
NetLord: A Scalable Multi-Tenant Network Architecture for
Virtualized Datacenters

Jayaram Mudigonda
Praveen Yalagandula

Jeff Mogul
HP Labs, Palo Alto, CA

Bryan Stiekes
Yanick Pouffary

HP

ABSTRACT
Providers of “Infrastructure-as-a-Service” need datacenter net-
works that support multi-tenancy, scale, and ease of operation, at
low cost. Most existing network architectures cannot meet all of
these needs simultaneously.

In this paper we present NetLord, a novel multi-tenant network
architecture. NetLord provides tenants with simple and flexible
network abstractions, by fully and efficiently virtualizing the ad-
dress space at both L2 and L3. NetLord can exploit inexpensive
commodity equipment to scale the network to several thousands
of tenants and millions of virtual machines. NetLord requires
only a small amount of offline, one-time configuration. We im-
plemented NetLord on a testbed, and demonstrated its scalability,
while achieving order-of-magnitude goodput improvements over
previous approaches.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design

General Terms
Design, Experimentation, Management

Keywords
Datacenter Network, Network Virtualization, Multi-Tenant, Multi-
Pathing, Scalable Ethernet

1. INTRODUCTION
Cloud datacenters such as Amazon EC2 [1] and Microsoft

Azure [6] are becoming increasingly popular, as they offer com-
puting resources at a very low cost, on an attractive pay-as-you-go
model. Many small and medium businesses are turning to these
cloud computing services, not only for occasional large computa-
tional tasks, but also for their IT jobs. This helps them eliminate
the expensive, and often very complex, task of building and main-
taining their own infrastructure.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$10.00.

Cloud datacenter operators, on the other hand, can provide cost-
effective Infrastructure as a Service (IaaS), because they can time-
multiplex the physical infrastructure among a large number of ten-
ants. The advent of mature CPU virtualization techniques (e.g.,
VMWare [26] and Xen [28]) makes it possible to convert the ded-
icated, and often extremely underutilized, physical servers in an
enterprise into Virtual Machines (VMs) that run in an IaaS data-
center.

To fully realize the benefits of resource sharing, these datacenters
must scale to huge sizes. The larger the number of tenants, and the
larger the number of VMs, the better the chances for multiplexing,
which in turn achieves better resource efficiency and cost savings.

Increasing the scale alone, however, cannot fully minimize the
total cost. Today, a great deal of expensive human effort is required
to configure the equipment, to operate it optimally, and to provide
ongoing management and maintenance. A good fraction of these
human costs reflect the complexity of managing a multi-tenant net-
work; IaaS datacenters cannot become cost-effective at scale unless
we can reduce these costs.

Therefore, IaaS networks must support virtualization and multi-
tenancy, at scales of tens of thousands of tenants and servers, and
hundreds of thousands of VMs. They must keep costs down by ex-
ploiting commodity components and by facilitating automatic con-
figuration and operation. Most existing datacenter network archi-
tectures, however, suffer one or more of the following drawbacks:

They are expensive to scale: Today, scaling the network to the
sizes needed by IaaS datacenters remains very expensive. The
straightforward scaling of existing datacenter networks requires
huge core switches with thousands of ports [8]. Some approaches
require complex new protocols to be implemented in hardware [5,
17], or may work only with specific features such as IP-in-IP de-
capsulation [13] and MAC-in-MAC encapsulation [5, 17]. Some
approaches that do not require switch modifications (e.g., [18]) may
require excessive switch resources – in particular, they require very
large forwarding tables, because the MAC address of every VM
is exposed to the switches. None of these architectures can easily
leverage existing, inexpensive commodity switches.

They provide limited support for multi-tenancy: Ideally, a
multi-tenant network should provide a network abstraction that al-
lows a tenant to design its network as if it were the sole occupant of
a datacenter. That is, a tenant should be able to define its own layer-
2 (L2) and layer-3 (L3) addresses. Previous multi-tenancy architec-
tures do not provide full address-space virtualization; they either
focus on performance guarantees and performance isolation [14,
24, 25], or only provide IP address space sharing [11, 13].

They require complex configuration: Many existing architec-
tures that might make use of cheaper switches often require careful

62

manual configuration: for example, setting up IP subnets and con-
figuring OSPF [8, 13].

In this paper, we present NetLord, a novel multi-tenant virtual-
ized datacenter network architecture. NetLord encapsulates a ten-
ant’s L2 packets, to provide full address-space virtualization. Net-
Lord employs a light-weight agent in the end-host hypervisors to
transparently encapsulate and decapsulate packets from and to the
local VMs. Encapsulated packets are transferred over an underly-
ing, multi-path L2 network, using an unusual combination of IP
and Ethernet packet headers. NetLord leverages SPAIN’s approach
to multi-pathing [18], using VLAN tags to identify paths through
the network.

The encapsulating Ethernet header directs the packet to the des-
tination server’s edge switch, via L2 forwarding. By leveraging
a novel configuration of the edge switch’s IP forwarding table, the
encapsulating IP header then allows the switch to deliver the packet
to the correct server, and also allows the hypervisor on that server
to deliver the packet to the correct tenant.

Because NetLord does not expose any tenant MAC addresses to
the switches (and also hides most of the physical server addresses),
the switches can use very small forwarding tables, thus reducing
capital costs, while scaling to networks with hundreds of thousands
of VMs. Because NetLord uses simple, static switch configura-
tions, this reduces operational costs.

Our focus in this paper is only on qualitative isolation between
tenants: tenants can design their L2 and L3 address spaces without
any restrictions created by multi-tenancy. NetLord itself provides
no guarantees on performance isolation between tenants [14, 24,
25]. However, because NetLord explicitly exposes tenant identi-
fiers in the encapsulation header, it can efficiently support various
slicing/QoS mechanisms using commodity switches.

In this paper, we present the NetLord design, and show through
simple calculations how it can scale. We also describe an exper-
imental evaluation, with up to 3000 tenants and 222K emulated
VMs, showing that NetLord can achieve substantial goodput im-
provements over other approaches.

2. PROBLEM AND BACKGROUND
We start by describing the problems we are trying to solve, and

then describe some prior work on similar problems.

2.1 Goals: scalable, cheap, and flexible
Our goal is to provide a network architecture for a multi-tenant

virtualized cloud datacenter. We want to achieve large scale at low
cost, with easy operation and configuration, and we want to provide
tenants with as much flexibility as possible.

Scale at low cost: Cloud providers can offer services at low cost
because they can leverage economies of scale. This implies that
the network for a cloud datacenter must scale, at low cost, to large
numbers of tenants, hosts, and VMs. The network must support
lots of addresses, and provide ample bandwidth between the VMs
of any tenant.

A provider’s costs include both capital expenditures (CAPEX)
and operational expenditures (OPEX). To reduce CAPEX, the net-
work should use commodity, inexpensive components. However,
commodity network switches often have only limited resources and
limited features. For example, typical commercial switches can
hold a few tens of thousands of MAC forwarding information base
(FIB) table entries in their data-plane fast paths (e.g., 64K entries
in the HP ProCurve 6600 series [20] and 55K in the Cisco Catalyst
4500 series [10]).

Small data-plane FIB tables in switches create a scaling problem

for MAC-address learning: if the working set of active MAC ad-
dresses is larger than the data-plane table, some entries will be lost,
and a subsequent packet to those destinations will cause flooding.
(Even when the table is large enough, a rapid arrival rate of new ad-
dresses can lead to flooding, if learning is done in software and the
switch’s local management CPU is too slow to keep up.) Therefore,
we cannot afford to expose the switches to the MAC addresses of
all tenant VMs, or even of all physical servers in a large network,
because the resultant flooding will severely degrade performance.
Section 5.3 demonstrates this effect experimentally.

We also want to be able to support high bisection bandwidth at
low cost. In particular, we would like to allow the cloud provider
to choose an efficient and cost-effective physical wiring topol-
ogy without having to consider whether this choice interferes with
multi-tenancy mechanisms or tenant-visible abstractions.

Easy to configure and operate: To reduce OPEX, cloud providers
need networks that, as much as possible, can be configured and
operated automatically. We would like to avoid any per-switch
configuration that is hard to scale, or that is highly dynamic. We
also want to avoid network-related restrictions on the placement of
VMs, to allow the cloud provider to efficiently multiplex physical
hosts, without worrying about resource fragmentation.

Cloud providers may wish to offer QoS features to tenants. We
would also like to provide simple mechanisms that support per-
tenant traffic engineering; we do not want to require the provider to
individually manage QoS for each TCP flow for each tenant.

We also want the network to handle switch and link failures au-
tomatically. We would like the unfailed portions of the network to
continue to work without being affected by failed components.

Flexible network abstraction: Different tenants will have differ-
ent network needs. A tenant wishing to run a Map-Reduce job
might simply need a set of VMs that can communicate via TCP. On
the other hand, a tenant running a three-tier Web application might
need three different IP subnets, to provide isolation between tiers.
Or a tenant might want to move VMs or entire applications from
its own datacenter to the cloud, without needing to change the net-
work addresses of the VMs. This flexibility will also allow tenants
to create networks that span VMs both in their own datacenters or
on rented servers in the cloud datacenter [15].

These examples, and others, motivate our desire for a datacenter
network that fully virtualizes the L2 and L3 address spaces for each
tenant, without any restrictions on the tenant’s choice of L2 or L3
addresses.

Also, in certain kinds of cloud environments, tenants might
wish to use non-IP protocols, such as Fibre Channel over Ethernet
(FCoE), ATA over Ethernet (AoE), or HyperSCSI. These proto-
cols, while currently unsupported in public cloud networks, could
be important for tenants trying to move existing applications into
the cloud, and would be impossible to use in a network that did
not support an L2 abstraction. Similarly, these tenants would ben-
efit from a cloud network that supports tenant-level broadcasts or
muliticasts.

2.2 State of the art
In this section, we first describe current practices and recent

research proposals for multi-tenant datacenter networking. Also,
since NetLord depends on an underlying large-scale L2 network,
we discuss recent work on scalable network fabrics.

Multi-tenant datacenters: Traditionally, datacenters have em-
ployed VLANs [16] to isolate the machines of different tenants on
a single L2 network. This could be extended to virtualized datacen-
ters, by having the hypervisor encapsulate a VM’s packets with a

63

VLAN tag corresponding to the VM’s owner. This simple approach
provides an L2 abstraction to the tenants, and can fully virtualize
the L2 and L3 address spaces. However, to correctly support the
Spanning Tree Protocol, each VLAN needs to be a loop-free sub-
graph of the underlying network, and that limits the bisection band-
width for any given tenant. Also, unless VLANs are carefully laid
out, this approach may expose all VM addresses to the switches,
creating scalability problems. Finally, the VLAN tag is a 12-bit
field in the VLAN header, limiting this to at most 4K tenants. (The
IEEE 802.1ad standard on Provider Bridges [3] defines the “QinQ”
protocol to allow stacking of VLAN tags, which would relieve the
4K limit, but QinQ is not yet widely supported.)

Amazon’s Virtual Private Cloud (VPC) [2] provides an L3 ab-
straction and full IP address space virtualization. Tenants can spec-
ify up to 20 arbitrary IP subnets (at least /28 in size), and the
provider will instantiate a VPC router to connect these IP subnets.
We could not find any documentation of how the VPC router is
implemented, and hence cannot comment on its routing efficiency.
VPC does not support multicast and broadcast, which implies that
the tenants do not get an L2 abstraction.

Greenberg et al. [13] propose VL2, a scalable and flexible dat-
acenter network. VL2 provides each tenant (termed “service” in
the paper) with a single IP subnet (L3) abstraction, but implements
efficient routing between two different IP subnets without needing
to divert the packets through an explicit router. Services running in
VL2 are expected to use only IP-based protocols. VL2 works with
a specific topology (Clos) to achieve a full bisection bandwidth
network, and hence does not restrict VM placement. However,
the approach assumes several features not common in commodity
switches, such as IP-in-IP decapsulation support at line rates. VL2
handles a service’s L2 broadcast packets by transmitting them on a
IP multicast address assigned to that service. The VL2 paper does
not explicitly address unicast non-IP packets, but we believe their
approach can be extended, as it encapsulates all packets.

Diverter [11] presents an efficient fully-distributed virtualized
routing system, which accommodates multiple tenants’ logical IP
subnets on a single physical topology. Similar to VL2, Diverter ad-
dresses the problem of efficient routing between subnets. Diverter’s
solution is to overwrite the MAC addresses of inter-subnet packets,
allowing it to relay these packets via a single hop. Diverter pro-
vides an L3 network abstraction to tenants, but it assigns unique
IP addresses to the VMs; that is, it does not provide L3 address
virtualization.

Scalable network fabrics: Many research projects and industry
standards address the limitations of Ethernet’s Spanning Tree Pro-
tocol. Several, including TRILL (an IETF standard) [5], Short-
est Path Bridging (an IEEE standard) [4], and Seattle [17], support
multipathing using a single-shortest-path approach. These three
need new control-plane protocol implementations and data-plane
silicon. Hence, inexpensive commodity switches will not support
them, for at least a few years.

One way to achieve scalable multipathing is through hierarchi-
cal addressing in specific topologies. Al-Fares et al.[7] proposed
three-level FatTree topologies, combined with a specific IP address
assignment scheme, to provide high bisection bandwidth with-
out needing expensive, high-radix core switches. For scalability,
their proposal depends on a two-level route lookup feature in the
switches. Mysore et al. proposed PortLand [19], which replaces
that IP address scheme with MAC-address rewriting, and requires
switches with the ability to forward based on MAC-address pre-
fixes. Both these approaches work only with multi-rooted tree
topologies.

Scott et al. proposed MOOSE [22], which address Ethernet
scaling issues by using hierarchical MAC addressing. MOOSE
also uses shortest-path routing, and did not focus on multipathing
for improved bisection bandwidth. MOOSE, like PortLand, needs
switches that can forward packets based on MAC prefixes.

Mudigonda et al. [18] proposed SPAIN, which uses the VLAN
support in existing commodity Ethernet switches to provide multi-
pathing over arbitrary topologies. SPAIN uses VLAN tags to iden-
tify k edge-disjoint paths between pairs of endpoint hosts. The
original SPAIN design may expose each end-point MAC address
k times (once per VLAN), stressing data-plane tables even more
than standard Ethernet, and hence it can not scale to large number
of VMs.

To summarize, no current practices or prior research proposals
meets all of the goals we described in section 2.1.

3. NETLORD’S DESIGN
The fundamental idea underlying NetLord is to encapsulate the

tenant’s L2 packets and transfer them over a scalable L2 fabric,
using an L3+L2 (IP+Ethernet) encapsulation that exploits features
of both layers. NetLord uses a light-weight agent in the hypervi-
sors to encapsulate, route, decapsulate, and deliver tenant packets
to virtual machines, addressed to the VMs’ tenant-assigned Ether-
net addresses. With two exceptions, described in sections 3.2 and
3.9, NetLord ignores any tenant-visible L3 (IP) issues.

The source NetLord Agent (NLA) creates the encapsulating L2
and L3 headers such that the Ethernet destination address directs
the packet through the underlying L2 fabric to the correct edge
switch, and such that the IP destination address both allows the
egress edge switch to deliver the packet to the correct server, and al-
lows the destination NLA to deliver the packet to the correct tenant.
The details of this encapsulation are somewhat subtle; we discuss
them in section 3.5.

One significant consequence of this encapsulation method is
that tenant VM addresses are never exposed to the actual hard-
ware switches. By using IP forwarding on (only) the last hop,
we can effectively share a single edge-switch MAC address across
a large number of physical and virtual machines. This resolves
the problem of FIB-table pressure; in NetLord the switches, in-
stead of needing to store millions of VM addresses in their FIBs,
only need to store the addresses of the other switches. Even in a
very large datacenter, we expect at most a few thousand switches.
(Edge-switch FIBs must also store the addresses of their directly-
connected server NICs – at most, one per switch port; they do not
need to store the addresses of remote servers.)

Because of the specific encapsulation used in NetLord, edge
switches require very limited configuration; in particular, this con-
figuration requires only local information, plus some boilerplate
configuration that is essentially identical on every switch. This
aspect of NetLord dramatically simplifies the operation and con-
figuration of the network hardware, obviates the need for complex
routing protocols, and reduces the chances for software or human
error to create failures. We describe the details of configuration in
section 3.6.

Another consequence of NetLord’s encapsulation method is that
it exposes tenant IDs in the outer L3 header of packets moving
through the fabric. This potentially allows a cloud provider to do
per-tenant traffic management in the network fabric, without having
to put per-flow ACLs in the switches, which would create signifi-
cant scaling problems. We discuss tenant-level network manage-
ment in section 6.

Since we intend NetLord for use in a large-scale datacenter,
the underlying L2 fabric needs multi-path support, for high band-

64

D-MAC: VM-D
S-MAC: VM-S

Pay
Load

Pkt from
VM_S

Pkt from
VM_S

IP ETH
Pkt from
VM_S

IP

ETH

Pkt from
VM_S

IP ETH

D-MAC: NLA-D
S-MAC: ES-D

Pkt from
VM_S

IP ETH
D-MAC: ES-D
S-MAC: ES-S
VLAN: SPAIN

D-IP: P2.TID
S-IP: MAC_AS_ID

+ +

N
L

A
-S

(S
ource)

VM-S
(Source VM)
Tenant: TID

VM

N
LA

-S
(S

ource)
S

P
A

IN

Server

VM

N
LA

-D
(D

est)
S

P
A

INIngress Switch
(ES-S)

+

Egress Switch
(ES-D)

Config
Repository

Inexpensive
Commodity

Ethernet

VM-D
(Dest VM)
Tenant: TID

Port P1
Port P2

To
VM-D

Figure 2: NetLord’s high-level component architecture (top) and packet encapsulation/decapsulation flows (bottom)

Ethernet
Switch

VM VM...

VM VM...

VMVM ...

VM VM...

IPv4 Router

IP
Subnets

Figure 1: Network abstractions, as seen by the tenants

width and fault tolerance. NetLord leverages our previous work
on SPAIN [18] to provide an underlying multi-path fabric using
commodity switches. We provide a brief summary of SPAIN in
section 3.4.

3.1 A tenant’s view of NetLord
NetLord provides tenants with a very simple abstract view of

the network: every tenant has one or more private MAC address
spaces. In each of its MAC address spaces, the tenant can assign ar-
bitrary MAC addresses. A tenant might wish to use multiple MAC
address spaces to simplify address allocation, or to limit the scope
of its broadcasts/multicasts. (NetLord does not currently imple-
ment tenant multicasting, but we believe this is feasible.)

Most tenants will also allocate and use L3 addresses (IPv4, IPv6,
etc.). NetLord mostly ignores any tenant-visible L3 issues (except
as discussed in sections 3.2 and 3.9). Therefore, by placing no re-
strictions on how tenants assign L2 or L3 addresses, NetLord pro-
vides full address-space virtualization: multiple tenants can use the
same address without having their packets mis-routed.

3.2 Virtual routing
A tenant can divide its IP address space into networks and/or IP

subnets, and connect these via software routers running on some of
its VMs. This approach requires no support from NetLord.

However, for simple routing functions, the extra network hop
and VM computation implied by that approach can add unneces-
sary overhead. Therefore, NetLord follows Diverter’s model of
supporting “virtual routing” within the hypervisor [11]. A tenant
designates to NetLord certain sets of 〈IP address, MAC address〉
pairs (within their own address spaces) as virtual router interfaces.
Whenever a tenant VM sends a packet to one of these MAC ad-
dresses, its local NetLord agent intercepts the packet, extracts the
IP header, and does a route lookup to determine the destination
tenant-assigned IP and MAC addresses (see section 3.9 for the lat-
ter). The NLA can then encapsulate the outgoing packet to send it
directly to the final destination.

The virtual routing function could support simple firewall func-
tions, although tenant-implemented SW routers might be needed
for more complex router features. Tenants can also use virtual rout-
ing to exchange packets with hosts on the public Internet, or with
other tenants, via a public address space that is exposed to all ten-
ants and advertised externally. This public address space is associ-
ated with a reserved Tenant_ID=2, so the NLA allows any tenant
to request that a VM’s interface be given an address in that address
space.

Figure 1 shows examples of several network abstractions avail-
able to NetLord tenants. The inset shows a pure L2 abstraction; the
main figure shows a tenant with three IPv4 subnets connected by a
virtual router.

3.3 NetLord’s components
Figure 2 shows a high-level architectural view of NetLord. The

top half of the figure depicts important components and their in-
terconnections, while the lower half shows the header operations
performed on a packet as it travels through these components.

As shown in the top half, NetLord consists of: (1) a fabric con-
sisting of simple switches, (2) NetLord Agents (NLAs) in the hy-
pervisor at each physical host, and (3) a configuration repository.

Fabric switches: NetLord relies on a traditional, switched Eth-
ernet fabric, using unmodified commodity switches. We require
only that these switches support VLANs (for multi-pathing; see
section 3.4) and basic IP forwarding. We do not require full-fledged
support for IP routing; in particular, the switches run no routing
protocol. We do require that a switch can take an IP packet sent
to its own MAC address, look up its destination using longest-
prefix match (LPM) in a small forwarding table using statically-
configured entries, and forward the packet appropriately. All of

65

the datacenter switches we have examined, including the cheapest
ones, can support NetLord.

These switches tend to be much cheaper than full routers, be-
cause they do not require support for complex routing protocols
(e.g., IS-IS or OSPF), large routing tables, complex firewall func-
tions, etc.

NetLord agents: A NetLord Agent (NLA) resides in the hyper-
visor (or the driver domain) of each physical server, and performs
two major tasks. First, the NLA transparently encapsulates and de-
capsulates all packets from and to the local VMs.

Second, the NLA collaborates with other NLAs, and with the
central configuration repository, to gather and maintain all the in-
formation needed for the encapsulation. For instance, the NLA
builds and maintains a table that maps a VM’s Virtual Interface
(VIF) ID to the port number and MAC address of the edge switch
to which the server hosting that VM is connected.

Configuration repository: The repository (which could be
replicated for performance and availability) resides at an address
known to the NLAs, and maintains several databases. Some are
used for SPAIN-style multi-pathing; some are used for per-tenant
configuration information. We envision this repository to be co-
located with the datacenter-wide VM manager system (such as Eu-
calyptus1) that we expect all cloud datacenters to have. (Note that
this repository differs from OpenFlow’s central controller, since it
is used to configure end-host parameters, not just switches).

3.4 SPAIN in a nutshell
NetLord relies on SPAIN to construct a high-bandwidth, resilient

multi-path fabric using commodity Ethernet switches. We briefly
sketch the pertinent features; for a full description, see [18].

SPAIN is based on three mechanisms: it pre-computes k edge-
disjoint paths between pairs of edge switches; it pre-configures
VLANs to identify these paths (not for isolation, as is the typical
use of VLANs); and it uses an end-host agent to spread the traffic
across paths (i.e., VLANs).

SPAIN’s algorithms for computing edge-disjoint paths, merging
these paths into trees, and optimally packing these into the 12-bit
VLAN tag space are complex and somewhat computationally ex-
pensive, but are run only when the network topology is designed or
significantly changed. These algorithms work with any topology,
but are most useful when the topology provides a rich variety of
paths (e.g., FatTree).

SPAIN uses an end-host agent, which can be incorporated into
a hypervisor, and thus integrated with the NetLord Agent. On
packet transmission, the agent looks up the destination Ethernet
address D in a local table, yielding a set of k VLANs that reach
that destination. It then chooses a VLAN (e.g., round-robin, but
with flow affinity to prevent packet reordering), tags the packet
with that VLAN, and transmits it normally. Because the k VLANs
are constructed to take different paths to D, this provides high net
bandwidth and load balancing among paths. The SPAIN agent also
detects failed 〈VLAN, destination〉 pairs, and then re-routes around
the failure by using a different VLAN.

SPAIN by itself (i.e., without NetLord) suffers from a major scal-
ability problem: it not only exposes the fabric switches to end-host
MAC addresses, but it exposes each VM MAC address k times:
once per 〈VLAN, VM-MAC〉 pair. This means that SPAIN creates
even more pressure on switch data-plane FIB tables than plain Eth-
ernet does. (We demonstrate this problem in section 5.) However,
NetLord encapsulates all tenant VM addresses, and also hides most
physical NIC MAC addresses from most switches (as we will soon

1http://eucalyptus.cs.ucsb.edu/

describe). Thus, augmenting SPAIN with NetLord greatly reduces
FIB pressure, because the switch FIBs need to hold only one en-
try for each 〈VLAN, switch-MAC〉 pair, and there are far fewer
switches than VMs.

The SPAIN end-host agent relies on the repository to obtain the
table that maps between destinations and sets of VLANs. When
combined with the NetLord Agent, SPAIN requires one entry for
each edge switch in the datacenter (not for each VM!); this table is
loaded at boot time and updated only when the set of switches and
wires changes. (Note that the NLAs on each edge switch will see
a different table; the NLAs attached to one switch all see the same
table.)

3.5 Encapsulation details
NetLord identifies a tenant VM’s Virtual Interface (VIF)

by the 3-tuple 〈Tenant_ID, MACASID, MAC-Address〉, where
MACASID is a tenant-assigned MAC address space ID, to support
the use of multiple L2 address spaces.

When a tenant VIF SRC sends a packet to a VIF DST, unless
the two VMs are on the same server, the NetLord Agent must
encapsulate the packet. The encapsulation is constructed as follows
(and as depicted in the lower half of figure 2):

VLAN.tag = SPAIN_VLAN_for(edgeswitch(DST),flow)
MAC.src = edgeswitch(SRC).MAC_address
MAC.dst = edgeswitch(DST).MAC_address

IP.src = MACASID
IP.dst = encode(edgeswitch_port(DST), Tenant_ID)
IP.id = same as VLAN.tag

IP.flags = Don’t Fragment

This encapsulation conveys all of the information that the re-
ceiving NLA needs to deliver the packet, since the Tenant_ID is
encoded in the IP.dst field, the MACASID is carried in the IP.src
field, and the original packet header contains the MAC-Address of
the destination VIF. Because the sender NLA sets the “Don’t Frag-
ment” flag, it can use the IP.id field to transmit the SPAIN-assigned
VLAN tag to the receiving NLA. The outer VLAN tag is stripped
by the egress edge switch, but the receiving NLA needs to see this
tag to support SPAIN’s fault-tolerance mechanisms; see section 3.8.

Clearly, the NLA needs to know the remote edge switch MAC
address, and the remote edge switch port number, for the destina-
tion VM; we will explain how this happens in section 3.9. (Sec-
tion 3.7 explains how the NLA learns the local edge switch MAC
address.) It also must use SPAIN to choose a VLAN for the egress
edge switch; to avoid packet reordering, this function also takes a
(tenant-level 5-tuple) flow ID.

The most subtle aspect of the encapsulation is the function
encode(), which takes the egress edge switch port number p (for
the destination server, represented as a 7-bit number) and the Ten-
ant_ID tid to create an IP address. Our goal is to allow the egress
edge switch to look up this address to generate the final forwarding
hop. We construct this encoding by creating an IP address with p
as the prefix, and tid as the suffix: p.tid[16:23].tid[8:15].tid[0:7],
which supports 24 bits of Tenant_ID. (Other similar encodings are
possible, if, for example, the edge switches have more than 128
ports.) Note that since these addresses are never used outside the
context of the egress edge switch, we can use any properly formed
IP address.

This address encoding allows the egress edge switch to use
longest-prefix matching, over a forwarding table with wildcard ad-
dresses of the form p. ∗ . ∗ . ∗ /8 to do the final-hop lookup. This
table needs only one entry per local switch port, and so will fit on

66

http://eucalyptus.cs.ucsb.edu/

the cheapest switches. Another key point is that this table is also
the same on every edge switch.

In summary, the NetLord encapsulation uses the destination
MAC address to cover all VMs attached to a single edge switch,
and it uses the destination IP address both to direct the packet to
the NLA on the correct server, and to allow that NLA to deliver the
packet to the correct tenant.

3.6 Switch configuration
Switches require only static configuration to join a NetLord net-

work. These configurations are set at boot time, and need never
change unless the network topology changes.

The key idea behind edge-switch configuration is that there is
a well-defined set of IP addresses that are reachable via a given
switch port p: encode(p, ∗), or more concretely, p.*.*.*/8. There-
fore, when an edge switch boots, either a local process or a man-
agement station simply creates IP forwarding-table entries of the
form 〈prefix, port, next_hop〉 = 〈p. ∗ . ∗ . ∗ /8, p, p.0.0.1〉 for
each switch port p. The NLA on each server “owns” the next-hop
IP address p.0.0.1, as described in section 3.7.

These forwarding-table entries can be set up by a switch-local
script, or a management-station script via SNMP or the switch’s
remote console protocol. Since, as noted above, every edge switch
has exactly the same IP forwarding table, this simplifies switch
management, and greatly reduces the chances of misconfiguration.

All NetLord switches also need to be given their SPAIN VLAN
configurations. This information comes from the configuration
repository, and is pushed to the switches via SNMP or the remote
console protocol. When there is a significant topology change,
the SPAIN controller might need to update these VLAN configu-
rations, but that should be a rare event.

3.7 NetLord Agent configuration
NetLord Agents need several kinds of configuration information.

We defer discussion, until section 3.9, of how an NLA learns infor-
mation about where remote tenants are in the network. We also
assume that there already is a VM manager that places VMs on
hosts, and so is already distributing VM configuration information
(including tenant IDs) to the hypervisors. Finally, we assume that
when a tenant VM creates a VIF, the VIF parameters become visi-
ble to the hypervisor.

The NLA must learn its own IP address and edge-switch MAC
address. When a NetLord hypervisor boots, it listens to the Link
Layer Discovery Protocol (LLDP - IEEE 802.1AB) messages sent
by the edge switch to which it is connected. An LLDP message
tells the server the switch’s port number p and MAC address. The
NLA then assumes the IP address encode(p, 1) = p.0.0.1 as its
own, and responds to ARP queries for that address from the local
edge switch.

If a server has multiple interfaces, the NLA repeats this process
on all of them. Multiple interfaces of the same server could end up
with the same IP address, because they could be connected to the
same-numbered port on different switches. This is not a problem:
the NetLord agent never actually uses these IP addresses, except to
respond to ARP requests, which can be handled locally to a specific
interface.

Since the p.0.0.1 address has no meaning beyond the local
switch, an NLA needs a globally-usable address for communica-
tion with repositories, VM managers, and other hypervisors. Net-
Lord reserves an address space for Tenant_ID=1, and each NLA
must obtain an IP address in this address space. Therefore, when
the hypervisor boots, it broadcasts a DHCP request directly over the
L2 fabric, using its hardware MAC address, and the DHCP server

Packet from VIF

<TID, SRC-MAC-AS-ID,
SRC-MAC, DST-MAC>

DST-MAC
==

VirtRouter?

Has IP Header?
Yes

Recv-VIF-ID =
<TID, DST-MAC-AS-ID, DST-MAC>

DST-MAC-AS-ID = SRC-
MAC-AS-ID

No

Yes

<DST-MAC,
DST-MAC-AS-ID> =

NL-ARP-
get-MAC(TID, DST-IP)

NL-ARP
SubSystem

DROP

Select
SPAIN VLAN

Success

Encap with IP Header
SRC-IP = DST-MAC-AS-ID
DST-IP = RemotePort.TID

Encap with ETH Header
SRC-MAC = IngressSwitch MAC
DST-MAC = EgressSwitch MAC

VLAN = SPAIN VLAN

<EgressSwitchMAC,
RemotePort> = NL-ARP-

get-location
(Recv-VIF-ID)

Failure

XMIT

ARP?
Yes

No

No

Success

Figure 3: Flow Chart for Packet Send

responds with sufficient information for the NLA to continue with
further operation in the Tenant_ID=1 space. (While this bootstrap
mechanism does require L2 switches to learn the server’s MAC ad-
dress, this is needed only briefly, and so does not create much FIB
pressure.)

3.8 The journey of a NetLord packet
We can now describe how a packet flows through the NetLord

system.

VM operation: VMs send packets out exactly as they would have
without NetLord, because NetLord is fully transparent to VMs. An
outbound packet thus arrives at the local NLA.

Sending NLA operation: The flow chart in Figure 3 shows packet
processing within the sending NLA. ARP messages are handled
by NL-ARP subsystem (section 3.9). For all other packets, the first
step is to determine the unique ID of the packet’s destination Virtual
Interface (VIF), 〈Tenant_ID, MACASID, MAC-Address〉.

The Tenant_ID of the receiving VIF is always the same as that
of the sender VIF; NetLord does not allow direct communication
between two tenants, except via the public address space with Ten-
ant_ID=2. The NLA therefore needs to determine the other two
fields of the VIF: MACASID and MAC-Address.

If the L2 packet is not addressed to the MAC of a designated
virtual router within the VIF’s MACASID (see section 3.2), then
the destination VIF’s MACASID must be the same as the source
VIF’s MACASID, and the destination VIF’s MAC-Address can be
found in the L2 packet header. A tenant that wants to move packets
between two different MAC address spaces can do this by using a
VM with VIFs in either address space as a software router.

If the packet is MAC-addressed to the virtual router, the NLA
extracts the destination IP address from the packet, then obtains
the destination VIF’s 〈MACASID, MAC-Address〉 directly from
the NL-ARP lookup table (which, because it also supports ARP-

67

like functions, associates an IP address with a VIF, if that binding
exists).

Once the NLA has the destination VIF ID, it must determine the
destination edge-switch MAC address and server port number. This
done by lookup in a table maintained by the NL-ARP protocol,
which maps from a VIF ID to the correct 〈MAC-Address, port〉
tuple.

Once the egress edge switch MAC address is known, we invoke
SPAIN’s VLAN selection algorithm to select a path for the packet.
If the outgoing packet is a TCP packet, NetLord also extracts the
5-tuple and provides it to SPAIN, so that all packets of a given TCP
flow take the same path and avoid reordering.

At this point, the NLA has all the information it needs to create
an encapsulated packet, using 802.1q and IP headers. The headers
are created as described in section 3.5.

If the destination server is attached to the same switch, the NLA
sets the source MAC address to its own hardware MAC address,
rather than that of the switch. We do this because switches may
drop packets if the source and destination MAC addresses are the
same. Also, it is OK for the switch to learn the MAC addresses of
its directly-connected servers in this case, because these addresses
will not leak out to other switches, and the net increase in FIB pres-
sure is limited. In this case, we also do not need to set a SPAIN
VLAN tag, because there is only one possible path.

Network operation: The packet follows a path, defined by the
SPAIN-provisioned VLAN, through the switched L2 network. All
the switches en route learn the reverse path to the ingress edge
switch, because its MAC address is carried in the packet as the
source MAC.

On receiving the packet, the egress edge switch recognizes the
destination MAC as its own, strips the Ethernet header, and then
looks up the destination IP address in its IP forwarding table to
determine the destination NLA next-hop information, which (by
the construction in section 3.5) gives the switch-port number and
local IP address of the server. The switch might occasionally need
to do an ARP request to find the server’s MAC address.

Receiving NLA operation: The receiving NLA decapsulates the
MAC and IP headers, after extracting the Tenant_ID from the en-
capsulating IP destination address, the MACASID from the IP
source, and the VLAN tag from the IP_ID field. It can then use
its local information to look up the correct tenant’s VIF, using the
L2 destination address in the inner packet. (A tenant might have
multiple VMs on a server, but each has a unique VIF.) Finally, it
delivers the packet to the tenant VIF.

The NLA also notifies the local SPAIN agent that a packet was
received from the ingress edge switch MAC address, via the copy
VLAN tag carried in the IP.ID field. SPAIN needs this information
to monitor the health of its paths. (The original SPAIN VLAN tag
in the 802.1q header has already been stripped by the egress edge
switch, so we need this copy to convey the tag to the receiving
NLA.)

3.9 NL-ARP
An NLA needs to map a VIF to its location, as specified by an

egress switch MAC address and port number. This mapping com-
bines the functions of IP routing and ARP, and we use a simple
protocol called NL-ARP to maintain an NL-ARP table in each hy-
pervisor. The NLA also uses this table to proxy ARP requests made
by the VMs, rather than letting these create broadcast load.

NL-ARP defaults to a push-based model, rather than the pull-
based model of traditional ARP: a binding of a VIF to its loca-
tion is pushed to all NLAs whenever the binding changes. In sec-

tion 4.2, we argue that the push model reduces overhead, and sim-
plifies modelling and engineering the network.2

The NL-ARP protocol uses three message types: NLA-HERE,
to report a location; NLA-NOTHERE, to correct misinformation;
and NLA-WHERE, to request a location. Messages can either be
broadcast on the L2 fabric, over a special VLAN that reaches all
NLAs, or unicast to one NLA, through the NetLord mechanism
via Tenant_ID=1. NL-ARP broadcasts are sent using the ingress
switch MAC address as the source address, to avoid adding FIB
pressure.

When a new VM is started, or when it migrates to a new server,
the NLA on its current server broadcasts its location using an NLA-
HERE message. Since NL-ARP table entries are never expired, in
the normal case a broadcast is needed only once per VM boot or
migration.

Broadcasts can be lost, leading to either missing or stale entries.
If an entry is missing when a tenant sends a packet, the sending
NLA broadcasts an NLA-WHERE request, and the target NLA
responds with a unicast NLA-HERE. If a stale entry causes mis-
delivery of a packet, the receiving NLA responds with a unicast
NLA-NOTHERE, causing deletion of the stale entry, and a sub-
sequent NLA-WHERE broadcast. (Entries might also be missing
after the unlikely event of a table overflow; see section 4.2.)

4. BENEFITS AND DESIGN RATIONALE
Having described NetLord’s architecture and operation, we now

explain its benefits, and the rationale behind some of the important
design decisions. We first explain how NetLord meets the goals in
Section 2.1. We then discuss some design alternatives we consid-
ered, and explain how we derived our architecture, subject to the
restrictions imposed by our goals.

4.1 How NetLord meets the goals
Simple and flexible abstractions: NetLord gives each tenant a
simple abstract view of its network: all of its VMs within a MAC
address space (e.g., within an IP subnet) appear to be connected
via a single L2 switch, and all IP subnets appear to be connected
via a single virtual router. The switch and router scale to an ar-
bitrary number of ports, and require no configuration aside from
ACL and QoS support in the virtual router. The tenant can assign
L2 and L3 addresses however it chooses, and for arbitrary reasons.
NetLord’s address space virtualization therefore facilitates devel-
opment of novel network and transport protocols within a cloud
datacenter.

Scale: Number of tenants: By using the p.*.*.*/24 encoding (see
section 3.5), NetLord can support as many as 224 simultaneous
tenants. (We could increase this, if necessary, by using additional
header fields for the encoding, at the cost of added complexity.)

Scale: Number of VMs: NetLord’s encapsulation scheme insu-
lates the L2 switches from all L2 addresses except those of the
edge switches. Each edge switch also sees a small set of locally-
connected server addresses. The switches are thus insulated from
the much larger number of VM addresses, and even from most of
the server addresses.

Because this limits FIB pressure, a NetLord network should
scale to a huge number of VMs, but it is hard to exactly quantify
this number. The actual number of FIB entries required depends
upon a complex interaction of several factors that are either poorly
understood, that vary widely over small time scales, or that are hard
to quantify. These factors include the traffic matrix and its locality;
2An alternative to NL-ARP is to use a DHT, as in SEATTLE [17].

68

packet and flow sizes, application tolerance of lost packets; network
topology; dynamics of load balancing schemes; etc.

Instead, we estimate the number of unique MAC addresses that
NetLord can support, based on a set of wildly pessimistic assump-
tions. We assume a FatTree topology (these scale well and are
amenable to analysis), and we assume a worst-case traffic matrix:
simultaneous all-to-all flows between all VMs, with one packet per
flow pending at every switch on the flow’s path. We assume that the
goal is to never generate a flooded packet due to a capacity miss in
any FIB.

Table 1: NetLord worst-case limits on unique MAC addresses

Switch FIB Sizes
Radix 16K 32K 64K 128K

24 108,600 153,600 217,200 307,200
48 217,200 307,200 434,400 614,400
72 325,800 460,800 651,600 921,600
94 425,350 601,600 850,700 1,203,200
120 543,000 768,000 1,086,000 1,536,000
144 651,600 921,600 1,303,200 1,843,200

Based on these assumptions, NetLord can support N =
V R

p
(F/2) unique MAC addresses, where V is the number of

VMs per physical server, R is the switch radix, and F is the FIB
size (in entries). (SPAIN requires a FIB size proportional to the
square of the number of edge switches.)

Table 1 shows the maximum number of MAC addresses (VM)
that NetLord could support, for various switch port counts and FIB
sizes. Following a rule of thumb used in industrial designs, we
assume V = 50.

With existing single-chip switches that feature 72 ports and 64K
FIB entries [12], a NetLord network could support 650K VMs. Us-
ing plausible future 144-port ASICs with the same FIB size, Net-
Lord could support 1.3M VMs. The table suggests that ASIC de-
signers might consider increasing port count at the expense of FIB
size; the number of VMs scales linearly with ports, but only with
the square root of the FIB size.

Note that the original SPAIN design can scale to large numbers
of physical paths, but at the cost of large FIBs. NetLord removes
this restriction, and so allows the network to support a number of
VMs consistent with its physical scale.

Ease of operation: NetLord simplifies network operation in three
different ways, thereby reducing operating costs. First, as ex-
plained in Section 3, NetLord automates all switch configuration.
The configuration details are either computed offline (e.g., SPAIN’s
VLAN configuration), or are autonomously determined by individ-
ual entities (e.g., the IP forwarding tables in the switches). Also,
most of the configuration is static; this not only eliminates the need
for constant supervision by humans, but also makes debugging and
trouble-shooting easier.

Second, NetLord makes it easy to exploit standard mechanisms
on commodity switches to implement tenant-specific traffic engi-
neering, ACL, and isolation policies. As a design principle, Net-
Lord uses only standard header formats; this exposes all important
tenant information in header fields supported by even the most ba-
sic ACL mechanisms. For instance, an ACL based on the low-order
bits of the destination IP address (the tenant ID) can match all pack-
ets belonging to a single tenant. Similarly, a tenant’s flow between
two physical servers can be easily identified by matching on the
source and destination MAC addresses, and on the port-number bits
of the IP destination address. One could use these mechanisms, to-

gether with NLA support, to deploy sophisticated QoS via a central
controller (analogous to OpenFlow).

Finally, by supporting high bisection bandwidth without con-
cerns about FIB pressure, NetLord removes network-based restric-
tions on VM placement. The VM manager need not try to co-locate
communicating VMs, and can instead place them based on resource
availability (e.g., CPU or RAM) or power management.

Low-cost switches: NetLord can efficiently utilize inexpensive,
feature- and resource-limited commodity switches. The datacenter
operator need not pay for IP routing support, or to upgrade switches
to support novel L3 features (e.g., IPv6).

4.2 Design rationale
Why encapsulate? VM addresses can be hidden from switch FIBs
either via encapsulation or via header-rewriting. Encapsulation is
often thought to suffer three major drawbacks: (1) Increased per-
packet overhead – extra header bytes and CPU for processing them;
(2) Heightened chances for fragmentation and thus dropped pack-
ets; and (3) Increased complexity for in-network QoS processing.
Even so, we used encapsulation for two reasons. First, the header
re-writing cannot simultaneously achieve both address-space virtu-
alization and reduced FIB pressure. Second, in a datacenter, we can
easily address the drawbacks of encapsulation.

Header rewriting clearly would not suffer from increased byte
overheads or fragmentation. However, since we want to support
an unconstrained L2 abstraction, and therefore cannot assume the
presence of an IP header, the only two fields we could rewrite are
the source and destination MAC addresses. But to avoid FIB pres-
sure from exposed VM addresses, we would have to rewrite these
header fields with the source and destination agent (server) MAC
addresses; this would then make it impossible for the receiving
agent to know which VM should receive the packet. Diverter [11]
solves this problem by requiring tenant VMs to send IP packets
(using a defined addressing scheme), which allows the agent to
map the destination IP address to the correct VM. Also, this ap-
proach still exposes server MAC addresses to switch FIBs, which
limits scalability. (Nor could we rewrite using edge-switch MAC
addresses, because the egress edge switch would not know where
to forward the packet.) Thus, we believe encapsulation is required
to offer tenants an L2 abstraction.

What about per-packet overheads, both on throughput and on la-
tency? Our measurements (section 5) show that these overheads
are negligible. Modern multi-GHz CPUs need only a few tens of
nanoseconds to add and delete the extra headers; the added wire
delay at 10Gbps is even smaller. Throughput overheads should be
negligible if tenants use 9000-byte “jumbo” packets, which all dat-
acenter switches support.

Encapsulation in NetLord also adds one extra hop to Diverter’s
“one-hop” paths. However, NetLord suffers no performance loss,
because unlike in Diverter, this extra hop is done in hardware of the
egress edge switch.

We can also mitigate fragmentation by exploiting jumbo packets.
Our NetLord virtual device (in the hypervisor) exports a slightly
smaller MTU (34 bytes fewer) than the physical device. Because
in a datacenter we can ensure a consistent, high MTU across all
switches, and our encapsulation header always sets the “Do-not-
fragment” bit, we completely eliminate the possibility of NetLord-
generated fragments. (This also frees up the fragmentation-related
IP header fields for us to use for other purposes; see section 3.5.)

Finally, as explained in section 4.1, we can exploit NetLord’s en-
capsulation scheme to make it easier to identify tenants via simple
ACLs.

69

Why not use MAC-in-MAC? We could have used a “MAC-in-
MAC encapsulation”, where the sending NLA encapsulates the
packet with only a MAC header, setting the source and destina-
tion MAC addresses set to those of the ingress and egress switches.
This would add less overhead than our chosen encapsulation, but
would create some problems. First, this would require the egress
edge-switch FIB to map a VM destination MAC address to one
of its output ports. This implies that no two VMs connected to
an edge switch could have the same MAC address, which would
impose unwanted restrictions on VM placement. Further, since ar-
bitrary tenant-assigned L2 addresses, unlike NetLord’s encoded IP
address, cannot be aggregated, this approach requires an order of
magnitude more FIB entries. Perhaps worse, it also requires some
mechanism to update the FIB when a VM starts, stops, or migrates.
Finally, MAC-in-MAC is not yet widely supported in inexpensive
datacenter switches.

NL-ARP overheads: NL-ARP imposes two kinds of overheads:
bandwidth for its messages on the network, and space on the servers
for its tables.

In steady-state operation, most NL-ARP messages would be the
gratuitous NLA-HERE broadcasts. We show, through a simple
analysis, that these impose negligible overheads.

All NLA messages fit into the 64-byte (512-bit) minimum-length
Ethernet packet. With the worst-case 96-bit inter-frame gap, an
NLA packet requires 608 bit-times.

Most new servers come with at least one 10Gbps NIC. If we limit
NLA-HERE traffic to just 1% of that bandwidth, a network that
supports full bisection bandwidth can sustain about 164,000 NLA-
HERE messages per second. That is, the network could support
that rate of VM migrations or boots. Assuming that most VMs
persist for minutes or hours, that should be sufficient for millions
of VMs. Further, we believe that NLA-WHERE broadcasts and
NLA-NOTHERE unicasts should occur so rarely as to add only
negligible load.

NL-ARP also requires negligible table space on servers. Each
table entry is 32 bytes. A million such entries can be stored in
a 64MB hash table, at 50% loading. Since even small datacenter
servers have 8GB of RAM, this table consumes about 0.8% of that
RAM.

5. EXPERIMENTAL ANALYSIS
We did an experimental analysis, both to measure the overhead

of the NetLord Agent (NLA), and to evaluate the scalability of
NetLord. We measured overheads using a micro-benchmark (sec-
tion 5.1) and scalability by emulating thousands of tenants and hun-
dreds of thousands of VMs. We have not yet measured the cost of
the control plane, including NL-ARP.

We implemented the NetLord agent as a Linux kernel module.
We started with our implementation of SPAIN [18], adding about
950 commented lines of code. This includes all components of Net-
Lord, except the NL-ARP subsystem. We implemented NL-ARP
lookup tables, but have not fully implemented the message han-
dlers, so we ran our experiments using statically-configured lookup
tables; thus, no NL-ARP messages are sent. We ran our tests using
Ubuntu Linux 2.6.28.19.

5.1 NetLord Agent micro-benchmarks
Since the NLA intercepts all incoming and outgoing packets, we

quantified its per-packet overheads using two micro-benchmarks,
“ping” for latency and Netperf 3 for throughput. We compare our
NetLord results against an unmodified Ubuntu (“PLAIN”) and our
3www.netperf.org

original SPAIN implementation. We used two Linux hosts (quad-
core 3GHz Xeon CPU, 8GB RAM, 1Gbps NIC) connected via a
pair of switches that served as “edge switches.”

Table 2: Microbenchmarks for NetLord overheads

Case Metric PLAIN SPAIN NetLord
Ping avg 97 99 98

(in µs) min/max 90/113 95/128 93/116
NetPerf avg 987.57 987.46 984.75
1-way min 987.45 987.38 984.67

(in Mbps) max 987.67 987.55 984.81
NetPerf avg 1835.26 1838.51 1813.52
2-way min 1821.34 1826.49 1800.23

(in Mbps) max 1858.86 1865.43 1835.21

Our ping (latency) experiments used 100 64-byte packets. The
first row in Table 2 shows the results (average, minimum, and max-
imum). NetLord appears to add at most a few microseconds to the
end-to-end latency.

We measured both one-way and bi-directional TCP throughput
using Netperf. For each case, we ran 50 10-second trials. We
used jumbo (9000-byte) packets, because we observed erratic re-
sults (even with PLAIN) when using 1500-byte packets in the two-
way experiments. (We hypothesize, but have not confirmed, that
this is due to the limited number of buffer descriptors in the spe-
cific NIC in our testbed hosts.) Note that, because of our 34-byte
encapsulation headers, NetLord exposes an 8966-byte MTU to ap-
plications.

The second and third rows in Table 2 show throughput results
(mean, min., and max.). NetLord causes a 0.3% decrease in
mean one-way throughput, and a 1.2% drop in in mean two-way
throughput. We attribute these nearly-negligible drops mostly to
the smaller MTU.

5.2 Emulation methodology and testbed
We have asserted that NetLord can scale to large numbers of

VMs using inexpensive switches. We were limited to testing on just
74 servers, so to demonstrate NetLord’s scalability, we emulated a
much larger number of VMs than could normally run on 74 servers.

We implemented a light-weight VM emulation by adding a shim
layer to the NLA kernel module. Conceptually, each TCP flow end-
point becomes an emulated VM. The shim layer exposes a unique
MAC address for each such endpoint, by mapping from a source
or destination 〈IP_addr, TCP_port〉 tuple to synthesize a cor-
responding MAC address. The shim executes, for every outgo-
ing packet, before the NLA code, and rewrites the packet’s MAC
source and destination addresses with these synthetic addresses.
Thus, the NLA sees one such emulated VM for each flow from
our workload-generator application.

Using this technique, we can emulate up to V = 3000 VMs per
server. We emulated 74 VMs per tenant on our 74 servers (one VM
per tenant per host), or 74N VMs in all for N tenants.

Multi-tenant parallel shuffle workload: Our workload generator
emulates the shuffle phase of Map-Reduce. Each of the N ten-
ants has 74 VMs, each emulating both a Map task and a Reduce
task. Each Map task transfers 10MB to each of the tenant’s 73
other Reduce tasks. A given Map tasks serializes these transfers, in
a random order that differs for each tenant; the transfers originat-
ing from a single Map task do not run in parallel. To avoid over-
loading a Reduce task, we reject incoming connections beyond a
limit of 3 simultaneous connections per Reduce task. A Map task

70

www.netperf.org

 0

 5

 10

 15

 20

 25

1
(74)

50
(3.7K)

100
(7.4K)

200
(14.8K)

500
(37K)

1000
(74K)

2000
(148K)

3000
(222K)

G
oo

dp
ut

 (
in

 G
bp

s)

Number of Tenants (VMs)

Plain
SPAIN

NetLord
No-VMs

 0

 2

 4

 6

 8

 10

1(74) 200(14.8K) 1000(74K) 3000(222K)

G
oo

dp
ut

 (
in

 G
bp

s)

Number of Tenants (VMs)

Plain
SPAIN

NetLord
No-VMs

(a) FatTree Topology (b) Clique Topology

Figure 4: Goodput with varying number of tenants (number of VMs in parenthesis).

 0

 5

 10

 15

 20

 25

 30

1
(74)

50
(3.7K)

100
(7.4K)

200
(14.8K)

500
(37K)

1000
(74K)

2000
(148K)

3000
(222K)

Fl
oo

de
d

Pa
ck

et
s

(i
n

M
ill

io
ns

)

Number of Tenants (VMs)

Plain
SPAIN

NetLord

 0

 5

 10

 15

 20

 25

 30

 35

1(74) 200(14.8K) 1000(74K) 3000(222K)

Fl
oo

de
d

Pa
ck

et
s

(i
n

M
ill

io
ns

)

Number of Tenants (VMs)

Plain
SPAIN

NetLord

(a) FatTree Topology (b) Clique Topology

Figure 5: Number of flooded packets with varying number of tenants (number of VMs in parenthesis).

will postpone any such rejected transfer to a random position in its
pending-transfer list; ultimately, all such tasks will complete.

Between each trial of the entire workload, we delay for 320 sec-
onds, during which no packets are sent. Since our switches are set
to expire learning table entries after 300 seconds, this ensures the
FIBs are empty at the start of each trial.

Metrics: We run each shuffle trial either to completion or for 1800
seconds, and we compute the goodput as the total number of bytes
transferred by all tasks, divided by the run-time. We also mea-
sure the number of unnecessarily-flooded packets during a trial, by
counting, at each host, the total number of packets received that are
not destined for any VM on that host.

Testbed: We ran the emulation experiments on 74 servers, part of
a larger shared testbed. Each server has a quad-core 3GHz Xeon
CPU and 8GB RAM. The 74 servers are distributed across 6 edge
switches, with 10, 12, 12, 13, 13, and 15 servers/switch. All switch
and NIC ports run at 1Gbps, and the switches can hold 64K FIB
table entries.

We built two different topologies on this testbed: (i) FatTree
topology: the entire testbed has 16 edge switches; using another 8
switches to emulate 16 core switches, we constructed a two-level
FatTree, with full bisection bandwidth (i.e., no oversubscription).
(ii) Clique topology: All 16 edge switches are connected to each
other, thus creating a clique, which is oversubscribed by at most
2:1.

SPAIN and NetLord exploit these multi-path topologies by using
VLANs to identify paths. For FatTree, we used 16 VLANs, each
rooted at one core switch. For Clique, we used 6 VLANs, each
rooted at one of the edge switches involved in our experiments.

5.3 Emulation results
As with the micro-benchmarks, we compared PLAIN, SPAIN,

and NetLord. PLAIN does not support multi-pathing, and so its
traffic follows a single spanning tree. We ran trials on both of the
topologies with varying numbers of tenants (N), and for each N ,
we ran at least three trials and computed the means.

Figures 4(a) and 4(b) show the mean goodputs for the FatTree
and Clique topologies, respectively. We include error bars show-
ing the maximum and minimum results. The x-axis legend shows
both the number of tenants, and the number of emulated VMs in
parentheses.
Figure 4 shows that:

(1) As expected, PLAIN does not scale. Aside from failing to
exploit the available bisection bandwidth, PLAIN’s goodput drops
after the number of VMs exceeds the switch FIB table size (64K
entries) – by as much as 44% for 222K VMs. (At 74K VMs, the
drop is only 3%, implying that the FIB table replacement policy
might be LRU.)

(2) SPAIN outperforms PLAIN for <74K VMs, since it does
exploit the multi-path fabrics.

71

(3) However, SPAIN performance degrades badly as the num-
ber of VMs increases. Above 74K VMs, SPAIN actually per-
forms worse than PLAIN, because it maintains k distinct end-to-
end paths between host pairs. Thus, instead of requiring 74N FIB
table entries for N tenants, it requires 74kN entries (in the worst
case), because a switch maintains a FIB entry for each 〈MAC-
address,VLAN〉 tuple. SPAIN’s goodput therefore drops even at
relatively modest numbers of VMs.

(4) NetLord scales well, achieving far superior goodput, especially
as the number of VMs increases.

We observe that NetLord’s goodput declines slightly as the num-
ber of VMs exceeds 14.8K. We suspect this dip is caused by end-
host overheads associated with maintaining lots of TCP connec-
tions. To validate this hypothesis, we re-ran the shuffle workload
without VM emulation, using the PLAIN system. The goodput we
achieved with this case (shown in Figure 4 s “No-VMs”, with the
number of connections matching the number of VMs) suffers from
a similar dip – that is, NetLord’s goodput closely matches the No-
VMs goodput. The one exception, for Clique and N = 1, might be
due to NetLord’s slightly higher overheads.

Why does NetLord scale better? Our main hypothesis in this
paper has been that PLAIN and SPAIN do not scale because of
FIB-table misses. Our switches do not allow us to directly count
these misses, so we use our counts of flooded packets as a proxy.

Figure 5 shows the mean number of packet floods received at
each host during our experiments. (The error bars for this figure are
too narrow to be worth showing, and we omit them to avoid clutter).
Clearly, PLAIN and SPAIN suffer from lots of flooding, supporting
our belief that their scaling problems result from FIB-table capac-
ity misses. Since NetLord conceals all VM and most server MAC
addresses from the switches, it experiences only a modest number
of FIB misses, caused mostly by table timeouts.

We note that NetLord suffers from more misses than PLAIN
when there is only one tenant, although the effect is too insignif-
icant to see in Figure 5 – for FatTree, for example, PLAIN floods
about 2,550 packets, SPAIN floods about 25,600, while NetLord
floods about 10,500 packets. In the one-tenant case, we see more
flooded packets than we expect during the first few connections.
This could be because our switches implement their MAC learn-
ing process in control-plane software, and some FIB table updates
might not complete within an RTT. However, the results are not
fully consistent with this hypothesis, and they require further in-
vestigation.

In summary, through experimental evaluation on a real testbed
with NetLord prototype, we have demonstrated that NetLord scales
to several hundreds of thousands of VMs. We have also shown that
it works with unmodified commodity switches.

6. DISCUSSION AND FUTURE WORK
In this section, we discuss how the NetLord architecture ad-

dresses several important considerations for operators of large data-
center networks. We also identify several limitations of NetLord,
and areas for future work.

Fault-tolerance: An important aspect of scale is the increased like-
lihood of failures. NetLord directly inherits SPAIN’s ability to han-
dle transient network failures. SPAIN monitors the health of its
VLAN-based paths by observing all incoming traffic, or by sending
special chirp packets that serve (among other purposes) as heart-
beats. This monitoring allows SPAIN (and therefore NetLord) to
quickly detect failed paths, and to re-route load to alternate paths.

NetLord does not proactively monitor the health of the servers

themselves. NetLord tolerates server failures, because there is no
“hard state” associated with a specific NLA. We assume that a VM
manager (such as Eucalyptus) is responsible for detecting failed
servers and restarting affected VMs on other servers. When the
VMs are restarted, their local NLAs broadcast NLA-HERE mes-
sages, which repopulate the NL-ARP tables at the NLAs for other
VMs. It might be useful for the VM manager to provide this infor-
mation directly to the surviving NLAs, thereby avoiding some lost
packets during the restart phase.

Broadcasts and multicasts: ARP and DHCP account for a vast
majority of broadcasts in today’s typical datacenter. Because the
NLAs proxy ARP requests, these are never broadcast. We expect
the DHCP broadcast load to be similar to the NLA-HERE load,
which (in section 4.2) we argued is just a small percentage of net-
work capacity.

However, other tenant multicasts and broadcasts (particularly
from malicious, buggy, or inefficient VMs) could become a prob-
lem. Scalable techniques for multi-tenant multicasting is a chal-
lenge for future work. Possible approaches include rate-limiting at
the switches, or mapping broadcasts to a tenant-specific multicast
group (as proposed in [11, 13]). But these techniques might not
scale, because most switches either treat multicasts as broadcasts,
or cannot scale the number of simultaneous multicast-tree pruning
sessions to match the number of tenants [23].

Per-tenant management: A cloud provider might wish to man-
age traffic on a per-tenant basis: for example, to impose bandwidth
limits or priorities. While this can often be done in the hypervi-
sors [21], sometimes there might be reasons to exploit features of
switch hardware. Doing so requires a way for switches to identify
the packets of a specific tenant. If tenants can only be identified by
the addresses of their individual VMs, this cannot scale. However,
since NetLord exposes the tenant ID as part of the encapsulation’s
IP destination address, one can use a single ACL per tenant to con-
trol features such as rate limiting. This would probably still have
to be limited to a small subset of the tenants, given the number of
ACLs and rate-limiters supported by commodity switches. Or, the
high-order bits of tenant IDs could encode service classes.

Inter-tenant and external communications: Currently, NetLord
requires that the tenant implement some sort of routing within its
own network, if a VM on its private address space needs to be able
to contact the external world. We are currently working a few minor
modifications to our basic design, so that we can provide a per-
tenant “distributed virtual NAT” service.

Software overheads and SR-IOV: Although NetLord itself is fru-
gal with server resources, the use of hypervisor-based (or driver
domain-based) network virtualization imposes substantial over-
heads [27]. These overheads can be avoided by using Single Root
I/O Virtualization (SR-IOV) NICs, which allow VMs direct access
to NIC hardware. However, SR-IOV would appear to prevent the
NLA from intercepting and encapsulating outgoing packets, and
a standard SR-IOV NIC would not know how to decapsulate an
incoming NetLord packet. We believe that techniques allowing
hypervisors to inject code into the guest-domain drivers [9] could
solve the outbound problem; the inbound problem would either in-
volve the hypervisor on every received packet, or would require
some modifications to SR-IOV.

Other L2 fabrics: Although NetLord as presented in this paper uti-
lizes SPAIN as the underlying multipathing fabric, it is not closely
tied to SPAIN. NetLord can use any fabric that provides an Ethernet
abstraction such as TRILL [5], SPB [4], or SEATTLE [17]. Net-
Lord might help with scaling these other solutions. For instance,

72

TRILL switches maintain a FIB entry for each destination MAC
address (but mapping the destination MAC to a destination edge
switch, rather than to a next-hop port), and so (without NetLord)
suffer from the same FIB-pressure problems as traditional switches.

SEATTLE addresses scaling for the core switches. However,
SEATTLE’s edge switches probably still need relatively large FIB
tables, to cache the working set of remote VM MAC addresses; oth-
erwise, table misses incur the significant penalty of traversing the
SEATTLE DHT. It would be useful to have a quantified analysis of
how well SEATTLE scales in a virtualized environment.

7. CONCLUSIONS
In this paper we presented NetLord, a novel network architecture

for multi-tenant cloud datacenters.
Through the encapsulation of a tenant’s L2 (Ethernet) packets in

its own IP packets, NetLord gains multiple advantages over prior
solutions. It allows us to fully virtualize each tenant’s L2 and L3
address spaces, which gives the tenants full flexibility in choosing
their VM addresses — or not choosing these addresses, if they want
to preserve their legacy addressing schemes. Encapsulation also al-
lows NetLord to scale to larger numbers of VMs than could other-
wise be efficiently supported using commodity Ethernet switches.
NetLord’s design can exploit commodity switches in a way that fa-
cilitates simple per-tenant traffic management in the network. Our
new NL-ARP protocol simplifies the design, by proactively push-
ing the location information of VMs to all servers. NetLord im-
proves ease of operation by only requiring static one-time configu-
ration that is fully automated.

Our measurements show that the NetLord architecture scales to
several thousands of tenants, and hundreds of thousands of VMs.
Our experimental evaluation shows that NetLord can achieve at
least 3.9X improvement in goodput over existing approaches, and
imposes only negligible overheads.

Acknowledgements
We thank our shepherd, Jon Crowcroft, and the anonymous review-
ers for their insightful comments. We thank Sujata Banerjee, Anna
Fischer, Rick McGeer, and Jean Tourillhes for their help and feed-
back. Finally, we thank Ken Burden, Pete Haddad, and Eric Wu for
their help in setting up the testbed network.

8. REFERENCES

[1] Amazon EC2. http://aws.amazon.com/ec2/.
[2] Amazon virtual private cloud.

http://aws.amazon.com/vpc/.
[3] IEEE 802.1ad - Provider Bridging. http:

//www.ieee802.org/1/pages/802.1ad.html.
[4] IEEE 802.1aq - Shortest Path Bridging. http:

//www.ieee802.org/1/pages/802.1aq.html.
[5] IETF TRILL Working Group. http://www.ietf.org/

html.charters/trill-charter.html.
[6] Windows Azure.

https://www.microsoft.com/windowsazure/.
[7] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,

Commodity Data Center Network Architecture. In Proc.
SIGCOMM, 2008.

[8] M. Arregoces and M. Portolani. Data Center Fundamentals.
Cisco Press, 2003.

[9] Broadcom Corp. Broadcom Ethernet Network Controller
Enhanced Virtualization Functionality.
http://tinyurl.com/4r8vxhh, Accessed on 1/31/11.

[10] Cisco Catalyst 4500 Series Model Comparison.
http://tinyurl.com/yvzglk, Accessed on 1/31/11.

[11] A. Edwards, A. Fischer, and A. Lain. Diverter: A New
Approach to Networking Within Virtualized Infrastructures.
In WREN 2009.

[12] Fulcrum MicroSystems. FocalPoint FM6000 ProductBrief.
http://tinyurl.com/4uqvale, Accessed on 1/31/11.

[13] A. Greenberg, J. Hamilton, and N. Jain. VL2: A Scalable and
Flexible Data Center Network. In Proc. SIGCOMM, 2009.

[14] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet: A Data Center Network
Virtualization Architecture with Bandwidth Guarantees. In
Co-NEXT. ACM, 2010.

[15] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao,
K. Sripanidkulchai, and M. Tawarmalani. Cloudward Bound:
Planning for Beneficial Migration of Enterprise Applications
to the Cloud. In Proc. SIGCOMM, 2010.

[16] IEEE 802.1q - Virtual Bridged Local Area Networks.
http://tinyurl.com/5ok4f6, Accessed on 1/31/11.

[17] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE:
A Scalable Ethernet Architecture for Large Enterprises. In
Proc. SIGCOMM, pages 3–14, 2008.

[18] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul.
SPAIN: COTS Data-Center Ethernet for Multipathing over
Arbitrary Topologies. In Proc. USENIX NSDI, 2010.

[19] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric. In Proc. SIGCOMM, 2009.

[20] HP ProCurve 6600 Series.
http://tinyurl.com/4cg8qt9, Accessed on
1/31/11.

[21] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and
D. Guedes. Gatekeeper: Supporting Bandwidth Guarantees
for Multi-tenant Datacenter Networks. In Proc. 3rd
Workshop on I/O Virtualization, June 2011.

[22] M. Scott, A. Moore, and J. Crowcroft. Addressing the
Scalability of Ethernet with MOOSE. In Proc. DC CAVES
Workshop, Sept. 2009.

[23] R. Seifert and J. Edwards. The All-New Switch Book: The
Complete Guide to LAN Switching Technology. Wiley, 2008.

[24] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the
Production Network be the Testbed? In Proc. of OSDI 2010.

[25] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall:
Performance Isolation For Cloud Datacenter Networks.
HotCloud’10.

[26] VMware. http://www.vmware.com.
[27] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner, A. L.

Cox, and W. Zwaenepoel. Concurrent Direct Network
Access for Virtual Machine Monitors. In Proceedings of
HPCA, 2007.

[28] Xen. http://www.xen.org, Accessed on 1/31/11.

73

http://aws.amazon.com/ec2/
http://aws.amazon.com/vpc/
http://www.ieee802.org/1/pages/802.1ad.html
http://www.ieee802.org/1/pages/802.1ad.html
http://www.ieee802.org/1/pages/802.1aq.html
http://www.ieee802.org/1/pages/802.1aq.html
http://www.ietf.org/html.charters/trill-charter.html
http://www.ietf.org/html.charters/trill-charter.html
https://www.microsoft.com/windowsazure/
http://tinyurl.com/4r8vxhh
http://tinyurl.com/yvzglk
http://tinyurl.com/4uqvale
http://tinyurl.com/5ok4f6
http://tinyurl.com/4cg8qt9
http://www.vmware.com
http://www.xen.org

	Introduction
	Problem and Background
	Goals: scalable, cheap, and flexible
	State of the art

	NetLord's Design
	A tenant's view of NetLord
	Virtual routing
	NetLord's components
	SPAIN in a nutshell
	Encapsulation details
	Switch configuration
	NetLord Agent configuration
	The journey of a NetLord packet
	NL-ARP

	Benefits and Design Rationale
	How NetLord meets the goals
	Design rationale

	Experimental Analysis
	NetLord Agent micro-benchmarks
	Emulation methodology and testbed
	Emulation results

	Discussion and future work
	Conclusions
	References

