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ABSTRACT
Network measurement plays an important role for many
network functions such as detecting network anomalies and
identifying big �ows. However, most existing measurement
solutions fail to achieve high performance in software as
they often incorporate heavy computations and a large num-
ber of random memory accesses. We present Agg-Evict, a
generic framework for accelerating network measurement
in software. Agg-Evict aggregates the incoming packets on
the same �ows and sends them as a batch, reducing the num-
ber of computations and random memory accesses in the
subsequent measurement solutions. We perform extensive
experiments on top of DPDK with 10G NIC and observe that
almost all the tested measurement solutions under Agg-Evict
can achieve 14.88 Mpps throughput and see up to 5.7⇥ lower
average processing latency per packet.

CCS CONCEPTS
• Networks→ Network measurement;

KEYWORDS
Software packet processing; Network measurement

1 INTRODUCTION
Software packet processing becomes increasingly important
to serve various network functions such as load balancing,
�rewalls, and anomaly detection [2, 20, 30]. Many network
functions involve collecting various tra�c information about
packet numbers or �ow numbers such as heavy hitter detec-
tion [15], DDoS detection [34], entropy estimation [22]. We
call this kind of measurement count-based measurement and
focus on improving their performance in this paper.

To support count-based measurement, previous work has
developed algorithms and data structures that work for soft-
ware [11, 19, 26]. However, most solutions are designed for
speci�c functions. For example, Count-Min sketch[11] is
used for �ow size counting; Space-Saving [26] is used for
heavy hitter detection; and FM sketch (FM) [16] is used for

∗Corresponding author: Tong Yang (yangtongemail@gmail.com).

estimating unique �ow counts. SketchVisor [19] provides
generic support for various measurement functions. But un-
der high tra�c load, SketchVisor needs to activate a fast path
with approximate computation that a�ects measurement ac-
curacy.

Many solutions involve heavy computations or many ran-
dom memory accesses. For example, both the Count-Min
sketch [11] for �ow size counting and Reversible sketch
(RevSketch) [33] for heavy change detection need three or
more hash computations per packet; Space-Saving [26] for
tracking top �ows and UnivMon [25] for a variety of func-
tions need to update min-heap(s) for each packet. The lit-
erature [19] shows that RevSketch spends 95% CPU cycles
on hash computations; UnivMon spends 47% CPU cycles on
heap maintenance. Moreover, many solutions incur a large
number of random memory accesses because they maintain
multiple nonadjacent counters for each �ow or do heapifying
operation for each incoming packet. These random memory
accesses increase the probability of cache misses and degrade
the packet processing performance.
The key question is how to speed up measurement perfor-

mance in software for a variety of count-based measurement
solutions.
We observe that most count-based measurement data

structures satisfy the commutable and aggregatable prop-
erties: changing the ordering of incoming packets doest
not a�ect the measurement accuracy; and multiple updates
on the same �ow can aggregate into a single update. With
these properties, we can achieve sublinear processing time
per packet: aggregately updating an entry n times in a batch
is much faster than updating the entry separately n times.
Take the Count-Min Sketch [11] as an example. It is faster
to hash and process the n updates once than hashing and
processing one update n times. This not only results in sav-
ing computation cycles, it reduces the number of random
memory accesses, too. Similarly, for Space-Saving, which
uses a min-heap and a hash table to track top �ows, an ag-
gregated update means updating the min-heap only once
with one tracked �ow size in the heap incremented a larger
value. The sublinear processing time from aggregated up-
dates is generically true for a variety of measurement data
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Figure 1: Agg-Evict framework.

structures such as FlowRadar [24], UnivMon [25] (counters
arrays with heaps for a lot of functions), RevSketch [33],
TwoLevel [41] (combination of RevSketch and bitmaps for
detecting DDoS/Superspreader), MRAC [21] (a counter array
for measuring �ow size distribution), FM [16], and Linear
Counting (LC) [35] (a counter array for measuring unique
�ow number).
In fact, today, software switches already read a batch of

packets from the NIC and send them to the application all at
once. Such batch processing allows memory prefetching and
increases cache locality [28]. However, it is hard to identify
the right batch size. We cannot use a large batch size (i.e.,
1024 packets or more). This is because the large number of
packets cannot �t in cache, which leads to bad cache locality
and poor performance. On the other hand, with a small batch
size, there is only a small number of packets on the same
�ows per batch (see § 2), missing the opportunities to fully
use the bene�ts of aggregated updates.
To address this dilemma, rather than relying on the

chances that packets in the same batch may access the same
entry, we propose a framework called Agg-Evict that proac-
tively aggregates packets in a data structure called an ag-
gregator so that we can process the aggregated �ows more
e�ciently. Figure 1 shows the two phases of our design: We
aggregate the packets according to their packet headers and
temporarily store the �ow IDs1 with their aggregated fre-
quencies in an aggregator. When the aggregator is full, we
evict some of the stored �ow IDs to the subsequent measure-
ment solutions. Each evicted �ow ID often has frequencies
larger than one, but only incurs one insertion in the measure-
ment solutions. This fully utilizes the bene�ts of aggregated
updates, cutting down a lot of computations and random
memory accesses. Besides, our aggregator is small (around
256KB) and can easily �t in the L2 or L3 cache. During mea-
surement, most operations happen in this small aggregator
and thus achieving high cache locality. In addition, we use
SIMD instructions [4] in modern CPU to e�ciently imple-
ment the operations in the aggregator and carefully design

1The Flow ID, uniquely identifying a �ow, can be the source IP, destination
IP, 5-tuple, and so on extracted from packet headers.

the storage layout of �ow IDs in the aggregator to guarantee
that each packet only needs two or three cache line2 accesses.

Our Agg-Evict framework is applicable to a variety of mea-
surement data structures that satisfy the commutable and
aggregatable properties and can improve their performance
signi�cantly. We implement nine existing measurement solu-
tions in software, and perform extensive experiments on top
of DPDK [3] using CAIDA traces [5]. We observe that almost
all the tested measurement solutions under our framework
can achieve 14.88 Mpps throughput and see up to 5.7⇥ lower
average processing latency per packet. We have released the
source code, datasets, and detailed descriptions of how to
replicate our results at GitHub [1].

2 DILEMMA IN BATCH PROCESSING
Although batch processing improve the software perfor-
mance (e.g., by allowing memory prefetching and increasing
cache locality [28]), there is a dilemma of how to identify the
right batch size. On the one hand, we cannot use a large batch
size, because in practice the throughput of batching process-
ing will degrade as the batch size increases. To demonstrate
such trend of throughput degrading, we use FlowRadar to
process real tra�c with di�erent batch sizes (i.e., we send
packets to FlowRadar as a batch, see §4.1). Figure 2(a) shows
that the increasing batch size leads to throughput degrading
regardless of the types of �ow IDs. Speci�cally, using source
IP and source-destination IP as the �ow ID, the throughput
of FlowRadar decreases to 87.4% and 83.8%, seperately, when
the batch size increases from 32 to 8192 packets. This is be-
cause the large memory size of total packets in one batch
cannot �t in cache very well, leading to slightly bad cache
locality. We only observe slight throughput degrading when
using 5-tuple; the reason might be that processing and stor-
ing 5-tuple in FlowRadar need more hash computations and
cost more memory (i.e., cache does not work well), making
the cache locality less dominant.
On the other hand, we should not use a small batch size;

otherwise, we cannot fully use the bene�ts of aggregated
updates. The bene�ts of aggregated updates (i.e., sublinear
processing time) can be indicated by the percentage of unique
�ows per batch. Figure 2(b) shows a larger batch size to have
a lower unique �ow percentage. Speci�cally, using source IP
as the �ow ID, the bene�ts increase to 2.23 times when the
batch size increases from 32 to 8192 packets. The reason is
that in a large batch, there are more chances to see the same
�ows.
In the next section, we will show how Agg-Evict frame-

work solves this dilemma, making measurement solutions
operate at the ideal points of the two �gures.

2Cache line is the minimum memory unit that one memory operation can
read/write.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 3, July 2018



 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 32  64  128  256  512  1024 2048 4096 8192

Th
ro

ug
hp

ut
 (

M
pp

s)

Batch size (#packet)

sip
sip+dip
5-tuple

(a) Throughput (FlowRadar).

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 32  64  128  256  512  1024 2048 4096 8192

U
ni

qu
e 
flo

w
 p

er
ce

nt
ag

e

Batch size (#packet)

sip
sip+dip
5-tuple

(b) Avg. unique �ow percentage per batch.

Figure 2: Impact of batch size (on CAIDA [5] traces).
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Figure 3: Demonstration of Agg-Evict design.

3 THE AGG-EVICT FRAMEWORK
We �rst discuss the count-basedmeasurement that Agg-Evict
framework focuses on in §3.1. Next, we discuss the com-
mutable and aggregatable properties that our design relies
on to improve the performance of count-based measurement
solutions in §3.2. We then describe our Agg-Evict design in
§3.3, and discuss two important operations of our design in
detail in §3.4 and 3.5, respectively.

3.1 Count-Based Measurement
Agg-Evict framework focuses on count-based measurement,
which refers to the measurements that collect various traf-
�c information about packet numbers or �ow numbers. We
summarize count-based measurement tasks and typical solu-
tions into Table 1. For many more sketches, please refer to
the literature [10, 12–14, 18, 36–40, 42]

Table 1: Count-based measurement.

Tasks Typical solutions
Flow size counting Count-Min [11], FlowRadar [24]

Heavy hitter detection Count-Min [11], FlowRadar [24],
Space-Saving [26], UnivMon [25]

Heavy change detection RevSketch [32], FlowRadar [24],
UnivMon [25]

Superspreader/DDoS detection TwoLevel [41], UnivMon [25]
Flow size distribution MRAC [21], FlowRadar [24]
Cardinality estimation FM [16], LC [35]
Entropy estimation FlowRadar [24], UnivMon [25]

3.2 Commutable and Aggregatable Properties
Most count-based measurement solutions are commutable
and aggregatable in terms of accuracy: commutable means
processing item a before b is equal to processing b before a;
aggregatablemeans processing the same item a n times sepa-
rately can be aggregated into processing a n times in a batch
(aggregated update). This is because we maintain counters
or bitmaps for �ow number or packet number, and suchmain-
tenance (i.e., addition and setting bits on) is commutable and
aggregatable. LetT (n) denote the time of processing an item
with frequency of n. Aggregated updates can bring potential
bene�ts of sublinear processing time: T (n) ⌧ n ⇥T (1) when
n � 1. That is, aggregately updating an entry n times in a
batch is much faster than updating the entry separately n
times.
We now show why most measurement solutions can get

sublinear processing time from aggregated updates. There
are mainly two classes of measurement solutions: hash-based
and heap-based [7]3. Hash-based solutions include: Count-
Min [11], FlowRadar [24], Reversible Sketch (RevSketch)
[33], TwoLevel [41] (combination of RevSketch and bitmaps
for detecting DDoS/Superspreader), MRAC [21] (a counter
array for measuring �ow size distribution), FM Sketch (FM)
[16], and Linear Counting (LC) [35] (a counter array for
measuring unique �ow number). Take the Count-Min sketch
as an example. Here, we use Count-Min to count the packet
number of each unique �ow. Normally, for each incoming
item, we �rst compute d hash functions and then increment
the d hashed counters by one. Aggregating n updates of an
item means computing d hash and then incrementing the
d hashed counters by n. Compared with n normal updates,
aggregated update saves n � 1 hash computations and n � 1
memory accesses, thus getting sublinear processing time.

3The sketch-based and sampling-based solutions in the literature [7] can
be considered both as hash-based, since both of their major operations are
doing hash and then updating entry (or entries).
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Heap-based solutions include: Space-Saving [26] and Uni-
vMon [25] (counters arrays with heaps for a lot of functions).
Space-Saving [26] needs to compute a hash function and up-
date a min-heap for each incoming item. Processing an item
with frequency of n means computing one hash, and then
doing a deeper heapifying operation than normal update.
Compared with n normal updates, aggregated update saves
n � 1 hash computations, and transforms n heapifying oper-
ations into one deeper heapifying operation. The cost of this
deeper heapifying operation is constrained by the heap depth
h, which is a �xed value in Space-Saving. This �xed value is
a relatively small (often around 10), since it is logarithmic to
the number of tracked top �ows. That is, this deeper heapi-
fying operation will not exceed h steps, while the normal
heapifying operation needs at least one step. Thus, when
n > h, the cost of this deeper heapifying operation will be
lower than the cost of n normal heapifying operations, lead-
ing to sublinear processing time. If we additionally consider
the saved n � 1 hash computations, n even does not need to
be larger than h to make T (n) ⌧ n ⇥ T (1) hold. UnivMon
[25] uses a universal sketch to simultaneously collect dif-
ferent types of tra�c statistics and relies on multiple heaps
to maintain top �ows. Similar to Space-Saving, it also gets
sublinear processing time from aggregated updates.

3.3 Overall Design
In order to do aggregated updates to save computations and
memory accesses, we design an Agg-Evict framework that
works for all measurement solutions with the commutable
and aggregatable properties. This framework separates the
measurement into two phases: aggregation and eviction. In
the aggregation phase, we proactively aggregate �ow IDs
across all the incoming packets. We store the unique �ow IDs
and their aggregated frequencies in a data structure called
aggregator using a few and consecutive memory accesses
(high cache locality). In the eviction phase, when the ag-
gregator is full, we evict some �ow IDs stored in it with
their aggregated frequencies into the existing measurement
solutions at a time, doing aggregated updates (the aggre-
gated frequencies may not be needed for some solutions like
Bloom Filter [9]). In this way, we get sublinear processing
time (§3.2).
We use an example to demonstrate this two-phase

design and its bene�ts (see Figure 3). In a Count-Min
sketch, suppose we have 8 incoming packets with �ow IDs:
P1, P2, P3, P1, P3, P1, P2, P1. Normally, we need to update the
sketch eight times, incurring 8 ⇥ d hash computations and
8 ⇥ d random memory accesses. With Agg-Evict, we �rst
aggregate the 8 �ow IDs into 3 unique �ow IDs with separate
aggregated frequencies: P1⇥4, P2⇥2, P3⇥2, and then evict the
aggregated results into the Count-Min sketch. We only incur

3 updates (i.e., 3 ⇥ d hash computations and 3 ⇥ d random
memory accesses). In this way, we improve the processing
speed of the Count-Min sketch by 8

3 times, with additional
small overhead of aggregation operations. We will explain
how we make the overhead of aggregation operations small
in §3.4.
We now describe the aggregator design and Agg-Evict

work�ow in detail. Figure 1 shows the data structure of
the aggregator. It has k arrays of key-value (KV) pairs and
each array has l KV pairs. The key part in each KV pair
stores �ow ID and the value part stores the corresponding
aggregated frequency. Simply put, there are k KV arrays,
each of which has the same data structure as a small linear
hash table with length of l . We arrange the storage layout of
the aggregator to make each KV array store the l �ow IDs
consecutively, which enables high cache locality as we will
discuss in §3.4). For each incoming packet, we compute a
hash value based on its �ow ID, and use this value to locate a
KV array. For convenience, we call this KV array the hashed
KV array for this packet. Within this hashed KV array, we
do not perform any hash operation. Instead, we perform the
following operations:

(1) Aggregation: if the �ow ID of the incoming packet
matches the key part of one KV pair (lookup), we incre-
ment the corresponding value part by one; otherwise (no
match), if there are empty pairs in this array, we initiate
one arbitrary empty pair with the �ow ID and frequency
of one;

(2) Eviction: otherwise (no match and no empty pairs), we
evict one pair in this array by some eviction policy (cov-
ered in §3.5). Speci�cally, we set the key part to the �ow
ID of the incoming packet and value part to one. The orig-
inal �ow ID and aggregated frequency in the evicted pair
will be sent to the subsequent measurement solutions,
aggregately updating existing solutions as a batch.

Since the hash computation locates in the critical path of
packet processing, we need to do it e�ciently to guarantee
high processing speed. Thus, we choose the simple modulo
operation as the hash function (i.e., f low ID % k). Using mod-
ulo operation as hash function may cause load imbalance
across the k KV arrays. However, our experiments show that
it incurs much smaller implementation overhead compared
with more advanced hash functions, leading to higher pro-
cessing speed. Due to space limitation, we do not show the
related �gures.

There are several challenges during aggregation and evic-
tion. In aggregation, for each incoming packet, we need to
compare its �ow ID with the l existing keys stored in the
hashed KV array. If we just use linear search to do this com-
parison, there are many branch statements, leading to low
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performance in software. Instead, we anticipate a more e�-
cient comparison scheme without any branch statement to
guarantee the performance. In eviction, we need to choose
one pair to evict, which should guarantee high aggregation
level without incurring much implementation overhead. In
the following subsections, we will show how we address
these challenges.

3.4 Aggregation with SIMD and High
Cache Locality

Algorithm 1: Lookup in a KV array with 16 pairs via
the SSE2 SIMD instructions (assuming 4-byte key).
Input: The �ow ID e of incoming packet, the start address

p of the key part array in the hashed KV array.
Output: Return the index of the matched key or �1.
/* load flow ID into a 128-bit SSE2 register */

1 const __m128i item = _mm_set1_epi32 (e);
/* convert address type */

2 __m128i * keys_p = (__m128i *) p;
/* compare the flow ID with the 16 keys */

3 __m128i a_comp = _mm_cmpeq_epi32(item, keys_p[0]);
4 __m128i b_comp = _mm_cmpeq_epi32(item, keys_p[1]);
5 __m128i c_comp = _mm_cmpeq_epi32(item, keys_p[2]);
6 __m128i d_comp = _mm_cmpeq_epi32(item, keys_p[3]);
/* get the final matching results */

7 a_comp = _mm_packs_epi32(a_comp, b_comp);
8 c_comp = _mm_packs_epi32(c_comp, d_comp);
9 a_comp = _mm_packs_epi32(a_comp, c_comp);

10 int matched = _mm_movemask_epi8(a_comp);
/* return index or �1 according to matched */

11 return (matched , 0 ? TZCNT(matched) : �1);

We leverage SIMD instructions [4] supported by modern
CPUs to do e�cient lookup and consider the cache line access
of each lookup to purse high cache locality. We start with
the assumption that the �ow ID or key is only 4 bytes (e.g.,
source IP or destination IP), and then discuss how to handle
large �ow IDs (e.g., source-destination IP pair, �ve-tuple, etc.)
at the end of this section.
SIMD-based lookup: The key idea is to do comparison be-
tween the �ow ID of incoming packet with each key stored
in the hashed KV array in parallel via SIMD, and encode
the l (i.e., the number of KV pairs in each KV array) com-
parison results into l bits in one integer to avoid branch
statements. For a better demonstration, we show the speci�c
implementation with l = 16 in Algorithm 1.
In this algorithm, the incoming packet has a �ow ID e .

Each SSE2 register has 128 bits, which is speci�ed by SIMD
instructions in CPU. Line 1-2 load 16 copies of e and the 16
keys into 4 SSE2 registers, respectively. Line 3-6 complete

16 comparisons in four-way parallel. _mm_cmpeq_epi32 in-
struction compares the four keys in item and the four keys
in keys_p[0] for equality. If two keys are equal, the corre-
sponding 32 bits in a_comp will be set on; otherwise, these
32 bites will be set o�. Line 4-6 work similarly.

Line 7-10 encode the 16 comparison results into 16 bits in
one integer. _mm_packs_epi32 instruction considers each key
from the two SSE2 registers as a 32-bit integer, converts each
32-bit integer to a 16-bit integer by signed saturation, and
then packs these eight 16-bit integers into the 128-bit SSE2
register a_comp one-by-one. After line 7-9, the matching
results of 16 keys in original key part array are indicated
by the most signi�cant bits of the 16 consecutive signed
8-bit integers in a_comp. In line 10, _mm_movemask_epi8
instruction creates a 16-bit mask from the most signi�cant
bits of the 16 consecutive signed 8-bit integers in a_comp,
and zero extends this mask to a 32-bit integer matched.
Line 11 returns the index of the matched key or -1. If

matched is not zero, there must be a matching case hap-
pening among the 16 keys. In this case, we use TZCNT in-
struction to get the number of trailing 0-bits in matched.
Otherwise, we return -1. All the involved SIMD instructions
in Algorithm 1 can �nish data manipulation in only one CPU
cycle. Thus, this implementation is very e�cient, and only
costs around 10 cycles for each packet.

Due to the constraint of existing SSE2 instruction design,
the above implementation is speci�c to the case of l = 16, and
cannot be easily expanded for larger l by using more instruc-
tions of _mm_cmpeq_epi32 and _mm_packs_epi32. Thus, if
l is large than 16, say 32, we need to run Algorithm 1 twice;
if l is indivisible by 16, we need to make some corner checks.
Guaranteeing high Cache locality: Our goal is to mini-
mize the memory access overhead per packet in the aggre-
gator to keep the e�ciency of lookup operation. We achieve
this by constraining l to a speci�c value to make the l 4-byte
keys exactly �t in one cache line in modern CPU. Typical
cache line of modern CPU is 64 bytes [27], which could ex-
actly accommodate 16 4-byte keys. Therefore, we set l to 16
in order to both reduce the number of cache line accesses
per packet (i.e., high cache locality) and only run Algorithm
1 once to minimize the lookup overhead.
Handling large �ow IDs: Due to the constraint of existing
SSE2 instruction design, Algorithms 1 cannot be easily ex-
panded to support keys larger than 4 bytes. However, when
the �ow ID exceeds 32 bits, we still want to employ the
SIMD-based lookup to get high performance. We address
this problem by transforming large �ow IDs into 32-bit �n-
gerprints, storing these �ngerprints as the key part in the
aggregator, and using �ngerprints to perform the aggrega-
tion operations in Algorithm 1. In this way, we can still keep
each key part in KV arrays to four bytes, perform e�cient
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SIMD-based lookup operation on KV arrays, and guarantee
high cache locality. Besides, in the case of using �ngerprints,
to provide �ow IDs for the subsequent measurement solu-
tions during eviction, we also need to store the original �ow
IDs in an array with k ⇥ l elements. We call this array the
�ow ID array.
We now discuss some details during handling large �ow

IDs, including �ngerprint generation and solving �ngerprint
collisions. We try many di�erent ways to generate 32-bit �n-
gerprints: modulo, bit shifting, XOR, etc. We �nally �nd that
XOR (e.g., srcIP � dstIP ) works best among them in terms
of both e�ciency and probability of �ngerprint collisions.
This choice still needs further investigations but it works
for us well empirically. In terms of �ngerprint collisions, the
�ow ID array can completely help solve it. Speci�cally, once
the matching case happens, we check whether the incoming
�ow ID actually matches with the �ow ID stored in the cor-
responding position of the �ow ID array. If the two �ow IDs
are the same, we just increment the corresponding value part
in the hashed KV array by one. Otherwise (the �ngerprint
collision happens), we evict the original KV pair and set its
value part to one. We note that our �ngerprint-based scheme
for handling large �ow IDs does not in�uence the accuracy
of measurement solutions since we solve the �ngerprint col-
lisions completely. We will show the impact of such scheme
on processing speed of measurement in §4.3.

3.5 Eviction with GRR Policy
The eviction policy decides which pair we should evict when
the hashed KV array is full. It determines the aggregation
level of the aggregator and thus in�uences the whole per-
formance. A natural solution is LRU (Least Recently Used),
because it or its variants have been widely used in modern
cache design. LRU maintains a timestamp for each KV pair,
recording the last time when this KV pair was updated. Once
we need to evict a KV pair, we need to scan the l KV pairs in
the hashed KV array, �nd the KV pair owning the smallest
time stamp, and evict this pair. Thus, the implementation
overhead of LRU is relatively high, since we need to scan l
time stamps per eviction.
To reduce the overhead, we propose a new eviction pol-

icy called GRR (Global Round Robin) with extremely low
implementation overhead. In GRR, for the k KV arrays, we
maintain a global eviction index ranging from 0 tom� 1 that
indicates the position where the next eviction will happen.
Once we need to evict a KV pair regardless of on which
hashed KV array, we will evict the KV pair indicated by this
index, and then increment this index by one. Once this index
reaches l , we will set it to 0. We maintain one eviction index
globally instead of per KV array in order to get high cache
locality, since one global index can often be in cache while
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Figure 4: CDF of number of packets per �ow in
CAIDA traces.

per-array indexes cannot. The GRR eviction policy resembles
a fully randomized policy4. The shortcoming of this policy
is that it may evict some packets too early to achieve a high
aggregation level. However, as we will show in §4.4, it can
help Agg-Evict achieve higher performance than LRU for
most measurement solutions due to its extremely low imple-
mentation overhead. Note that di�erent eviction policies do
not in�uence the accuracy of measurement solutions, since
they only in�uence the packet incoming order that exist-
ing measurement solutions see, while these solutions have
commutable property (§3.2).

4 PERFORMANCE EVALUATION
4.1 Experimental Setup
Tra�c Traces: We use a one-minute trace from Equinix
data center at Chicago from CAIDA [5] with 28.82M TCP
and UDP packets. We generate 14⇥2MTCP and UDP packets
with payload size of 64 bytes by preserving the 5-tuple as in
the original CAIDA traces. The CDF of number of packets
per �ow in this trace is shown in Figure 4.When using source
IP to identify �ows, these 28M packets contain 0.59M �ows
with skewness of around 1.1. Still keeping 64 bytes payload
size, we generate multiple tra�c traces following a Zip�an
distribution [31] with di�erent skewness5, each of which
consists of 14 ⇥ 2M packets using the 5-tuple from CAIDA
traces. We use the smallest payload size (i.e., 64 bytes) to
create the maximum workload for a measurement solution
on a 10G NIC.
Testbed: We use two Ubuntu servers that run on Intel Xeon
E5-2650 v4 processors. The processor has 12 cores, 256KB L2
cache, and 30MB shared L3 cache. The servers are connected
by two Intel 82599ES 10G NICs and a switch. We use DPDK
[3], a set of data plane libraries for packet processing, to
4We discard the fully randomized policy, because producing random number
can be a relatively costly process in software (approximately equal to one
hash function computation).
5The skewness refers to the parameter s in the Zip�an distribution [31].
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send and receive packets from the NIC. At the receiver side,
we used data prefetching and batch processing (i.e., receiv-
ing packets at NIC in a batch) provided by DPDK libraries,
and additionally implemented another batch processing (i.e.,
sending packets to measurement algorithms in a batch) man-
ually by using a small packet receiving bu�er in memory.
We set both batch sizes to 32 by default.
Tested measurement solutions: We summarize the nine
tested count-based measurement solutions in Table 1. All
related source code, datasets, and detailed descriptions of
how to replicate our results are provided at GitHub [1].
Parameter Settings: We set the length of the measurement
epoch to 2M packet, which translates to a 130ms time win-
dow on a 10G NIC with 64-byte payload in each packet. For
all the algorithms, we use source IP as �ow ID, allocate 258KB
memory to the aggregator (k = 2000), and leverage GRR evic-
tion policy. The default settings of nine tested measurement
algorithms are as follows:

• Count-Min, RevSketch, and MRAC: We use 4 counter arrays
each of which has 65536 32-bit counters.

• FlowRadar : We use 262144 cells in its IBLT (i.e., invertible
bloom lookup tables [17]), use a Bloom �lter with memory
equal to one-third of the IBLT memory, and use 4 hash
functions in both IBLT and Bloom �lter.

• Space-Saving: We track the top 128 �ows.
• TwoLevel: We use 4 counter arrays each of which has 65536
32-bit counters in RevSketch, and use 4 additional counter
arrays with 4096 12-bit small bitmaps in the second level
modi�ed Count-Min.

• UnivMon: We use a 4-level sketch with 65536 ⇥ 4, 32768 ⇥
4, 16384 ⇥ 4, 8192 ⇥ 4 counters for each level. We track the
top 128 �ows in its heap.

• FM: We use 4 32-bit counters.
• LC: We use 4 bit arrays each of which has 65536 ⇥ 32 bits.

Metrics: We consider three metrics: throughput, average
latency, and tail latency (i.e., 99th percentile latency). When
measuring these metrics, we manually adjust the sending
rate to reach the maximum value with no packet losses (i.e.,
zero packet loss tests [6]). The throughput is constrained by
the 10G NIC (i.e., 14.88 Mpps at 64-byte payload). As such, we
also show the average latency, a good indicator of the ideal
throughput assuming in�nite bandwidth. The tail latency
(shown as error bars in latency �gures) re�ects the variance
of packet processing time. High packet variance results in
long queues in NIC, which leads to packet drops – not enough
space in the queue – even when the average latency is low.
We do not show accuracy �gures as our Agg-Evict framework
does not impact the accuracy of measurement solutions.

4.2 Bene�ts of Agg-Evict
Agg-Evict improves the throughputs and reduces the
latencies of all nine testedmeasurement solutions. Fig-
ure 5(a) and 5(b) show the throughputs and latencies of
the nine measurement solutions with and without Agg-
Evict. With Agg-Evict, all the nine solutions with the excep-
tion of TwoLevel algorithm achieve 14.88 Mpps throughput.
TwoLevel itself is very slow and uses source-destination IP
as �ow ID. After using Agg-Evict, we still see 2.5⇥ through-
put improvement and 3.5⇥ average latency reduction. With
Agg-Evict, the average latencies of RevSketch, FlowRadar,
LC, Count-Min, FM and MRAC go below 40 ns – enough to
support 16.8 Gbps tra�c. SketchVisor [19] uses tra�c traces
with average packet size of 769 bytes, while here we use
average packet size of 84 bytes. After multiplied (divided)
by the scaling factor 769/84 ⇡ 9.2, our throughput (latency)
values are much higher (lower) than SketchVisor.

4.3 Sensitivity Analysis
Agg-Evict improves the throughput and reduces the la-
tency of FlowRadar regardless of the types of �ow ID.
Larger �ow IDs incur extra computation and memory access
overhead for measurement solutions. We show this impact
in Figure 6(a) and 6(b) by using di�erent �ow IDs. We �nd
that even in the case of 5-tuple as �ow ID, Agg-Evict can still
help FlowRadar achieve throughput larger than 10 Mpps –
enough to serve a 10G NIC at the average packet size of 119
bytes (still much smaller than the average packet size in real
data centers [8]).
Agg-Evict reduces the processing latency of
FlowRadar under di�erent batch sizes. We vary
the batch size when sending packets to FlowRadar, and
compare the processing latency with and without Agg-Evict,
as shown in Figure 6(c). We also vary the batch size
when receiving packets from the NIC and observe similar
trend as Figure 6(c); we do not plot these results in the
interest of space. When batch size increases, the processing
latency with and without Agg-Evict both increase gradually.
Agg-Evict helps FlowRadar always achieve lower latency
and more stable performance (i.e., smaller gap between
average and 99th percentage latencies).
Agg-Evict improves the throughput and reduces the la-
tency of FlowRadar under di�erent tra�c skewness
and aggregator sizes. In order to validate the e�ectiveness
of Agg-Evict in a variety of cases, we vary tra�c skewness
and aggregator size, and show their impacts on the process-
ing latencies of FlowRadars with and without Agg-Evict in
Figure 7(a), 7(b) and 7(c). We observe that in all cases, Agg-
Evict reduces the latency of FlowRadar. The reason why
throughput or latency on the synthetic trace with tra�c
skew of 1.1 is lower or higher than CAIDA trace is that the
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Figure 5: Bene�ts of Agg-Evict on nine typical network measurement solutions.
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Figure 6: Impact of �ow ID and batch size.
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Figure 7: Impact of tra�c skew and aggregator size.

appearance order of packets belonging to the same �ows in
synthetic trace is randomized, which largely degrades the
aggregating performance of Agg-Evict. When tra�c skew-
ness increases, the latency of FlowRadar without Agg-Evict
declines gradually, while the one with Agg-Evict declines
drastically. When aggregator size increases, average and
99th percentage latencies decline, and the gap between them
gradually shrinks, which means more stable performance.

4.4 Microbenchmark
For hash-basedmeasurement solutions, GRR achieves
better performance than LRU, while for heap-based
solutions, LRU is a litter better. Figure 8(a) compares
the latencies of nine measurement solutions under di�er-
ent eviction policies. For UnivMon and Space-Saving, they
all maintain heaps to track top �ows. Due to the heapifying
operations, processing an item with frequency larger than
one will cost more than processing an itemwith frequency of
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Figure 8: Comparison of di�erent design choices.

only one. This will amplify the bene�ts of higher aggregation
level brought by LRU.
SIMD-based lookup for Agg-Evict achieves lower la-
tency than linear-search-based lookups. Figure 8(b) and
8(c) show the throughput and latency of Agg-Evict with and
without SIMD instructions. Agg-Evict without SIMD instruc-
tions employs linear search to check the matching case. We
observe that SIMD instructions help lower the latency by
around 20 ns. This is due to the higher e�ciency of Algorithm
1 than normal linear search. We also observe that FlowRadar
under Agg-Evict (with SIMD) achieves 2.92⇥ lower average
latency than pure FlowRadar, which corresponds to doing
measurement at the ideal points in Figure 2(a) and 2(b) –
1/0.874 ⇥ 2.23 = 2.55 times better performance.

5 RELATEDWORK
Measurement data structures:We summarize the count-
based measurement tasks and typical data structures in Table
1. Our Agg-Evict framework can support all the algorithms
in this table and improve their processing speed without
in�uencing their accuracy.
Measurement designs in software: The literature [7] ob-
serves that in software, simple hash tables work better than
more advanced measurement algorithms for a variety of
count-based measurement tasks if we do not consider the is-
sue of memory size. Agg-Evict framework can also improve
the performance of simple hash tables, and is orthogonal
to this literature. SketchVisor [19] �nds that many existing
measurement solutions cannot achieve satisfying process-
ing speed in software. It augments software count-based
measurement algorithms with a fast path, which is activated
under high tra�c load to provide fast measurement with
accuracy degradations. In contrast, Agg-Evict improves the
processing speed of measurement solutions purely in “fast
path”, and does not degrade the accuracy of measurement
results.

Aggregation mechanism: Marple [29] aggregates statis-
tic information in fast SRAM of switch hardware and pe-
riodically merges it into slow DRAM of remote servers to
complete line-rate measurement. Agg-Evict improves the
performance of count-based measurement by reducing com-
putations and memory accesses and enhancing cache local-
ity. MapReduce schedulers [23] that aggregate keys in data
streams for fast in-memory processing share commonalities
with our Agg-Evict.

6 CONCLUSION
In this paper, we present a generic framework, namely Agg-
Evict, to accelerate count-based network measurement in
software. Through aggregating incoming packets on the
same �ows, Agg-Evict reduces a large amount of compu-
tations and random memory accesses of subsequent mea-
surement solutions. Extensive experiments performed on top
of DPDK further validate the feasibility and e�ectiveness of
Agg-Evict. We believe that Agg-Evict can be applied to and
help accelerate many more network measurement solutions
in the future.
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APPENDIX
We release source code, datasets, and detailed descriptions

of how to replicate our results at GitHub [1]. The source
code and detailed descriptions are made public under the
MIT license. The datasets are generated from CAIDA trace
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