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ABSTRACT
The soaring demands for always-on and fast-response online ser-
vices have driven modern datacenter networks to undergo tremen-
dous growth. These networks often rely on scale-out designs with
large numbers of commodity switches to reach immense capacity
while keeping capital expenses under check. The downside is more
devices means more failures, raising a formidable challenge for net-
work operators to promptly handle these failures with minimal dis-
ruptions to the hosted services.

Recent research efforts have focused on automatic failure local-
ization. Yet, resolving failures still requires significant human in-
terventions, resulting in prolonged failure recovery time. Unlike
previous work, NetPilot aims to quickly mitigate rather than re-
solve failures. NetPilot mitigates failures in much the same way
operators do – by deactivating or restarting suspected offending
components. NetPilot circumvents the need for knowing the ex-
act root cause of a failure by taking an intelligent trial-and-error
approach. The core of NetPilot is comprised of an Impact Estima-
tor that helps guard against overly disruptive mitigation actions and
a failure-specific mitigation planner that minimizes the number of
trials. We demonstrate that NetPilot can effectively mitigate sev-
eral types of critical failures commonly encountered in production
datacenter networks.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management

Keywords
Datacenter networks, failure mitigation

1. INTRODUCTION
The growing demand for always-on and rapid-response online

services has driven datacenter networks (DCNs) to an enormous
size, often comprising tens of thousands of servers, links, switches,
and routers. To reduce capital expenses and increase overall sys-
tem reliability, datacenter (DC) designers are increasingly building
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their networks using broad layers of many inexpensive commodity
hardware instead of large chassis switches. However, as the num-
ber of devices grows, the failure of network devices becomes the
norm rather than the exception.

Diagnosing and repairing DCN failures in a timely manner has
become one of the most challenging DC management tasks. Tra-
ditionally, network operators follow a three-step procedure to react
to network failures: 1) detection; 2) diagnosis; and 3) repair. Diag-
nosis and repair are often time-consuming, because the sources of
failures vary widely, from faulty hardware components to software
bugs to configuration errors. Operators must sift through many pos-
sibilities just to narrow down potential root causes. Even though
automated tools exist to help localize a failure to a set of suspected
components [5, 19], operators still have to manually diagnose the
root cause and repair the failure. These diagnosis and repair some-
times require third-party device vendors’ assistance, further length-
ening the failure recovery time. Because of the above challenges,
it can take a long time to recover from disruptive failures even in
well-managed networks. For instance, in April 2011, a failure in
Amazon’s AWS service impaired the operations of many cloud ser-
vices for hours [29].

Realizing the problem above, we take a fundamentally differ-
ent approach to tackle the failure recovery problem in large-scale
DCNs. Specifically, we advocate a four-step process to react to
failures: 1) detection; 2) mitigation; 3) diagnosis; and 4) repair.
We argue that it is more important to mitigate failures than to fix
them in real-time. Here “mitigate” means taking action(s) that alle-
viate the symptoms of a failure, possibly at the cost of temporarily
reducing spare bandwidth or redundancy. Timely and effective fail-
ure mitigation enables a DCN to operate continuously even in the
presence of failures, and allows operators to dive directly into fail-
ure diagnosis and repair.

This paper presents NetPilot, an automated system that adopts
our four-step process to quickly mitigate failures in a large-scale
DCN before operators diagnose and repair the root cause. NetPilot
can significantly shorten the failure disruption time by mitigating
failures without human intervention. It can also improve online
user experience and lower potential revenue losses that stem from
service downtime. Moreover, it can lower a DC’s operational costs,
as it reduces the number of emergent failures and the number of
midnight calls to on-call operators.

A key observation that motivates NetPilot’s design is that simple
actions such as deactivation or restart, coupled with the redundancy
that exists in a DCN (§ 2), can effectively mitigate most types of
failures in a DCN. DCNs often have extra links and switches to ac-
commodate peak traffic load and device failures. In many cases,
simple actions such as deactivating or restarting an offending com-
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ponent can mitigate failures with little impact on the network’s
normal functions. This observation differentiates NetPilot’s design
from conventional failure diagnosis and repair approaches, which
require detailed failure-specific knowledge.

Since NetPilot has mitigation as its end goal, it can operate with-
out human intervention and without knowing the precise failure
root cause. NetPilot automatically mitigates failures in DCNs through
a trial-and-error approach. First, it detects a failure and identifies
the set of suspected faulty components. Then, it intelligently iter-
ates through the suspected devices and applies mitigation actions
on them one by one, until it mitigates the failure or has exhausted
all possible actions.

Realizing NetPilot requires overcoming two key technical chal-
lenges. First, when mitigation actions are applied blindly, they can
actually further compromise the health of the network, e.g., deac-
tivating a switch may overload other switches during peak hours.
NetPilot avoids this problem by employing an Impact Estimator to
accurately predict the impact of mitigation actions and executing
the actions within a pre-defined safety margin.

Second, although NetPilot can safely try numerous mitigation
actions before successfully mitigating a failure, an excessive num-
ber of trials will unnecessarily lengthen the failure mitigation pro-
cess. NetPilot addresses this challenge with an optimized mitiga-
tion planner that uses failure-specific information to localize a fail-
ure to the most likely faulty components, and orders the sequence
of mitigation actions according to their potential benefits.

To the best of our knowledge, NetPilot is the first automated fail-
ure mitigation system for DCNs. Our contributions are:

• We study and classify the high-impact failures in production
DCNs over a six-month period, and find that we can mitigate
most of those failures by simple actions such as restart or
deactivation. We also find that there is sufficient redundancy
in a DCN to accommodate the impact of mitigation actions
(§ 2,3).

• We design and implement NetPilot (§ 4,5) and deploy it in
a testbed that resembles a real DCN topology. We also con-
duct simulations using data from a production DCN to eval-
uate NetPilot at a large scale. We experimentally validate the
accuracy of the Impact Estimator, and find that it offers an
error rate of less than 8%

• We use NetPilot to automatically mitigate three types of high-
impact failures that operators often encounter in production
DCNs. Besides reducing operational overhead, NetPilot de-
creases the median mitigation time from 2 hours to 20 min-
utes compared to current operational practice, significantly
shortening a failure’s impact on online services.

• We justify the design choices made in NetPilot. Compared
to simple heuristics, NetPilot can succeed with fewer trials
while maintaining safe operating conditions in the network.

2. REDUNDANCY IN
DATACENTER NETWORKS

In this section, we motivate NetPilot’s design with the observa-
tion that today’s DCNs have plenty of redundancy at the device
level, protocol level, and application level. In the next section, we
discuss how NetPilot takes advantage of these redundancies to au-
tomatically mitigate failures.

A DCN’s must balance between scale and cost to support tens
of thousands of servers with high bandwidth and at low cost. So-
lutions have increasingly converged to one design paradigm: using

many inexpensive commodity devices to scale up capacity and to
reduce cost while deploying various types of redundancy to combat
unreliability [11]. We describe three redundancy types below.

2.1 Device-Level Redundancy
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Figure 1: An example scale-out DCN topology.

A modern DCN typically uses a scale-out topology to create
many redundant paths between two servers. Scale-out topologies
such as a Fat-Tree [4] and Clos [8] can achieve full bi-section band-
width using commodity switches that often have low port density.

Figure 1 shows an example scale-out topology. This topology
has multiple layers: the top-of-rack (ToR) layer, the aggregation
layer (AGG), and the core layer (CORE). A container is a concep-
tual management unit as well as a replicable building block sharing
the same power and management infrastructure. A CORE router
connects to multiple containers. For ease of exposition, in the rest
of the paper, we use the terms ToR, AGG, and CORE to refer to a
switch/router at the ToR, aggregation, or core layer, respectively.

This scale-out topology provides many paths, sometimes in the
hundreds, between any two servers. Such path diversity makes the
network resilient to single link, switch, or router failure. For exam-
ple, in Figure 1, we find that deactivating a single link or device,
with the exception of a ToR, will not partition the network. Even
when a failed ToR causes network partition, it will only isolate the
small number of servers connected to it.

2.2 Protocol-Level Redundancy
DCNs also use various protocol level technologies to meet traffic

demands even when some devices fail. We briefly introduce three
practical technologies that provide load balancing and fast failover
at the link, switch, and path level. These technologies are widely
available in off-the-shelf devices from major switch vendors.

Link Aggregation Control Protocol (LACP) abstracts multi-
ple physical links into one logical link and transparently provides
high aggregate bandwidth and fast failover at the link level. The re-
sulting logical link is known as a Link Aggregation Group (LAG).
LACP provides load balancing by multiplexing packets to physical
links by hashing packet headers. Some LACP implementations al-
low a LAG to initiate from one physical switch but to terminate at
multiple physical switches. A LAG can only load balance outgoing
traffic, and it has no control over the incoming traffic.

Virtual switch is a logical switch composed of multiple physical
switches. A network can use a virtual switch at the link or the IP
layer to mask the failures of physical switches.

A virtual switch tolerates faults at the IP layer through an ac-
tive/standby configuration. One switch is designated as the primary
while the standby switch remains silent until it detects that the pri-
mary has failed. Two common implementations of IP layer virtual
switches are the virtual redundancy router protocol (VRRP) [24]
and hot standby router protocol (HSRP) [27]. Both VRRP and
HSRP can be configured to provide load balancing.
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A virtual switch at the link layer differs from its IP layer coun-
terpart by allowing the physical switches to simultaneously forward
traffic. Generically called Multi-Chassis LAG (MC-LAG), Virtual
Port Channel (VPC) [2] and Split Multi-link Trunking [13] are two
common implementations.

Full-mesh COREs refer to the full-mesh interconnections be-
tween COREs and containers, i.e., every container connects to ev-
ery core switch [10, 21]. The ECMP [12] routing protocols in full-
mesh-COREs topologies provide load balancing and fast failover
for traffic between containers.

2.3 Application-Level Redundancy
Modern DCNs also deploy application-level redundancy for fault

tolerance. Given that a ToR is a single point of failure for the servers
connected to it (unless they are multi-homed), a common technique
to increase failure resilience at the application level is to distribute
and replicate applications under multiple ToRs. Therefore, stopping
or restarting any switch including a ToR is unlikely to have more
than an ephemeral impact on the applications.

3. REDUNDANCY WARRANTS
AUTOMATED FAILURE MITIGATION

In this section, we analyze and classify the failure records in
a six-month period from several production DCNs (DCNsp). We
then show that most failures are easy to detect, but difficult to diag-
nose or repair. However, we can mitigate them using simple actions
such as deactivation or restart.

We obtained six months of failure records for DCNsp, all of
which were manually created by operators and contain detailed de-
scriptions of critical failures. Network operators consider a failure
critical if it is either visible to users or impacts revenue. Therefore
each record represents a failure that required immediate investiga-
tion and response. The fields of interest from these records are: the
data sources used to detect the failure, the techniques used to miti-
gate the failure, the final actions taken to repair the failure, and the
start and end times.

Table 1 classifies DCNsp’s critical failures. We find that the
single largest source of failures are misconfigurations. Prior re-
search made similar findings in other contexts, such as ISP net-
works [25]. Misconfigurations are common in DCNs due to the
inherent complexity in managing configuration files in large-scale
networks. Many of these misconfigurations, e.g., incorrect ACL
(Access Control List) rules, lead to lack of connectivity between
certain hosts. Host-to-host pings can detect these misconfigura-
tions, but fixing them is challenging and usually requires operators
to manually debug the problems.

The next common type of failure is device software failures. One
such example is a malfunctioning hash function that results in un-
even link utilization among the physical links in a LAG. In some
situations, the uneven utilization is so severe that one of the physi-
cal links becomes overloaded and discards packets. We can detect
this type of failure by comparing the utilization of each link in the
LAG. While we can detect software failures, diagnosing their root
causes is generally nontrivial since operators know little about the
inner workings of device binary code. Even for device vendors who
have the source code, debugging the software is still challenging
because failures cannot be easily reproduced in lab environments.

The third category of failures is hardware failures. Such failures
occur frequently due to the large number of devices used in DCNsp.
For example, 13% of the failures are caused by a single problem,
frame checksum (FCS) errors, which often significantly elevates
host-to-host latencies. Like other failures, FCS errors can be de-

 0
 0.25

 0.5
 0.75

 1

 0  200  400  600  800

C
D

F

Time (minutes)

mitigation
repair

Figure 2: This figure shows the CDFs of how long it takes for
DCNsp’s operators to mitigate and to repair critical failures.

tected by checking switch SNMP counters, i.e., checking the num-
ber of corrupted frames received on each port. However, pinpoint-
ing the sources of FCS errors takes time because corrupted frames
propagate throughout the network due to cut-through switching
(§4.3.1). Even after identifying the correct source, operators have
to manually replace the corrupted cable.

The last category is failures whose sources are unknown. In
some failures, switches have high CPU utilization while their traf-
fic load is low. In other cases, switches may suddenly cease to for-
ward traffic. These failures often cause abnormally high latency or
packet losses. Due to the intermittent and unpredictable nature of
these failures, they are difficult to reproduce, diagnose, and repair.

3.1 Time-Consuming Failure Recovery
From studying the types of failures in DCNsp, we see that com-

pletely repairing a failure may require debugging of code, software
update, or hardware replacement. Further, this process may also
involve multiple parties: network operators, software developers,
hardware engineers, and external vendors. It is therefore difficult
to automate. Figure 2 shows the CDFs of failure mitigation and
repair times in DCNsp. As can be seen, the failure repair times can
exceed several days or even weeks.

3.2 Simple Mitigation Actions are Effective
Table 1 shows that simple actions such as deactivating or restart-

ing a switch or port can mitigate most types of failures in DCNsp
before the root cause can be repaired. For example, in the case of
FCS errors, operators reduce latency by deactivating the corrupted
links. In the case of overload triggered by load imbalance, opera-
tors restore load balance by restarting the offending switches.

In fact, operators of DCNsp already take manual mitigation ac-
tions to restore a network to a functioning state while diagnosing
and repairing the failure. NetPilot’s design goal of automating fail-
ure mitigation is partly motivated by the difficulty of manual mit-
igation. We compare the manual failure mitigation time with the
repair time in Figure 2. As can be seen, the time it takes to mitigate
failures (even manually) is much shorter than that to repair them.
The median failure mitigation time is about two hours.

We note that not all failures can be mitigated by simple actions.
Certain failures, e.g., a global configuration error such as a mis-
configured ACL, would require a network-wide reconfiguration to
fix, and thus cannot be mitigated by restarting or deactivating a few
offending devices. How to automatically mitigate those failures is
beyond the scope of this paper.

3.3 Spare Capacity for Mitigation Actions
From the analysis above, we find that simple actions are highly

effective in mitigating failures and also lead themselves to automa-
tion. An automated failure mitigation system can significantly re-
duce failure mitigation time, as well as the burden on operators.

However, one might be concerned that these simple mitigation
actions may overload the network. To find out whether a DCN
would have sufficient capacity for failure mitigation, we use the
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Category Detection Mitigation Repair Percentage
software 21% link layer loop deactivate port update software 19%

imbalance triggered overload restart switch 2%
hardware 18% FCS error deactivate port replace cable 13%

unstable power deactivate switch repair power 5%

unknown 23%

switch stops forwarding restart switch n/a 9%
imbalance triggered overload restart switch 7%
lost configuration restart switch 5%
high CPU utilization restart switch 2%

configuration 38% errors on multiple switches n/a update configuration 32%
errors on one switch deactivate switch update configuration 6%

Table 1: This table categorizes the high-impact failures in several production DCNs over a six-month period. All failures listed here
either are visible to users or impact revenue.

maximum link utilization after deactivating a component to mea-
sure the amount of spare network capacity. We use the Impact Es-
timator to carry out this computation. (We will describe Impact
Estimator in detail in §4.2.)
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Figure 3: This figure shows the fraction of time intervals during
which deactivating a link, a LAG, or a switch will not cause the
maximum link utilization to exceed a target threshold (90%)
versus the fraction of components for which this result holds.

We perform this computation using the traffic matrices aggre-
gated over 10-minute intervals in one month for DCNp, a single
DCN in DCNsp. Figure 3 shows the fraction of time intervals dur-
ing which deactivating a link, a LAG, or a switch will not cause
the maximum link utilization to exceed a target threshold (which
is 90%) set by DCNsp’s operators and the fraction of components
for which this holds. As can be seen, 99% of the links can be
deactivated in over 90% of the intervals without overshooting the
target threshold. These numbers are slightly lower for LAGs and
switches, because a LAG or a switch contains multiple links. Over-
all, there is sufficient redundancy in DCNp to tolerate a component
deactivation most of the time.

4. NetPilot DESIGN
NetPilot quickly mitigates failures without knowing their actual

root causes in four steps. The first step (S1) is failure detection, in
which it constantly monitors the network and detects any potential
failure. The second step (S2) is mitigation planning. When NetPi-
lot detects a failure, it will propose a set of suspected components,
determine the appropriate mitigation actions, and order these ac-
tions based on the likelihood of success or potential impact. The
third step (S3) is impact estimation. To avoid taking any action
that would further degrade network health, NetPilot estimates the
impact of each action and discards the actions that are considered
unsafe. The last step (S4) is plan execution. NetPilot will suc-
cessively execute each mitigation action. If an action successfully
mitigates the failure, NetPilot marks the failure as mitigated. Oth-
erwise, NetPilot will roll back the action and try the next action.

In this section, we focus on two main technical challenges: im-
pact estimation (S3) and mitigation planning (S2). We postpone
the discussion of failure detection (S1) and plan execution (S4) to

the next section. Note that impact estimation must be accurate in
order for NetPilot to avoid actions that could further degrade net-
work health. However, NetPilot can work properly even without
precisely localizing a failure or ordering the mitigation actions.

4.1 Impact Metrics
A chief design goal for NetPilot is to avoid taking any mitigation

action that could further degrade a DCN’s health. Typically, for a
given traffic matrix over a time interval T , we can assess a DCN’s
health via three metrics: availability, packet losses and end-to-end
latency. The availability and packet losses of a DCN can be quan-
tified by the fraction of servers with network connectivity to the
Internet (online_server_ratio) and the total number of lost pack-
ets (total_lost_pkt) during the interval T respectively. Quantify-
ing latency is tricky because it is difficult to predict how intra-DC
network latency would change after a mitigation action. Given this
problem, we use the maximum link utilization (max_link_util)
across all links during the interval T as an indirect measure of net-
work latency. Because the propagation delay is small in a DCN (no
more than a few milliseconds), low link utilization implies small
queuing delay and thus low network latency. Next, we will explain
how to predict these metrics after a mitigation action.

4.2 Estimating Impact
The Impact Estimator aims to estimate a mitigation action’s im-

pact on a DCN. Answering this question is crucial for ensuring the
safety of mitigation actions. The Impact Estimator takes an action
A and a traffic matrix TM as two input variables and computes
the expected impact of A under TM . Since it is straightforward to
compute online_server_ratio given a network topology, we fo-
cus on estimating max_link_util and total_lost_pkt in the rest
of the discussion.

We can get the max_link_util and total_lost_pkt by collect-
ing SNMP counters in a DCN. However, predicting these two met-
rics after a mitigation action is nontrivial because the action could
change the traffic distribution in the network. In a DCN with no
centralized routing control, we cannot precisely predict how pack-
ets are routed to their destinations, unless we know all the packet
headers, forwarding tables, and load balancing hash functions.

Our approach to address this challenge is based on two impor-
tant facts that shape the traffic distribution in DCNs. First, there
are far more flows than the diversity of paths in DCNs [10, 17].
Second, hash-based flow-level load balancing is widely used at the
link level, switch level, and path level in production DCNs [10,12].

These two facts make packet headers and load balancing hash
functions, which are difficult to obtain in real-time, unnecessary in
predicting traffic distribution. Our intuition is that hashing many
flows onto a relatively small number of paths leads to even load
balancing [10]. As a result, a coarse-grained TM plus forwarding
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tables should enable us to estimate the real traffic distribution with
reasonably high accuracy.

We choose to represent a TM at the granularity of ToR-to-ToR
traffic demands instead of server-to-server, because this represen-
tation dramatically reduces the size of TM while not affecting the
computation of traffic distribution at the AGG or CORE layers.
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Figure 4: A switch learns the equal cost next hops to any ToR
after two iterations in a hierarchical DCN topology.

Besides TMs, we also need the forwarding tables to know the
next hops to any given destination. As explained in §2, a DCN typ-
ically follows a hierarchical structure with traffic traversing valley-
free paths. This inspires us to infer the forwarding tables in a sim-
ilar manner, as illustrated in Figure 4. In the first bottom-up iter-
ation, every switch learns the routes to its descendant ToRs from
its direct children. In the second top-down iteration, every switch
learns the routes to the non-descendant ToRs. After these two iter-
ations, every switch builds up the full forwarding table to any ToRs
in the network.

Algorithm node.Forward(load)

1: if load.dst == node
2: return; // reach the destination;
3: nxtHops = node.Lookup(load.dst)
4: for each node n in nxtHops
5: for each link l between node and n
6: subload.dst = load.dst;
7: subload.volume = load.volume

|nxtHops| × 1
|links between node and n| ;

8: n.Forward(subload);

We use the term load to refer to the traffic demand between two
ToRs. Algorithm node.Forward presents how a node forwards a
load in detail. Line 3 returns all the next hops (nxthops) to a desti-
nation. Assuming even load balancing for traffic crossing adjacent
levels in the network hierarchy, Lines 4-8 first evenly split load
among the nxthops, and then for each next hop, the traffic is evenly
split among the physical links. The second traffic split is necessary
due to the presence of LAGs (described in §2). By running this
algorithm on each load in TM and aggregating the contribution of
each load on each link, we predict all the link utilizations.
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Figure 5: The differences between the link utilizations read
from SNMP counters and those computed by Impact Estimator
are within 4%.

We evaluate Algorithm node.Forward in an 8000-server pro-
duction DCN to see whether the Impact Estimator is accurate. We
log one-month’s socket events on all the servers and aggregate the
logs into ToR-to-ToR traffic matrices at a 10-minute granularity. We
also collect the link utilizations during the same month via SNMP
at a 10-minute granularity. Figure 5 shows the CDF of the relative
differences between the estimated link utilizations and the mea-
sured ground truth. As can be seen, the Impact Estimator works
very well, and has a maximum error rate of ±4%.

So far, we have explained how the Impact Estimator works under
a known network topology and TM . To predict the impact of an
action, we need to know the new topology and TM after the action
is committed. Although inferring the new topology is straightfor-
ward, predicting the new TM can be tricky because a mitigation
action might affect the traffic demand from minutes up to days.
For a restart action which takes only several minutes, we use the
TM in the most recent time interval (e.g., 10 minutes) to predict
the action’s impact during the restart period, assuming the TM is
unlikely to change dramatically in such a short time. For a deactiva-
tion action that may last days, due to a faulty component needing to
be replaced, we ideally desire to use the TM ’s in the future days to
predict the impact during the deactivation period. However, traffic
prediction is a research topic by itself, and is beyond the scope of
this paper. Instead, we use the TMs in the most recent n days be-
fore a deactivation action to predict the impact in the future n days,
assuming that the traffic demands are stable over 2n days when n
is small. In our evaluation (§6.5), we find that this simple heuristic
works reasonably well.

4.3 Planning Mitigation
Given that NetPilot takes a trial-and-error approach toward fail-

ure mitigation, it needs a mitigation planner to localize suspected
components and prioritize mitigation actions to minimize the num-
ber of trials. One simple solution is to use existing work [5, 15, 16]
to localize failures and then iteratively try deactivating or restarting
the suspected components. Although this simple, failure-agnostic
solution might work, we choose to develop a mitigation planner
that uses failure-specific knowledge to achieve finer-grained local-
ization and more meaningful ordering of mitigation actions (i.e.,
based on success likelihood). This in turn leads to fewer trials and
shorter mitigation times. The downside is that NetPilot needs a
planning module for each type of failure. However, we consider
this tradeoff worthwhile since there are relatively few types of crit-
ical failures in DCNs (as shown in Table 1).

In this section, we first describe in detail mitigation planning for
three types of failures: FCS errors, link-down, and uneven-split.
We will then discuss the other failure types (listed in Table 1),
which are easier to handle compared to these three types.

4.3.1 Frame Checksum Errors
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Figure 6: The 99-percentile application-level latency increases
significantly due to one corrupted link in DCNp.

Many of the links in a DCN are optical. When foreign mate-
rial such as dust gets between an optical cable and its connector,

423



the packets traversing the optical link can suffer bit flips. This
causes a frame to mismatch its checksum. As shown in Table 1,
FCS errors occur frequently in DCNsp and can significantly de-
grade performance. Figure 6 shows how a corrupted link impacts
the application-level latency in DCNp. Around 12:00pm, a link
connecting a ToR and an AGG switch began to corrupt 1% of all
packets. This 1% corruption rate leads to a 4.5 times increase in
the 99th percentile latency for applications running under that ToR.

Although replacing the faulty cable is the ultimate solution, this
could take days depending on staff availability. Operators can mit-
igate the failure by disabling the faulty link before it is replaced.
However, identifying the faulty link is challenging due to the wide
use of cut-through switching [1] in DCNs. Because cut-through
switches start forwarding a frame before they can verify its check-
sum, switches can distribute corrupted packets across the network
before the corrupted packets are detected locally.
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Figure 7: Each point shows a link’s error rate. Darker dots in-
dicate higher error rates. We highlight two areas that have the
highest error rates (>1%) in 28 links. They are caused by two
corrupted links in DCNp, and it took the operators 3.5 hours
and 11 trials to deactivate the two offending links.

Figure 7 exemplifies how cut-through switching affects FCS er-
rors in DCNp. The operators began to observe many corrupted
packets around hour 6.5, when 28 ports’ error rates exceed 1%.
Over the next 3.5 hours, operators were busy deactivating the sus-
pected ports one-by-one to determine the faulty links. Finally around
hour 10, they found and deactivated the two offending ports and the
link error rates returned to normal afterward.

Mitigating FCS errors. Our solution is based on two obser-
vations. First, errors are conserved on cut-through switches that
have no faulty links, i.e., the number of incoming corrupted pack-
ets should match the number of outgoing corrupted packets. This
observation holds because packet losses are uncommon and broad-
cast/multicast packets account for only a tiny fraction of the total
traffic in DCNsp. Second, the error rate of each faulty link is small
and the number of simultaneous faculty links is small. Therefore,
it is unlikely that multiple faulty links contribute to the corruption
of one packet.

Based on these two observations, we design an FCS error prop-
agation model to localize faulty links. We use xl to denote link l’s
corruption rate, pl and el for the total number of packets and the
number of corrupted packets traversing l respectively, and mkl for
the fraction of packets coming from link k that also traverse link
l. Note that the number of corrupted packets coming from link l
is equal to the number of packets corrupted by l plus the number
of packets corrupted by other links that traverse l. By ignoring the

packets corrupted by multiple links, We have:

el =
∑

k �=l

pk xk mkl + pl xl (1)

We use the same technique as that of the Impact Estimator to com-
pute mkl. el, pk and pl can be obtained from SNMP counters.
Thus, the linear equations (1) provide the same number of con-
straints as the number of variables (xl’s). If we get a unique solu-
tion, the faulty links are those with non-zero xls. If the solutions
are not unique, we simply pick one with the smallest number of
non-zero xls based on the fact that the number of simultaneous
faulty links is usually small. Our evaluation shows that this ap-
proach works well in practice with very few false positives (§6.3).

4.3.2 Link-down and Uneven-split
Even when the network has the capacity to handle the offered

load, link overloading may still occur due to load imbalance or link
failure, leading to packet losses and high latencies in DCNs.

Link-down: When one link in a LAGx is down, the LAGx will
redistribute the traffic to the remaining links. Since this process
is transparent to higher layer protocols, traffic demands remain the
same over LAGx. Thus, LAGx can become overloaded. One
mitigation strategy is to deactivate the entire LAGx and have the
traffic re-routed via other LAGs to the nxthops (defined in §4.2).
Another strategy is to deactivate all the LAGs (including LAGx)
to the nxthops and re-route the traffic to other switches.

Uneven-split: Due to software or hardware bugs, a switch may
unevenly split traffic among the nxthops or the links in a LAG. In
DCNsp, we sometimes observe extreme traffic imbalance such as
when one link in a lag carries 5Gb/s more traffic than any of the
other links in the LAG. While the exact root causes might be un-
known, operators have found that restarting the LAG or switches on
either end rebalances the traffic (at least for some period of time).
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Figure 8: Each point indicates a link overloading incident in a
LAG caused by load imbalance in a production DCN. We high-
light two incidents. The first occurred around hour 10 was due
to uneven-split and was mitigated by restarting a switch. The
other occurred around hour 16 was due to link-down and was
mitigated by deactivating a LAG.

Figure 8 illustrates that both types of failures are common in
DCNp. We collect all the link utilizations every 10 minutes for
one day in DCNp. In this figure, each dot represents a LAG that
meets the following two conditions in a 10-minute interval: 1) at
least one link is overloaded (utilization > 90%); and 2) at least one
link is broken (link-down) or the difference between the maximum
and mean link utilizations exceeds 5% (uneven-split). We choose
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5% as the load imbalance threshold because Figure 5 not only sug-
gests that accurate impact estimation is feasible but also suggests
that large load variance (> 5%) within a LAG is a strong indica-
tion of the traffic imbalance problem. We highlight two incidents
in Figure 8: one uneven-split failure mitigated by a switch restart
around hour 10 and another link-down failure mitigated by a LAG
deactivation around hour 16.
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Figure 9: The first plan deactivates one LAG but still causes
downward traffic loss. The second plan deactivates two LAGs
without causing any traffic loss.

Mitigating a link-down or uneven-split requires some care due to
the complexity of the traffic matrix and topology, as exemplified in
Figure 9. Each pair of switches is connected by a LAG consisting of
two physical links with a combined capacity of two units. There are
six units of upward traffic from agga to the cores and twelve units
of downward traffic from cores to aggs. Suppose one link between
agga and corea is down, halving the corresponding LAG capacity,
resulting in 0.5 unit of upward traffic loss. One obvious mitigation
strategy (Plan 1) is to deactivate the entire LAG between agga and
corea. Although this prevents the upward traffic loss, it causes one
unit of downward traffic loss between corea and aggb. The correct
strategy is to deactivate the LAG between corea and aggb as well
(Plan 2). This will shift the downward traffic via corea to the other
cores and prevent traffic loss in both directions.

Mitigating link-down. NetPilot mitigates link-down failures by
estimating the impact of all possible deactivation actions and car-
rying out the ones with the least impact, i.e., minimizing maximum
link utilization. Because a link could be down for n days, NetPi-
lot needs to estimate an action’s impact during the downtime. To
do so, NetPilot uses the traffic matrices of the most recent n days
(§4.2) as an approximation. Such a computation is difficult for hu-
man operators to perform because the number of mitigation actions
and traffic matrices to consider in concert could be quite large.

Mitigating uneven-split. NetPilot mitigates uneven-split fail-
ures by restarting LAGs or switches. To limit the temporal interrup-
tions during restarts, NetPilot prioritizes the restart sequence based
on a restart’s estimated impact, while also assuming a component
cannot carry any traffic during restart. Since restarting one com-
ponent usually takes only a few minutes, NetPilot uses the traffic
matrix in the most recent time interval (e.g., 10 minutes) as an ap-
proximation of the traffic matrix during the restart. After exhaus-
tively calculating the impact for every possible restart, the planner
will first carry out the action with the least estimated impact. If this
action does not mitigate the failure, the planner will re-prioritize
the remaining options based on the latest traffic matrix.

4.3.3 Other Types of Failures
FCS error, link-down, and uneven-split are by no means all the

failures that NetPilot can mitigate. We carefully review all the crit-
ical failures in Table 1 and find 62% of them can be localized via
available data sources (such as SNMP counters and syslogs) and
can be mitigated via deactivation or restart. The only exceptions
are the failures due to configuration errors (38%). Although con-
figuration errors on a single switch can be mitigated by deactivat-
ing the misconfigured switch, identifying if a configuration error
involves one or multiple switches still requires human intervention.
We briefly discuss how to apply NetPilot to mitigate other failures:

Link layer loop: Due to switch software bugs, link layer proto-
cols sometimes never converge and cause severe broadcast storms.
This failure can be localized by identifying the switches which be-
come suddenly overloaded but experience little traffic demand in-
crease. The mitigation strategy is to deactivate one of the afflicted
ports or switches to restore a loop-free physical topology.

Unstable power: Failures due to unstable power are localized by
searching syslogs for unexpected switch-down events. They can be
mitigated by deactivating the switches impacted by unstable power.

Failures due to unknown reasons: Such failures account for
23% of all critical failures. Even if their root causes are unknown,
they can be easily localized to a single switch and mitigated by a
restart. For example, a switch that stops forwarding can be iden-
tified once the difference between its received and delivered bytes
exceeds a threshold. It is also straightforward to identify a switch
that loses its configuration or suffers from high CPU utilization.

5. NetPilot IMPLEMENTATION
NetPilot’s primary implementation challenge is reliability. As

a failure mitigation system, NetPilot itself must be robust to fail-
ures. We build NetPilot as a pipeline of five independent processes,
as shown in Figure 10. These processes include a failure detector
(§ 5.1), failure aggregator (§ 5.2), planner (§ 5.3), impact estimator
(§ 5.4), and plan executor (§ 5.5). Each process records its relevant
state to a replicated database so that the state can survive server
crashes. Operators can also use the recorded state to determine ex
post facto why NetPilot took specific actions.
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Figure 10: NetPilot implementation overview.

5.1 Failure Detector
The failure detector uses three data sources to detect failures:

SNMP traps [22], switch and port counters, and syslogs [20]. The
detector then applies failure-specific criteria to evaluate whether a
failure has occurred. For example, the failure detector looks at the
bytes-in and dropped-packets counters of a port to determine if a
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link is overloaded. In our implementation, values from above data
sources are processed every five minutes,

When the failure detector detects a failure, it updates the database
with the following information: the type of detected failure, data
sources used to detect the failure, and the components that exhibit
abnormal behaviors. Note that these components are not necessar-
ily the faulty components, because the failure effects may propa-
gate to healthy components, e.g., a broken link may cause overload
and hence packet losses at other links.

5.2 Failure Aggregator
Because the failure detector runs continuously and NetPilot takes

a trial-and-error approach, we expect that the same failure will be
detected multiple times before it is mitigated. NetPilot therefore
needs a mechanism to decide whether a detected failure instance is
a new or ongoing failure.

The failure aggregator compares a newly reported failure instance
against all the ongoing failures recorded in the database. If it de-
termines that the newly reported instance has not been mitigated
before – determined by the failure type and components involved
– it updates the database and marks the failure as ready for mitiga-
tion. If it has seen the failure and the planner is taking a mitigation
action, it marks the instance as requiring no further action. If it has
seen the failure and the planner has taken a mitigation action for the
failure, it flags the failure as unsuccessfully mitigated. The planner
may then try the next mitigation action if there is one available.

The failure aggregator does not remove the failure instance cre-
ated by the failure detector, but simply marks that it has been pro-
cessed so that an operator can examine the initial failure detection
as well as the choices made by the failure aggregator later on.

5.3 Planner
The planner takes three steps to choose a mitigation action. First,

it employs failure-specific modules to localize a failure to a set of
suspected components. Second, it generates the appropriate miti-
gation actions against all suspected components. Third, it uses the
impact estimator to estimate the impact of these actions, ranks them
based on their impact or success likelihood, and then executes the
best one. At the end of each step, the planner updates the database
with its computation results for post-analysis.

5.4 Impact Estimator
The impact estimator implements the algorithm presented in §4.2.

It uses the run-time DCN topology and historical TMs to compute
online_server_ratio, max_link_util, and total_lost_pkt. We
extract the run-time topology from device configurations and run-
ning state (i.e., up/down). It includes both the physical and log-
ical device connections such as a LAG that comprises multiple
physical links and a virtual switch that comprises multiple phys-
ical switches. The traffic matrices are continuously collected via
socket event logs on each server and are aggregated to ToR-to-ToR
traffic matrices at a 10-minute granularity.

5.5 Plan Executor
Once the planner chooses a mitigation action, the plan executor

is engaged to take the action. The executor translates the action
into a series of commands recognized by switches. As the com-
mands are vendor-specific, we create a vendor-specific configlet file
that includes the commands for each mitigation action. A configlet
file parameterizes configuration arguments such as port number, so
it can be reused to take the same action on different switches or
ports. We also implement a library that allows the executor to send
commands to switches via both in-band and out-of-band channels.

After an action is taken, the executor updates the database to record
the time when the action was taken and whether the action was suc-
cessfully applied to the switch.

5.6 Interactions with Operators
NetPilot is fully capable of mitigating failures without human

intervention. Nonetheless, NetPilot is explicitly designed to record
the inputs and outputs of each mitigation step in a manner that is
readily accessible to operators. Operators can later examine the de-
cisions at each step. This design helps them debug and understand
counterintuitive mitigation actions. Moreover, it helps reveal fail-
ures that are repeatedly mitigated for only a short period of time.

6. EVALUATION
In this section, we show that NetPilot can quickly and automati-

cally mitigate several types of critical failures in DCNs. After pre-
senting our experimental methodology, we first conduct three end-
to-end experiments to highlight that, compared with the approach
used by today’s operators in DCNsp, NetPilot can mitigate failures
faster and with less disruption. Then we conduct more detailed ex-
periments to illustrate the three reasons why NetPilot outperforms
the status quo: effective failure localization, accurate impact esti-
mation and action prioritization that minimizes disruption.

6.1 Experimental Methodology
We conduct four types of experiments to study various key as-

pects of NetPilot: 1) failure-replay, for failures with operation logs,
we feed the device counters and traffic matrices when failures oc-
curred in DCNp into NetPilot and compare NetPilot’s actions with
the actions that were actually taken by the operators; 2) heuristic-
replay, for failures without operation logs, we feed the device coun-
ters and traffic matrices when failures occurred in DCNp into Net-
Pilot and an operator’s approach and compare their actions; 3)
testbed, we inject traffic and failures into a testbed and compare
the actions taken by NetPilot with those taken by operators; 4) sim-
ulation, we use large scale simulations to compare NetPilot and the
operator’s approach in the face of multiple simultaneous failures.

6.1.1 Operator’s Approach
For failures with operation logs created by operators, we can di-

rectly compare NetPilot’s actions with the actual operator’s actions.
For failures without operation logs, we build a model of how opera-
tors would mitigate the failures based on discussions with DCNsp’s
operators and our observations. We first carefully review the fail-
ures with operation logs and enumerate the typical action sequences
for the types of failures discussed in §4.3. We then have operators
explain the reasoning behind each sequence of actions. We sum-
marize the operator’s heuristics for mitigating each type of failure
and estimating impact below.

Estimating impact: When deactivating a link or switch, all of
its traffic will fail over evenly among its redundant components.
Components not in the same redundancy group have no change in
traffic. Because manual computation is slow and error-prone, op-
erators cannot afford to compute the traffic changes that are more
than one hop away from the deactivated component.

Mitigating FCS errors: Identify the switches having signifi-
cantly more corrupted packets of outgoing than incoming, and then
deactivate their ports in the descending order of error rate.

Mitigating uneven-split: Try restarting LAGs first and then
switches, because operators believe restarting a switch is likely to
have greater impact.
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Mitigating link-down: Compute the impact of each possible ac-
tion under the latest traffic loads using the impact estimation heuris-
tic above, and then execute the action with the least impact.

6.1.2 Experimental Setup
Our data for the failure-replay and heuristic-replay experiments

come from DCNsp, several large production DCNs using the scale-
out topology for which operators log critical failures with details
and mitigation actions. We collected six months of device counters
via SNMP at 5-minute intervals. We also logged the socket events
on all servers during the same six months and aggregated the logs
into ToR-to-ToR traffic matrices at a 10-minute granularity.

��������	
�


��
��


��
��


��
�� 
��

��

��

���


��

��������	
�

��	�
�


��
��

��
�

�


��
�


��
�

��	�
�


��
��


��
�� 
��

��

��
�

��
	
� ��

�


Figure 11: The testbed topology.

As shown in Figure 11, our testbed is a mini version of DCNp’s
scale-out topology with all the important characteristics preserved.
It has a hierarchical structure with two containers. The connec-
tions between containers and COREs form a full mesh running
BGP ECMP for load balancing. We use multi-chassis LAG to vir-
tualize the AGGd switch pairs and VRRP to virtualize the AGGu

switch pairs in the same container. Each connection above AGGd

is a LAG with four 10Gb/s physical links and each connection be-
tween a ToR and an AGGd is one 10Gb/s physical link. Unlike the
topology in Figure 1, the testbed topology has 1) two AGG levels:
AGGu and AGGd, and 2) one traffic generator instead of multiple
servers under each ToR. The traffic generators can either inject ar-
bitrary traffic or replay real server traffic traces captured in DCNp.

Our simulator for the simulation experiments use the same topol-
ogy and traffic matrix data as the failure-replay experiments. How-
ever, we inject hypothetical failures and compare the actions taken
by NetPilot and the operator’s approach.

6.2 End-to-End Failure Mitigation
In this section, we compare the state-of-the-art manual failure

mitigation by operators with NetPilot for three failure incidents in
DCNsp. We are limited by the number of available operation logs
to conduct a large-scale comparison. Nevertheless, from the fail-
ure incidents we examined, we expect that NetPilot’s improvement
shown in these examples is highly representative.

FCS error. Figure 7 shows the timeline of operators mitigating
an FCS error incident. The operators iteratively tried deactivating
links that had a significant error rate. Without an Impact Estima-
tor, they performed manual calculations to ensure the remaining
links would not become overloaded when they deactivated a link.
It took a team of experienced operators nearly 3.5 hours and 10
unsuccessful trials to deactivate the two faulty links. In contrast, a
failure-replay experiment shows that NetPilot can pinpoint and de-
activate the two troublesome links in less than 15 minutes without
any human intervention.

Overload due to link-down. Figure 8 depicts an incident of
overloaded link caused by link-down. This incident persisted for
almost 6 hours before the operators mitigated it by deactivating a

LAG. The mitigation action was repeatedly delayed because the
operator’s manual impact estimation was inaccurate and informed
them that deactivating the LAG would be worse than taking no ac-
tion at all. After six hours of continually re-running their impact
estimation, the operators deactivated the LAG around hour 16.

In contrast, a failure-replay experiment shows that NetPilot finds
an alternative action that would have mitigated the incident soon af-
ter the failure was detected, which is almost 5.5 hours ahead of the
operator’s action. This is possible only because NetPilot’s Impact
Estimator is faster and more accurate and thus can exhaustively ex-
plore all options. This improved accuracy allows NetPilot to take
actions that operators would have erroneously excluded.

Overload due to uneven-split. A known bug in the software
that runs on the AGGus causes them to occasionally stop generat-
ing routing updates. This in turn causes the COREs to cease for-
warding traffic to the afflicted AGGus even though the links are up.
Because it is difficult to consistently reproduce the exact same sce-
nario in a testbed experiment, we emulate it by misconfiguring an
AGGu’s ACL to block the TCP connections to the COREs. Under
this setting, COREs’ routing table entries with the afflicted AGGu

as the next hop will expire and most of the traffic will be sent to the
other AGGu in the same afflicted container.

NetPilot detects this problem as an uneven-split incident and at-
tempts to mitigate it by restarting switches. Because we only install
the ACL rules in the running configuration and not the startup con-
figuration, the problem will be mitigated upon switch restart.
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Figure 12: NetPilot mitigates link overloading due to uneven-
split after restarting three switches.

Figure 12 shows the end-to-end mitigation process. We inject
the uneven-split failure at minute 5 of the trace. Because switch
counters are pushed to NetPilot once every 5 minutes, NetPilot re-
sponds at a granularity of 5 minutes. The first problem is identified
at minute 15 because the failure aggregator waits for two consec-
utive counter values before declaring a failure. Approximately 5
seconds later, the planner finishes generating a list of possible ac-
tions, estimating the impact of each action via the Impact Estima-
tor, and executing the one with the least impact. When the next
set of counters gets pushed to NetPilot, the planner notices that
the problem has not been mitigated and starts the next round of
planning, excluding the actions that have already been taken. Five
minutes later, the planner again notices the failure persists. As a
result, it starts a third round of planning and mitigates the failure
after restarting the third switch. Even though the first two actions
are incorrect, NetPilot can mitigate the failure in approximately 20
minutes, which is still much faster than engaging the operators and
manually restarting the suspected switches.

6.3 Fine-grained Failure Localization
In this section, we show that NetPilot can expedite the mitiga-

tion process using its fine-grained failure localization. We com-
pare NetPilot’s FCS model described in §4.3.1 against three al-
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ternative approaches: 1) Greedy deactivation, in which links are
deactivated in the order of decreasing error rate; 2) Operator’s ap-
proach, which is described in §6.1.1; and 3) Exhaustive search, in
which we try deactivating every possible combination of the links
on the switches that violate the error conservation constraint, from
one up to three links in each combination, in the order of decreas-
ing combined error rate. If deactivating one combination fails to
mitigate the failure, we roll back the ineffective link deactivations
and try deactivating the next combination.
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Figure 13: This figure compares the number of trials needed by
different approaches to localize two simultaneously corrupted
links in our testbed.

We design the first set of testbed experiments to show the number
of attempts needed by each of the four algorithms to mitigate FCS
errors. In each of the six experiments, we pick two links in the
testbed and use a commercial FCS error injector to corrupt 1% of
all packets that traverse the two links. Two simultaneous faulty
links in a large-scale DCN is common, as there are tens or hundreds
of thousands of links. We repeat each experiment ten times using
different traffic matrices. The histogram in Figure 13 shows the
median number of trials for each experiment, while the error bars
mark the maximum and minimum number of trials.

In almost all cases, NetPilot can accurately locate the two cor-
rupted links in one trial. In two out of the sixty experiments, Net-
Pilot identifies three links, the two malfunctioning links and one
false positive link. This is far more effective than the operator’s
approach that will cumulatively deactivate two to five links before
disabling the corrupted links. On the other hand, because the ex-
haustive search will roll back the ineffective link deactivations, it
will eventually mitigate the FCS errors without having any healthy
link deactivated. However, the disruption caused to the network by
the tens of trials is significant.
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Figure 14: This figure shows the CDFs of the number of trials
needed by different approaches to localize three simultaneously
corrupted links. NetPilot significantly outperforms the others.

In the testbed experiments, we can only corrupt two links simul-
taneously due to the limitations of the FCS error injector. We use
simulation to simulate more than two corrupted links in a much
larger network, i.e., DCNp. We perform fifty simulations. In each
simulation we randomly pick three links and set their corruption
rates to be uniformly distributed between 1% and 5% (typically ob-
served in DCNp). NetPilot’s FCS model can uniquely localize the

three corrupted links in 96% of the cases. For the remaining 4%,
NetPilot localizes the three corrupted links plus one false positive
link. Figure 14 shows that compared to NetPilot, other approaches
require far more trials to mitigate just three simultaneously cor-
rupted links. We omit the results from exhaustive search because
its search space is too large and the simulations cannot finish in a
reasonable amount of time.

To study the localization accuracy of NetPilot’s FCS model in the
real world, we replay the traffic matrices and switch counters from
78 DCNsp’s FCS error instances on NetPilot. NetPilot can generate
unique solutions and accurately localize the corrupted links in over
90% of the instances. In the remaining 10% of the instances, the
solutions are not unique because the failure-time traffic matrices do
not provide sufficient constraints for the linear equations, e.g., we
cannot tell if a link is corrupted when there is no traffic on it. For
these cases, we pick the solution with the smallest number of non-
zero corruption rates, as discussed in Section 4.3.1. We find this
approach works well with the maximum one-link false positives.

6.4 Accurate Impact Estimation
In §4.2, we showed that NetPilot can accurately estimate link

utilizations when no mitigation action is taken. We now conduct
testbed experiments to show that NetPilot can accurately predict
link utilizations as well as packet losses after device deactivations.
We compare NetPilot with the operator’s approach under five types
of component deactivation: a randomly selected physical link, a
LAG between an AGGd and an AGGu, a LAG between an AGGu

and a CORE switch, an AGGd switch, and an AGGu switch. For
each deactivation type, we repeat the experiments under 144 dif-
ferent traffic matrices generated as follows. First, we collect the
ToR-to-ToR traffic matrices from DCNp at a 10-minute granularity
for one day. Then we use a modulo-16 hash function (16 is the
number of ToRs in the testbed) to map the ToRs in DCNp to the
ToRs in the testbed. Finally, we map the ToR-to-ToR traffic matri-
ces from DCNp to the testbed and scale down the traffic volume by
a scaling factor. We use a scaling factor that leads to no packet loss
in the testbed to study how well NetPilot estimates link utilizations.
We use a different scaling factor that leads to packet losses to study
how well NetPilot estimates packet losses.
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Figure 15: This figure compares the median and maximum
relative errors of NetPilot’s estimations of the maximum link
utilization after deactivating various network components with
those of the operator’s manual approach. NetPilot has low es-
timation errors.

Figure 15 compares the relative errors of NetPilot’s link utiliza-
tion prediction with that of the operator’s approach when there is
no loss in the testbed. The relative error is defined as the difference
between a predicted value and the value read from a switch counter
normalized by a link’s capacity: prediction−switch_counter

link_capacity .
NetPilot’ median and maximum relative errors are less than 2.5%

and 5% respectively. Although the median relative errors of the
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operator’s approach are only slightly higher, its maximum relative
errors can often exceed 20%. The main reason is that the operator’s
approach cannot predict the significant traffic load increase on links
that are multiple hops away from a deactivated component.
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Figure 16: This figure compares the median and maximum
relative errors of NetPilot’s packet loss estimations with those
of the operator’s approach when deactivating various network
components. Again NetPilot achieves low estimation errors.

Figure 16 is similar to Figure 15 except that we scale the traffic
matrices to lead to packet losses in the network. We also replace
the case of deactivating a single physical link with the case of de-
activating both an AGGd and AGGu, since the former rarely leads
to packet losses. Again NetPilot’s loss prediction has median and
maximum relative errors below 5% and 8% respectively. Yet, the
maximum relative error of the operator’s approach is always more
than double NetPilot’s.

6.5 Effective Action Planning
When mitigating a failure, NetPilot must carefully choose the

order of actions to minimize network disruption. In this section,
we show that correctly ordering mitigation actions is challenging
and often contradicts the operator’s intuition.

We first compare NetPilot with the operator’s approach when
mitigating uneven-split failures. We collect all the link utilizations
at a 10-minute granularity from DCNp for one year and identify
151 uneven-split incidents by applying two criteria: 1) the differ-
ence between the maximum and mean link utilizations in the same
LAG exceeds 5% (the same threshold used in §4.3.2); 2) the dif-
ference above lasts at least thirty minutes. Because some of these
incidents did not cause link overload and thus were not investi-
gated by operators, we do not know which component was respon-
sible. Therefore, we randomly assign one ”responsible” component
to each incident and conduct heuristic-replay experiments.
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Figure 17: This figure compares the CDFs of the maximum link
utilizations when NetPilot and operators restart components to
mitigate the uneven-split failures. NetPilot causes lower maxi-
mum link utilizations during the failure mitigation period.

In these experiments, we emulate the operator’s approach by first
restarting LAGs and then switches (§6.1.1), whereas NetPilot ex-
haustively compares all possible actions under the latest TM and
picks the one with the least impact (§4.3.2).

We use the CDFs of the maximum link utilizations under both
approaches during the failure mitigation periods to compare NetPi-
lot with the operator’s approach, as shown in Figure 17. Because

we randomly assign faulty components, it takes NetPilot and the
operator’s approach on average the same number of trials to suc-
cessfully mitigate an uneven-split failure. Therefore, the failure
mitigation periods under both approaches are roughly the same.
The approach with lower maximum link utilizations is a better ap-
proach. For ease of presentation, we represent packet losses as link
utilizations greater than 100%. As can be seen, for 60% of the in-
cidents, NetPilot is far less disruptive than the operator’s approach.
NetPilot never overloads links while the operator’s approach would
lead to traffic losses in 20% of the incidents.

Unlike uneven-split failures, link-down failures are mitigated by
deactivations in which the deactivated components may remain down
for days. The operator’s approach uses the latest TM right before
the actions to estimate the impact of deactivations, and to choose
the actions with the least negative impact. NetPilot has two main
advantages over this approach: 1) it can use multiple TMs that bet-
ter approximate future TMs in the deactivation periods to estimate
impact; and 2) its impact estimation is more accurate (§ 6.4).

Although we have shown NetPilot’s impact estimation is more
accurate in the previous subsection, we further use a failure-replay
experiment to show that more accurate impact estimation can lead
to less disruptive mitigation actions. We replay 97 link-down in-
cidents observed in DCNsp during one year. For each incident,
NetPilot uses the same TM as the operator does to estimate the
impact of a deactivation action. We then compare the resulting
maximum link utilizations right after NetPilot’s deactivation ac-
tions with those from the real failure traces.
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Figure 18: This figure shows the CDFs of the maximum link
utilizations right after each method takes its deactivation action
to mitigate link-down failures in DCNp. NetPilot outperforms
other methods because its impact estimation is more accurate.

Figure 18 shows the comparison results. As can be seen, NetPi-
lot’s actions are noticeably better than the actual actions taken by
the operators or taking no action at all. These results suggest that
NetPilot’s higher estimation accuracy can lead to less disruptive
mitigation actions.
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Figure 19: This figure compares the accumulated packet losses
in a 24-hour period right after a deactivation action is taken in
our testbed. When using multiple historical TMs to approxi-
mate future TMs, NetPilot leads to the fewest packet losses.

Next, we run testbed experiments to show that using multiple
TMs to approximate future TMs during a device’s deactivation pe-
riod can also lead to less disruptive mitigation actions. In these
experiments, we inject link-down failures in the testbed by shut-
ting down half of the physical links in a LAG either between an
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AGGd and an AGGu or between an AGGu and a CORE. We then
use the 144 TMs from the preceding 24 hours, rather than just the
TM right before a deactivation action, to plan mitigation actions.
We then measure the packet losses during the following 24 hours
using the TMs in those hours.

Figure 19 presents the packet losses under each method. As can
be seen, NetPilot has the fewest packet losses when using multiple
historical TMs to approximate future TMs.

7. RELATED WORK
The design and implementation of NetPilot parallel the ideas

from various fields. We group the related work into three cate-
gories: failure diagnosis, failure recovery, and what-if analysis.

Failure diagnosis: Automated failure diagnosis is a well-studied
topic. Some systems identify failures in IP networks with active
probes [6]. Others take measurement data from both end hosts
and the network and build probabilistic models to localize the most
likely components that are responsible for the observed failure data
[15, 19]. Recent work has focused on developing systems that
can pinpoint any failure that decreases application performance,
whether it be hardware-related or software-related [5, 16]. There is
also a large body of work on distributed system diagnosis [3,7,23].
NetPilot distinguishes itself by not attempting to find the exact root
cause of a failure.

Failure recovery: The idea of automated failure recovery in
DCs is not new. Isard [14] proposed an automated server man-
agement system called Autopilot based on the concept of recovery
oriented computing [9]. When Autopilot detects a server is misbe-
having, it takes one of three recovery actions: restart, reimage, or
RMA (return merchandise authorization).

R3 [31] is a recovery service that can quickly mitigate link fail-
ures by pre-computing forwarding table updates for the loss of
each link. Outside the networking domain, Total Recall [18] is a
distributed storage system that adapts the amount of redundancy
to compensate for host availability changes. Saxons is a peer-to-
peer overlay service that can heal itself in the event of a parti-
tion [26]. NetPilot has different requirements from the systems
above: failures that span multiple devices and constantly changing
traffic loads make pre-computation prohibitively expensive. Also,
NetPilot must minimize the adverse impact caused by mitigation.

What-if analysis: In order to make an informed decision, it is
crucial for NetPilot to reason about the impact of possible mitiga-
tion actions – in essence a what-if analysis on the network. Re-
cent work has explored the subject of what-if analysis for content
distribution networks, with Tariq et al. [28] proposing a statistical
approach and Wang et al. [30] proposing an empirical approach.
Unlike the work above, NetPilot uses a what-if analysis technique
that takes advantage of the unique properties of DCNs.

8. CONCLUSION
NetPilot is a system that automatically mitigates DCN failures.

It is a departure from the status quo that relies heavily on human
intervention. We believe that our work is critical to managing mod-
ern DCNs given the ballooning number of devices in these DCNs
and the trend towards commodity hardware. NetPilot works by
identifying a candidate set of afflicted components that are likely to
cause a problem and iteratively taking mitigation actions targeting
each one until the problem is alleviated. A key insight that makes
this approach viable is the redundancy presented in modern DCN
topologies. This redundancy reduces the potential for any single
deactivated or rebooted component to disrupt a network. Our ex-
periments show that NetPilot can successfully detect and mitigate

several common types of failures both in a testbed and in a real
production DCN.
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