ 01, 99, 13 Hot ICE’ 11

5

Measurement algorithms come with many implementations

Measurement Task Tree/Heap Sketch Hash table

Heavy hitter ANCS ’11, ICDT’ 05 NSDI’ 13, SIGCOMM’ 17 SIGCOMM’ 02

Super spreader SIGCOMM’ 17, PODS’ 05 IMC’ 10, NDSS’ 05

Flow size distrib. SIGMETRICS’ 04 IMC’ 10

Change detection CoNEXT’ 13 TON’ 07 IMC’ 10

Entropy estimation COLT’ 11 SIGMETRICS’ 06

Quantiles SIGMOD’ 01, 99, 13 Hot ICE’ 11

6

Measurement algorithms come with many implementations

Which algorithm works best for NFs running on software ...

Design concerns for software switches

7

Domain Hardware switches Software switches

Constraint Limited memory size

Objective Fit in memory

Opportunity Deterministic throughput

Design concerns for software switches

8

Domain Hardware switches Software switches

Constraint Limited memory size Limited cache size

Objective Fit in memory Maximize throughput

Opportunity Deterministic throughput Large memory (hierarchical)

Hash table based Count sketch Heap based

Update the entry (e) in
the hash table.

Report if e > threshold.

Hash the header n times and
update relevant entries (es).

Report if min(es) > threshold.

Keep a heap of counters.

Replace the smallest counter if
no space available.

Report if entries > threshold.

Closer look at heavy hitter detection

Find the most popular items (flows) in a packet stream.

9

Hash table based Count sketch Heap based

Update the entry (e) in
the hash table.

Report if e > threshold.

Hash the header n times and
update relevant entries (e).

Report if e > threshold.

Keep a heap of counters.

Replace the smallest counter if
no space available.

Report if entries > threshold.

Closer look at heavy hitter detection

Find the most popular items (flows) in a packet stream.

10

What hash table works best?

Cuckoo vs. linear hash table
Two popular hash tables: Cuckoo hash table and Linear hash table.

11

H (pkt) H1 (pkt)

x

x

H2 (pkt)

Linear hash table Cuckoo hash table

Evaluation settings
Settings

● DPDK Framework
● Intel Xeon-E5 2650 v3, 10G NIC
● CAIDA (1.4 mil flows, 40 mil pkts, 64B pkts)
● Zero packet loss test - RFC 2544
● Reporting interval 100ms ~ control loop frequency

Metrics
● Performance: average packet processing time
● We also measure precision/recall in the paper

12

Linear hashing outperforms Cuckoo hashing

● Performance: Linear table is 10~30% faster than Cuckoo table.

Why?

● Computation: Two hashes (Cuckoo) vs one hash (Linear).

● Random access: Two for Cuckoo vs. one for Linear.

Different from the database world - Memory is not an issue!

● Make the table large so collisions are rare!

13

Cuckoo vs. linear hash table
Two popular hash tables: Cuckoo hash table and Linear hash table.

● Performance: Linear table is 10~30% faster than Cuckoo table.

Why?

● Computation: Two hashes (Cuckoo) vs one hash (Linear).

● Random access: Two for Cuckoo vs. one for Linear.

● Memory is not an issue! Make the table large so collisions are rare.

14

 Takeaways

- Use the least # of computations and random memory accesses.
- If you can, use large memory to reduce your computations.

Hash table based Count sketch Heap based

Update the entry (e) in
the hash table.

Report if e > threshold.

Hash the header n times and
update relevant entries (es).

Report if min(es) > threshold.

Keep a heap of counters.

Replace the smallest counter if
no space avail.

Report if entries > threshold.

Comparison of algorithm classes

15

Hash table based Count sketch Heap based

Linear hash table Count sketch with one hash
(Count-array) Heap + Linear hash table

Comparison of algorithm classes

16

Results

● Count array is the fastest.

● Hash table performance converges to count-array with larger tables.

● Heap based algorithms are slow because of random memory access.

Hash table based Count sketch Heap based

Linear hash table Count sketch with one hash
(Count-array) Heap + Linear hash table

Simplest data structure works best

17

● Other measurement tasks

● Other traffic skews

● Amount of data kept per packet/flow

● Shared vs. separate data structure

How general are the results?

18

Results hold for other measurement tasks

Change detection

Computationally heavy

19

Superspreader detection

Memory heavy

Model flow’s traffic

Report flows outside
model’s predictions

Update a bloom filter per
packet

Does CPU behave differently dealing with other measurement task types?

Superspreaders: Count-array is the fastest

20MB

Superspreaders: Count-array is the fastest

21

96% Precision

MB

Superspreaders: Count-array is the fastest

22

96% Precision

The trend is similar for change detection:
Fastest Count-array with Linear hash table a close second.

MB

Impact of traffic skew on latency

23

Concerns

- Working set gets larger with lower skew.
- More items read in cache per packet batch.

Impact of traffic skew on latency
Concerns

- Working set gets larger with lower skew.
- More items read in cache per packet batch.

Observations

- Perf. degradation depends on the # of memory accesses per pkt.
- Count-array and linear hash table still the fastest.

24

Impact of bytes kept per flow on latency
Concerns

- Less number of items fit in the cache.
- Traverse multiple cache lines on a miss.

25

Impact of bytes kept per flow on latency
Concerns

- Less number of items fit in the cache.
- Traverse multiple cache lines on a miss.

Observations

- 1.9x higher latency - 4 bytes (70ns~) to 60 bytes (130ns~)
- Solution: Separate keys and values in the hash table.

- 1.16x higher latency - 4 byte (90ns~) to 60 byte (105ns~)
26

Shared: Easy to report measured results.

- More cache bouncing between cores.

Separate: Merging to report is difficult.

- No cache bouncing between cores.

Impact of shared/separate data-structure

27

MemCore1

Core2

Core3

Data

Core1

Core2

Core3

Observations

Sharing is expensive.

- Cache bouncing causes L3 latency for most memory accesses.
- Does not scale to many cores.

Merging is cheap.

- Very low memory bandwidth (even at 10ms reporting intervals).

Impact of shared/separate data-structure

28

Conclusions
Measurement in software servers is different than hardware:

- Use more memory to do less computation.
- Reduce data pulled into the cache per packet.

Calls for new:

- Algorithms, e.g., “sketch” over computation not memory.
- Data structures, e.g., seq. access pattern to match the CPU arch.

29

Thanks!
The code and benchmarks are available at:

https://github.com/SiGe/measure-pkt

30

https://github.com/SiGe/measure-pkt

Results

● Count array is the fastest.

● Hash table performance converges to count-array with larger tables.

● Heap based algorithms are slow because of random memory access.

Hash table based Count sketch Heap based

Linear hash table Count sketch with one hash Heap + Linear hash table

Simplest data structure works best

32

Least amount of computation wins.

Change-detection: Count-array is the fastest

33

Change-detection: Count-array is the fastest

34

60% Precision

~100% Precision

Change-detection: Count-array is the fastest

35

Large # of heapify ops.

Deep heaps

Impact of traffic skew on latency

36

Impact of traffic skew on latency

37

Prefetching can mask the memory access latency.

Impact of traffic skew on latency

38

More uniform packet count makes it more likely that
heapify traverses multiple levels.

Bytes fetched impacts the performance

39

Mask the latency by keeping the values away

40

- Cache exhaustion: working set not fitting in memory.

- Memory BW exhaustion: higher latency to fetch data.

Impact of other apps. on measurement

41

Impact of other apps. on measurement

42

Impact of other apps. on measurement

43

