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ABSTRACT
Software-defined networks can enable a variety of concur-
rent, dynamically instantiated, measurement tasks, that pro-
vide fine-grain visibility into network traffic. Recently, there
have been many proposals for using sketches for network
measurement. However, sketches in hardware switches use
constrained resources such as SRAM memory, and the accu-
racy of measurement tasks is a function of the resources de-
voted to them on each switch. This paper presents SCREAM,
a system for allocating resources to sketch-based measure-
ment tasks that ensures a user-specified minimum accuracy.
SCREAM estimates the instantaneous accuracy of tasks so
as to dynamically adapt the allocated resources for each task.
Thus, by finding the right amount of resources for each task
on each switch and correctly merging sketches at the con-
troller, SCREAM can multiplex resources among network-
wide measurement tasks. Simulations with three measure-
ment tasks (heavy hitter, hierarchical heavy hitter, and super
source/destination detection) show that SCREAM can sup-
port more measurement tasks with higher accuracy than ex-
isting approaches.

CCS Concepts
•Networks→Network resources allocation; Network mon-
itoring; Data center networks; Programmable networks;

Keywords
Software-defined Measurement; Sketches; Resource Alloca-
tion

1. INTRODUCTION
Traffic measurement plays an important role in network

management. For example, traffic accounting, traffic engi-
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neering, load balancing and performance diagnosis require
measuring traffic on multiple switches in the network [6,
10]. Software-defined Measurement (SDM) [40, 33] facil-
itates controller-directed network-wide measurement: with
SDM, operators or tenants can submit measurement tasks
to the SDN controller, and the SDN controller configures
switches to monitor traffic for each task, then collects statis-
tics and produces measurement reports.

A recent prior work in software-defined measurement [33]
has relied on flow-based counters. These counters are often
implemented using TCAM memory, which is expensive and
power hungry. Moreover, flow-based counters are limited to
supporting volume-based measurement tasks such as heavy
hitter detection and often require a large number of counters.
For example, a switch may need to count traffic from thou-
sands of source IP addresses to find heavy users of a specific
service, for each of which it would require a counter. To re-
duce counter usage, many solutions rely on counting traffic
to/from prefixes (instead of specific IP addresses), and then
iteratively zooming in and out to find the right set of flows
to monitor [32, 41, 24]. Such prefix-based summarization
has two drawbacks: it cannot be applied to many tasks such
as flow-size distribution and entropy calculation, and it can
take multiple measurement epochs to reconfigure counters
(e.g., to zoom into 32 levels in the IP prefix tree) [32].

In contrast, this paper focuses on hash-based counters, or
sketches [40]. Sketches are summaries of streaming data
for approximately answering a specific set of queries. They
can be easily implemented with SRAM memory which is
cheaper and more power-efficient than TCAMs. Sketches
can use sub-linear memory space to answer many measure-
ment tasks such as finding heavy hitters [16], super-spreaders
[17], large changes [26], flow-size distribution [27], flow
quantiles [16], and flow-size entropy [29]. Finally, they can
capture the right set of flow properties in the data plane with-
out any iterative reconfiguration from the controller.

Any design for sketch-based SDM faces two related chal-
lenges. First, SDM permits multiple instances of measure-
ment tasks, of different types and defined on different aggre-
gates, to execute concurrently in a network. Furthermore, in
a cloud setting, each tenant can issue distinct measurement
tasks within its own virtual network.

The second challenge is that sketch-based measurement
tasks may require significant resources. To achieve a re-
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quired accuracy, each task may need up to a million counters,
and the number of counters is bounded by resources such as
the SRAM memory needed for saving sketch counters, the
control datapath inside switches required to report counters
from ASIC to CPU, and the control network bandwidth that
is shared among many switches.

Therefore, an SDM design must ensure efficient usage of
these resources. For many forms of sketches, it is possible to
estimate the resources required to achieve a desired accuracy
(i.e., there is a resource-accuracy trade-off). These resource
estimates are also dependent on traffic. Prior work [40] has
assumed worst-case traffic in allocating resources to sketches,
and this can result in pessimistic overall resource usage, re-
ducing the number of tasks that can be concurrently sup-
ported. In contrast, our key idea is to use a dynamic resource
allocator that gives just enough resources to each task for
the traffic it observes, and dynamically adapts the resource
allocation as traffic changes over time and across switches.

We propose a sketch-based SDM system, called SCREAM
(SketCh REsource Allocation for Measurement), which en-
ables dynamic resource allocation of limited resources for
many concurrent measurement tasks while achieving the re-
quired accuracy for each task. Our paper makes two contri-
butions: (1) Sketch-based task implementation across mul-
tiple switches: Each task type implementation must gather
sketch counters from multiple switches and prepare mea-
surement results to the user. As switches see different traf-
fic, each sketch may need different sizes for an efficient and
accurate measurement. SCREAM uses novel techniques to
merge sketches with different sizes from multiple switches.
This extension of sketch-based measurement [40] to multi-
ple switches is a critical step towards making sketches useful
in practice. (2) Accuracy estimator: SCREAM incorporates
a new method to estimate accuracy for measurement tasks on
multiple switches without ground-truth or an a priori knowl-
edge of traffic model with low estimation errors, rather than
rely on the worst-case bounds of sketches. SCREAM feeds
these instantaneous accuracy estimates (which can also give
operators some insight into how trustworthy the measure-
ments are) into a dynamic resource allocation algorithm [33]
to support more accurate tasks by leveraging temporal and
spatial statistical multiplexing.

We have implemented three measurement task types (heavy
hitter, hierarchical heavy hitter and super source/destination)
in SCREAM and improved their design for dynamic resource
allocation on multiple switches. Our simulations demon-
strate that SCREAM performs significantly better than other
allocation alternatives. Compared to OpenSketch, which al-
locates resources on a single switch based on the worst-case
bounds, SCREAM can support 2× more tasks with higher
accuracy. This result is valid across all task types and even
when applying OpenSketch on multiple switches. This is be-
cause SCREAM can leverage traffic variations over time to
multiplex resources across task instances and switches while
OpenSketch reserves the same fixed resources for all tasks
of the same type. SCREAM can support the same number of
tasks with comparable accuracy as an oracle which is aware
of future task resource requirements.

Finally, SCREAM builds upon our prior work on DREAM
[33], which establishes a framework for dynamic resource
allocation for TCAM-based measurement tasks. SCREAM
deliberately preserves many of the elements of DREAM (Sec-
tion 3), to permit a unified system that multiplexes resources
across different types of measurement tasks.

2. BACKGROUND AND MOTIVATION
Sketch-based SDM. Sketches are memory-efficient sum-
maries of streaming data for approximately answering a spe-
cific set of queries. Sketches often provide a provable trade-
off between resources and accuracy, where the definition
of accuracy depends on the queries. We focus on hash-
based sketches because they can be implemented on hard-
ware switches using commodity components (hashing, TC-
AM, and SRAM modules) as discussed in OpenSketch [40].
Note that the same accuracy estimation and similar resource
allocation technique can be applied to software switches wh-
ere cache for counters and CPU budgets per packet are lim-
ited. We leave software switches to future work but note
that measurement in software switches or hypervisors does
not extend to wide-area networks across datacenters, net-
works where operators do not have access to end hosts, and
networks which devote most server resources to revenue-
generating applications.

A commonly used sketch, the Count-Min sketch [16] can
approximate volume of traffic from each item (e.g. source
IP) and is used for many measurement tasks such as heavy
hitter detection (e.g., source IPs sending traffic more than a
threshold). Count-Min sketch keeps a two dimensional ar-
ray, A, of integer counters with w columns and d rows. For
each packet from an input item x ∈ (0 . . .D) with size Ix, the
switch computes d pairwise independent hash functions and
updates counters, A[i,hi(x)]+ = Ix, i ∈ (1 . . .d). At the end
of measurement epoch, the controller fetches all counters.
When the controller queries the sketch for the size of an item,
Count-Min sketch hashes the item again and reports the min-
imum of the corresponding counters. As the controller can-
not query every item (e.g., every IP address), we need to
limit the set of items to query. We can keep a sketch for each
level of prefix tree (at most 32 sketches) and avoid query-
ing lower levels of the tree by using the result of queries on
upper levels (Section 4). Multiple items may collide on a
counter and cause an over-approximation error, but Count-
Min sketch provides a provable bound on the error. Using d
hash functions each mapping to w entries bounds the worst-
case error to: ecm ≤ e T

w with probability 1− e−d , where T is
the sum of packet sizes. Approaches to improve Count-Min
sketch accuracy, for example by running the least-squares
method [28] or multiple rounds of approximation over all
detected prefixes [30], add more computation overhead to
the controller, and their resource-accuracy trade-off is not
known in advance.

Many sketches have been proposed for counting distinct
items [21, 20]. We use HyperLogLog [21] as its space usage
is near-optimal, and it is easier to implement than the optimal
algorithm [23]. First, we hash each item and count the num-



ber of leading zeros in the result, say 0x. Intuitively, hash
values with more leading zeros indicate more distinct items.
By only keeping the count of maximum leading zeros seen
over a stream, M =maxi(0xi), we can estimate the number of
distinct items as 2M+1. For this, a 5-bit counter is enough for
a 32-bit hash function. We can replicate this sketch m times,
and reduce the relative error of approximation with a factor
of
√

m but with no additional hashing overhead, by using the
first p bits of hash output to select from m = 2p replicas and
the other bits to update the replica counter. For example, a
distinct counter with m = 64 replicas will require 320 bits,
have a standard deviation of the relative error of 1.04

8 , and
will use the first 6 bits of hash outputs to select a replica.

Why is sketch-based SDM resource constrained? SDM
permits multiple instances of measurement tasks execute con-
currently in a network which together require a lot of re-
sources. These tasks can be of different types and defined
on different traffic aggregates. For example, an operator
may run different types of tasks in a (virtual) network, such
as finding large flows for multi-path routing [6] and find-
ing sources that make many connections for anomaly detec-
tion [39]. Operators may also instantiate tasks dynamically
on different aggregates to drill down into anomalous traf-
fic aggregates. Furthermore, in a cloud setting, each tenant
can issue distinct measurement tasks for its virtual network;
Amazon CloudWatch already offers simple per-tenant mea-
surement services [1], and Google Andromeda allows SDN-
based network functionality virtualization for tenants [38].
Besides, modern clouds service a large number of tenants (3
million domains used AWS in 2013 [2]), so SDM with many
measurement tasks will be common in future clouds.

However, switches have limited memory and bandwidth
resources for storing these counters. Today’s switches have
128 MB SRAM capacity (HP 5120-48G EI [4]) which can
support 4-128 tasks where each task needs 1-32 MB SRAM
counters [40]. In practice, SRAM is used for other func-
tions and only a small part of it is available for measurement.
Moreover, there is limited bandwidth for the controller to
fetch counters. First, inside a switch the control data-path
that transfers counters from the ASIC to the switch CPU has
low bandwidth (e.g., 80 Mbps) [19]. Second, there is limited
bandwidth to send counters from many switches to the con-
troller. For example, 12 switches each dumping 80 Mb per
second can easily fill a 1 Gbps link. Thus, we need sketches
with fewer counters to reduce memory usage, lower network
overhead and send counters more frequently to the controller
to report in a short time-scale.

Why dynamic allocation? Prior work [40] has proposed
tuning the size of sketches based on their resource-accuracy
trade-off at task instantiation to maintain a required accu-
racy. However, these resource-accuracy trade-offs are for
the worst-case. For example, based on the formulation of
Count-Min sketch, to not detect items sending less than 9 Mbps
for a threshold of 10 Mbps in a 10 Gbps link (ecm = 1 Mbps),
we need about 27 K counters of 4 bytes for each row; with
3 rows and a prefix tree with 32 levels, this works out to
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Figure 1: Variation of traffic skew and sketch accuracy
over time

5.5 MB1. However, the total traffic T of a link may not
always reach the link capacity. In addition, Cormode [18]
showed that the bound is loose for skewed traffic (a not un-
common case in real world) and the sketch can be exponen-
tially smaller when sized for known skew. For the above ex-
ample, if the link utilization is 20% in average with a skew
factor of 1.3 [18], each row will need only 1040 counters
which require 260 KB of SRAM. Other sketches also exhibit
traffic-dependent accuracy [13, 27].

These trade-off formulations are loose because the opti-
mal resource requirement of a sketch for a given accuracy
depends on the traffic that changes over time. For exam-
ple, Figure 1a shows the skew of traffic from source IPs in
CAIDA trace [3] over time. (Our skew metric is the slope
of a fitted line on the log-log diagram of traffic volume from
IPs vs. their rank (ZipF exponent).) The skew decreases
from time 110 to 160 because of a DDoS attack. Figure 1b
shows the accuracy of heavy hitter (HH) source IP detection
of Count-Min sketch with 64 KB memory over time. Heavy
hitter detection accuracy, precision (the fraction of detected
true HHs over detected ones), decreases from 90% to 70%
for less skewed traffic, which means that the sketch needs
more counters only at this time period in order to maintain
90% accuracy. This presents an opportunity to statistically
multiplex SRAM and bandwidth resources across tasks on a
single switch by dynamically adjusting the size of sketch.

Besides, we may need sketches with different sizes on
different switches for tasks that monitor traffic on multiple
switches. For example, we may need to find heavy hitter
source IPs on flows coming from two switches (say A and
B). These switches monitor different traffic with different
properties such as skew, thus they need different number
of counters. This allows spatial statistical multiplexing: A
sketch may need more counters on switch A vs. B while
another may need more on switch B vs. A.

3. SCREAM OVERVIEW
SCREAM provides sketch-based software-defined mea-

surement with limited resources (Figure 2). It allows users

1 The number of hash functions, d, is usually fixed to 3 or 4
to simplify hardware and because of reduced marginal gains
for larger values. The total is smaller than 27K×4×3×32
because the sketches for the top layers of the prefix tree can
be smaller [14].



Figure 2: Resource allocation overview

to dynamically instantiate measurement tasks and specify a
required accuracy. Specifically, the user instantiates a task
by specifying its type, flow filter, its parameters and its ac-
curacy bound. For example, she may instantiate a heavy
hitter detection task on a five tuple flow filter <srcIP=10/8,
dstIP=16.8/16,*,*,*> that reports sources sending traffic more
than 10 Mbps with a precision (the fraction of detected items
that are true heavy hitter) of at least 80%.

SCREAM can run multiple concurrent instances of differ-
ent task types. Each task instance (henceforth, simply task)
configures counters at switches and periodically queries coun-
ters from switches. Periodically, SCREAM distributes re-
sources to each task on each switch based on the traffic ob-
served at the switch to satisfy its requirement. As a result,
tasks update the sketch parameters based on allocated re-
sources and re-configure their counters at switches. In the
following, we describe the two components of SCREAM
(tasks and dynamic resource allocation).

Tasks: Sketches can support a diverse range of measure-
ment tasks [40]. We consider three examples in this paper:

Heavy Hitter (HH): A heavy hitter is a traffic aggregate
identified by a packet header field that exceeds a specified
volume. For example, heavy hitter detection on source IP
finds source IPs contributing large volumes of traffic.

Hierarchical Heavy Hitter (HHH): Hierarchical heavy hit-
ters (HHHs), used for detecting DDoS [36], are defined by
the longest prefixes that exceed a certain threshold, θ , in
aggregate traffic volume even after excluding any HHH de-
scendants in the prefix tree [15]. For example, if a prefix
10.1.0.0/16 has traffic volume more than θ , but all the sub-
nets within the prefix have traffic volume less than θ , we
call the prefix a HHH. In contrast, if one of its subnets,
say 10.1.1.0/24, has traffic more than θ , but the rest of the
IPs collectively do not have traffic more than θ , we view
10.1.1.0/24 as a HHH, but 10.1.0.0/16 is not a HHH.

Super source and destination (SSD): A super source is a
source IP that communicates with a more than a threshold
number of distinct destination IP/port pairs. A super destina-
tion is defined in a similar way. SSDs are used for detecting
worms, port-scans, P2P super nodes or DDoS targets.

Dynamic resource allocation: At the heart of SCREAM is

its resource allocation mechanism. We use the instantaneous
accuracy of a task as its feedback for an iterative allocation
algorithm (Figure 2). Each task periodically shares its result
and counters with an accuracy estimator module. The accu-
racy estimator estimates the accuracy of current results for
resource allocation algorithm which in turn determines the
number of counters for each sketch based on those estimates.
Then tasks tune sketch parameters based on the number of
assigned counters and re-configure switches. Thus, the re-
source allocation mechanism requires two components, a
dynamic resource allocator and an accuracy estimator per
task type.

SCREAM’s resource allocator, borrowed from DREAM [33]
(see below), requires tasks to provide a global task accuracy
and local accuracies per switch, and runs parallel per-switch
resource allocators that use the maximum of global and lo-
cal accuracies as follows. If the accuracy estimate is below
the specified accuracy bound (“poor” task), it receives more
resources; these resources are taken away from “rich” tasks
whose accuracy estimate is well above their bound. The allo-
cator algorithm achieves fast but stable convergence by dy-
namically adapting the step size of resource exchange for
each task. It also contains an admission control algorithm
that rejects new tasks when necessary: without this, no task
may receive sufficient resources. However, since resource
demands for a task can change over time, resource overload-
ing can occur even without the arrival of new tasks. In this
case, the allocator assigns resources to poor tasks based on
assigned priorities, and when it cannot, it may drop tasks.

We now illustrate how the resource allocator works using
a simple example (Figure 3). We ran an experiment on two
heavy hitter (HH) detection tasks on source IP using Count-
Min sketch on a single switch. Each task monitors a chunk
of a packet trace [3] starting from time 0. Figure 3a shows
the estimated accuracy in terms of precision (the fraction of
detected true HHs over detected ones) of tasks over time and
Figure 3b shows the allocated resources per task. In the be-
ginning, both tasks get equal resources (32 KB), but task 1
cannot reach the 80% accuracy bound at time 3 while task
2 has very high accuracy. Therefore, the resource allocator
takes memory resources (16 KB) from task 2 and gives to
task 1. At time 20, we increase the skew of volume of traffic
from source IPs for task 1 and decrease it for task 2. As a
result, task 2 requires more resources to reach 80% accuracy
bound, thus its estimated accuracy degrades at time 20. The
resource allocator responds to the accuracy decrease by iter-
atively allocating more resources to task 2 (first 8 KB then
16 KB) until it exceeds the bound.

An alternative approach to design an allocation mecha-
nism would have been to find and quantify the effect of dif-
ferent traffic properties on the resource-accuracy trade-off
of each task, and run parallel measurement tasks to find the
value of traffic properties (e.g., skew, which can be used
to tighten the accuracy bound for Count-Min sketch [25]).
However, quantifying the effect of traffic properties (e.g.,
skew parameters) on the accuracy is complicated, and dy-
namically estimating them may require significant resources
[25].
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Figure 3: Resource allocation example

Relationship to DREAM [33]. SCREAM is inspired by
DREAM, our prior work on efficient and dynamic resource
management for TCAM-based measurement tasks. In par-
ticular, SCREAM deliberately reuses the dynamic resource
allocator (described above) proposed in DREAM [33]. This
reuse has the advantage that it can enable a unified frame-
work to support a variety of measurement tasks that uses
either sketches or counters. Such a framework can simplify
the configuration of measurement tasks and provide a uni-
fied interface for specifying these tasks and processing the
results. Our next step in the near future is to develop such a
unified framework.

However, SCREAM is different from DREAM in several
ways because it is sketch-based instead of TCAM-based.
First, by using sketches, SCREAM can support tasks that
cannot be supported using TCAM-based counters. For ex-
ample, in this paper, we implement the SSD task using a
Count-Min sketch and a distinct counter instead of a volume
counter (we leverage an existing technique [40, 17] for this,
but adapt the design to provide unbiased results). Also, un-
like flow-based counters, sketches do not need iterative re-
configuration. The iterative re-configuration is less accurate
for time-varying traffic because it takes multiple measure-
ment epochs to reconfigure counters (e.g., to zoom into 32
levels in IP prefix tree) [32].

Second, in SCREAM, different switches may be assigned
different-sized sketches by the dynamic allocator because
they see differing amounts of traffic. Combining different-
sized sketches is non-trivial, and we present an approach to
merge the counters from sketches of different sizes, together
with a general algorithm to use Count-Min sketch in a prefix
tree to run the three measurement task types (Section 4).

Finally, the primary enabler for dynamic resource alloca-
tion in SCREAM is the estimation of instantaneous accuracy
of a task. We present a solution that does not assume an
a priori traffic model or run parallel measurement tasks for
each of the implemented task types (Section 5).

Generality: In this paper, we build three measurement
tasks in SCREAM, which cover various important applica-
tions in data centers and ISP networks such as multi-path
routing [6], anomaly detection [24], worm detection [39],
P2P seed server detection [8], port scan [8], network provi-
sioning, threshold-based accounting, and DDoS detection [36].

Moreover, although we have implemented measurement
tasks based on Count-Min sketch and its variants, SCREAM
can support other sketches for a different resource-accuracy

Figure 4: Merging two Count-Min sketches with differ-
ent sizes

trade-off or for other measurement tasks. If a given sketch’s
accuracy depends on traffic properties, it also benefits from
our dynamic resource allocation algorithm. For example,
the error of Count-Sketch [9], that can also support our three
tasks, depends on the variation of traffic (compared to the
error of Count-Min sketch which depends on the size of traf-
fic). However, its theoretical bound is still loose for a skewed
distribution [13]. Kumar [27] proposed a sketch to compute
the flow size distribution, but the accuracy of this sketch also
depends on the traffic properties (number of flows). In order
to add those sketches to SCREAM, we need to estimate their
accuracy, which have left to future work.

4. DESIGN OF SKETCH-BASED TASKS
In SCREAM, tasks at the controller configure sketch coun-

ters at switches, fetch counters and prepare reports. In or-
der to prepare reports, tasks need to find instances of HHs,
HHHs, or SSDs. In this section, we first describe how to
approximate traffic counts for HHs and HHHs, and connec-
tion counts for SSDs using Count-Min and HyperLogLog
sketches on multiple switches. These algorithms execute at
the controller, and are specific to a given task type. Then,
we describe an algorithm independent of task type that, from
the derived counts, estimates and reports instances of HHs,
HHHs and SSDs that exceed the specified threshold.

Although there have been many sketch-based algorithms
[40], we improve upon them in the following ways. We in-
troduce novel techniques to merge sketches with different
sizes from multiple switches, leverage hierarchical grouping
with adjustable overhead to find instances of HHs, HHHs
and SSDs, and adapt the design of the SSD task to be un-
biased and provide stable accuracy. We describe these im-
provements below.

Heavy Hitter (HH): If a prefix has traffic on one switch,
we estimate traffic size by the minimum of counts from dif-
ferent rows of the counter array in the Count-Min sketch ap-
proximation algorithm (Section 2). However, a heavy hit-
ter prefix may have traffic from multiple switches. One ap-
proach [5] in this case is to simply sum up the Count-Min
sketch arrays fetched from different switches into a single ar-
ray (Anew = ∑s As for each switch s) and run the algorithms
as if there is only one sketch. However, in SCREAM, the
resource allocator sizes the sketches at each switch differ-



Figure 5: A prefix trie of source IPs where the number
on each node shows the bandwidth used by the associ-
ated IP prefix in Mb in an epoch. With threshold 10, the
nodes in double circles are heavy hitters and the nodes
with shaded background are hierarchical heavy hitters.

ently, so each sketch may have an array of different widths
and cannot be summed. For example, Figure 4 shows the
counter arrays for two Count-Min sketches with three rows
and different widths that cannot be directly summed.

A natural extension for sketches of different sizes is to find
the corresponding counter for each prefix at each row and
sum the counters at similar rows across sketches. The ap-
proximated count will be their minimum: mini(∑s As[i,hi(x)]).
For example, say an item on the first sketch maps to counters
with index 5, 7, and 4, and on the second sketch maps to 1, 3,
and 4. The approximation will be: min(A1[1,5] +A2[1,1],
A1[2,7]+A2[2,3], A1[3,4]+A2[3,4]). In Figure 4 (right bot-
tom) we connect counters with the same color/pattern to the
corresponding sum boxes to get 5 as the final result.

However, because Count-Min sketch always over-approx-
imates due to hash collisions, we can formulate a method
that generates smaller, thus more accurate, approximations.
The idea is to take the minimum of corresponding counters
of a prefix inside each sketch and then sum the minima:
∑s mini(As[i,hi(x)]). For the above example, this will be
min(A1[1,5],A1[2,7],A1[3,4])+min(A2[1,1],A2[2,3],A2[3,4])
(Figure 4, the top merging module with solid lines to counter
arrays which approximates the size as 3 instead of 5). This
approximation is always more accurate because the sum of
minimums is always smaller than minimum of sums for pos-
itive numbers. In all of this, we assume that each flow is
monitored only on one switch (e.g., at the source ToR switches).

Hierarchical Heavy Hitter (HHH): Recall that HHHs are
defined by the longest prefixes exceeding a certain threshold
in aggregate volume after excluding any HHH descendants
in the prefix tree. Figure 5 shows an example of a prefix tree
for four bits. With a threshold of θ = 10Mb, prefix 010* is
a HHH as IPs 0100 and 0101 collectively have large traffic,
but prefix 01** is not a HHH because excluding descendent
HHHs (010* and 0111), its traffic is less than the threshold.

We leverage multiple sketches to find HHHs [15]. We
need a sketch for each layer of the prefix tree to estimate
the size of prefixes at different levels. For a HHH without
any descendant HHH, the approximation function works the
same as HH detection task. However, for other HHHs, we
need to exclude the size of descendant HHHs. Thus, during
a bottom up traversal on the tree, SCREAM tracks the total
size of descendant HHHs already detected and subtracts that
size from the approximation for the current prefix [15].

Super Source/Destination (SSD): SSD detection needs to
count distinct items instead of the volume of traffic, so we
replace each counter in the Count-Min sketch array with
a distinct counter [17]. Therefore, each sketch has w× d
distinct counters; we used the HyperLogLog [21] distinct
counter because its space usage is near-optimal and it is easy
to implement [23]. However, distinct counters may under-
approximate or over-approximate with same probability, so
picking the minimum can cause under-approximation and
result in many missing items even with a large Count-Min
array. For example, suppose that there is no collision in a
Count-Min sketch, we have d distinct counters for a source
IP, and we pick the minimum, it is more likely to pick the
one that under-approximates. Figure 6b shows the recall (de-
tected fraction of true SSDs) of SSD detection given fixed
resources in simulation over a CAIDA traffic trace [3]. The
under-approximation of picking the minimum resulted in miss-
ing more than 20% of SSDs. Unfortunately this will become
worse for larger Count-Min sketches with fewer collisions.
Thus, the SSD approximation, even for a single sketch, can-
not use the minimum of corresponding counters.

To counter this bias, unlike prior work [17, 40, 22], we
pick the median instead of minimum. Then, to remove the
median’s bias towards Count-Min hash collisions, we re-
move the average error of the sketch from it in Equation 1
where A is the Count-Min sketch array of width w and T is
the sum of distinct items of prefixes. Equation 1 is unbiased
since we can interpret the over/under-approximations of dis-
tinct counters as random positive and negative updates on
the sketch and use the proof in [26].

mediani(A[i,h(x)])−T/w
1−1/w
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Figure 6: Unbiasing detection of destination IPs con-
tacted by > 200 source IPs on Count-Min sketch (w =
1320,d = 3) plus HyperLogLog (m = 16)

However, when the number of sources per destination IP
is highly skewed (e.g., in a DDoS attack) removing the av-
erage error (T/w) in Equation 1 can result in missing SSDs.
For example, Figure 6a shows the degree of super destina-
tions over time in the ground-truth where a specific destina-
tion has a large number of distinct sources from time 110
to 160. Figure 6b shows that the recall for an approach that
uses Equation 1, named Naive-med, drops during the DDoS
attack. These missed SSDs result from the fact that Equa-
tion 1 compensates for the average Count-Min collision from
every counter, but for skewed traffic a few large items that
increase average error significantly only collide with a few



1 Function approximate(prefix, sketches)
2 for i = 1 . . .d do
3 Mnew,∗ = 0
4 for s in sketches do
5 DCs,i =distinct counter in As[i,h(pre f ix)]
6 for k = 1 . . .m do
7 Mnew,k = max(Mnew,k,MDCs,i,k)

8 cest
i = hyperloglog(Mnew,∗).approximate()

9 return unbias(mediani(cest
i ))

Figure 7: Approximate function for SSD

counters. Thus, reducing this large error from every median
approximation causes an under-approximation of the total
count, and results in missing true SSDs.

Instead, we refine the average error estimate by removing
those very large prefixes from it, but must first detect them
using two steps. In the first step, we use the average error
just to detect very large prefixes, set L (as mentioned before,
this causes an under-approximation, but is still sufficient to
detect very large SSDs.). In the second round, we reduce the
adjusted average error, T−∑k∈L cest

k
w , from the medians, where

cest
k is the estimated count for item k. This results in high

recall, independent of traffic skew (Figure 6b). This does not
come at the cost of increased false positives, and SCREAM’s
precision is also high.

Multiple switches: If a prefix has traffic from multiple sket-
ches, summing the number of distinct items from different
sketches over-approximates the number of distinct items be-
cause two distinct counters may have counted similar items.
For example, two switches that forward traffic from a source
IP prefix may see traffic to a common destination IP. How-
ever, the common destination IP should only be counted
once in the degree of the source IP prefix. We can combine
two HyperLogLog distinct counters, DC1 and DC2, with m
replica counters by taking the maximum of each correspond-
ing replica counter to make a new distinct counter [21]: Mnew,k =
max(MDC1,k,MDC2,k) for k = 1 . . .m.

To leverage this, we keep a fixed number of replica in
distinct counters of different sketches and only change the
width of the array in Count-Min sketch (w) based on the al-
located resources. Again, having Count-Min sketches with
different widths, we cannot use the traditional approach of
merging distinct counters with the same index in Count-Min
counter array [22]. Instead, we find corresponding distinct
counters for each specific query in each row and merge them.

Figure 7 summarizes how we use this idea to approxi-
mate the degree of each prefix when Count-Min sketches
may have different widths. For each d rows of Count-Min
sketches, we find the corresponding distinct counters for a
prefix in each sketch (lines 2-5). Then, we merge replicas
from these distinct counters (lines 6-7) and approximate the
number of distinct items using the new replica counters sim-
ilar to a single HyperLogLog sketch [21] (line 8). Now sim-
ilar to the case of a single switch, we approximate the degree
of the SSD using the unbiased median approach (line 9).

Reporting HHs, HHHs and SSDs: So far, we have pre-
sented ways of approximating traffic volumes and connec-

1 Function createReport(prefix, output)
2 e=approximate(prefix, prefix.sketches)
3 if e≥threshold then
4 foreach child of prefix do
5 createReport(child, output)
6 updateOutput(prefix, output)

Figure 8: Generic algorithm to create output

tion counts. However, we also need an efficient way of de-
termining which IP prefixes contain HHs, HHHs or SSDs.
In the data plane of each switch, SCREAM uses Count-Min
sketches to count traffic. A single Count-Min sketch can
only approximate the count given a prefix. Exploring all
prefixes at the controller is impossible, so SCREAM uses
a hierarchy of Count-Min sketches to identify the actual pre-
fixes [14]. It employs a Count-Min sketch for each level of
prefix tree (e.g., 16 sketches for a task with flow filter of
10.5/16), where the sketch on level l (from leaves) ignores l
least significant IP bits 2. Note that to find HH/SSD IP pre-
fixes that are not exact, we can start the tree from a level > 0.

Figure 8 shows an algorithm that does not depend on the
task type. In line 2, the algorithm approximates the size
of a prefix tree node by combining multiple sketches (using
algorithms described above). Then, it traverses the prefix
tree (lines 3-6). If the approximation is above the threshold,
it goes deeper to find items for output. This algorithm re-
lies on the observation that if a prefix’s size is not over the
threshold, its ancestors sizes are not too.

For example in Figure 5, it starts from the root and goes
in the left branches until it finds heavy hitter 0000, but later
when it reaches prefix 001*, it does not need to check its
children. The updateOutput function for HH/SSD detec-
tion is simply to add the prefix for a leaf node (path from the
root in the prefix tree) to the output. However, for HHH de-
tection, we only add the prefix into output if its size remains
larger than threshold after gathering its descendant HHHs
and excluding their size.

Many techniques are proposed to identify items to query
(reverse a sketch) [16, 7, 35]. At the core, all use multi-
ple sketches and apply group testing to reverse the sketch,
but their grouping is different. We use hierarchical group-
ing [16] because it is enough for our tasks, is fast and simple
and has tunable overhead comparing to some alternatives.
For example, OpenSketch used Reversible sketch [35] with
fixed high memory usage of 0.5 MB. Our work generalizes
prior work that has used hierarchical grouping for HHs and
HHHs, but not for SSDs [14, 16].

5. ACCURACY ESTIMATION
To support dynamic resource allocation, we need algo-

rithms that can estimate the instantaneous accuracy for indi-
vidual tasks, even when the traffic for a task spans multiple
switches. In addition to informing resource allocation, our

2 It is possible to have a sketch for each g > 1 levels of the
tree but with more overhead at the controller to enumerate 2g

entries at each level. Our implementation is easily extendible
for g > 1.



accuracy estimates can give operators some understanding
of the robustness of the reports. Our accuracy estimators
discussed in this section consider two accuracy metrics: pre-
cision, the fraction of retrieved items that are true positives;
and recall, the fraction of true positives that are retrieved.

The key challenge is that we do not have an a priori model
of traffic and it takes too much overhead to understand traf-
fic characteristics by measuring traffic. Instead, our accu-
racy estimator only leverages the collected counters of the
task. There are two key ideas in our accuracy estimator: (1)
applying probabilistic bounds on individual counters of de-
tected prefixes, and (2) tightening the bounds by separating
the error due to large items from the error due to small items.

Heavy hitters: Count-Min sketch always over-approximates
the volume of a prefix because of hash collisions; therefore,
its recall is 1. We compute precision by averaging the prob-
ability that a detected HH j is a true HH, p j. We start with
the case where each HH has traffic from one switch and later
expand it for multiple switches. The strawman solution is
to estimate the probability that an item could remain a HH
even after removing the collision error of any other item
from its minimum counter. The resulting estimated accuracy
under-estimates the accuracy by large error mainly because,
for skewed traffic, a few large items make the probabilistic
bound on the error loose since the few large items may only
collide on a few counters. Our approach treats the counters
in each row separately and only uses the probabilistic bound
for the error of small undetected items.

A strawman for estimating p j. p j is the probability that
the real volume of a detected HH is larger than the threshold
θ , p j = P(creal

j > θ). In other words, an item is a true HH,
if the estimated volume remains above the threshold even
after removing the collision error. We can estimate the con-
verse (when the collision error is larger than the difference
between estimated volume and threshold (Equation 2) us-
ing the Markov inequality. To do this, we observe that each
counter has an equal chance to match traffic of every item, so
the average traffic on each counter of each row is T

w (T is the
total traffic, and w is the number of counters for each hash
function) [16]. Using the Markov inequality, the probability
that the collision exceeds cest

j − θ is smaller than T
w(cest

j −θ)
.

However, since Count-Min sketch picks the minimum of d
independent counters, the collisions of all counters must be
above the bound. Putting this together, we get Equation 3:

P(creal
j > θ) = P(cest

j − ecm > θ) = 1−P(ecm ≥ cest
j −θ) (2)

P(creal
j > θ)> 1− (

T
w(cest

j −θ)
)d (3)

Unfortunately, as Figure 9 shows, the resulting estimated
precision is far from the actual precision, which leads to in-
efficient resource allocation. The reason is that, for skewed
traffic, a few large items can significantly increase average
error T

w , but only collide with a few counters.

Our solution: separate the collision of detected HHs on each
counter. We can leverage individual counters of detected
HHs in two ways to tighten the p j estimation. First, instead
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Figure 9: HH detection accuracy estimation for Count-
Min sketch (w = 340,d = 3)

of using the final estimated volume for a HH (cest
j ) that is

the smallest in all rows, we use the individual counters for
each hash function hi separately (cest

i, j ) that can be larger and
provide tighter bounds in Equation 4.

P(creal
j > θ)> 1−

d

∏
i=1

T
w(cest

i, j −θ)
(4)

Second, we know the counter indices for detected HHs
and can find if they collide with each other. Therefore, we
separate the collisions of detected HHs from collisions with
other small items. Using this, we can lower the estimate for
average collision traffic in the Markov inequality by remov-
ing the traffic of detected HHs, resulting in a tighter esti-
mate3. We now describe the details of this technique.

There are two cases where a detected HH is not a real HH:
(1) when detected HHs collide with each other; (2) when a
detected HH does not collide with other detected HHs, but
collides with multiple IPs with low counts, which together
inflate the traffic count above the threshold. For case (1),
we can easily check if a detected HH collides with other de-
tected HHs by checking if the index of its counter is hit by
another HH. If Bi, j is the set of other HHs that collide on the
ith counter of HH j, we just remove the estimated volume
of those HHs from the counter by using cest

i, j −∑k∈Bi, j cest
k

instead of cest
i, j . The estimated volume of HHs in set Bi, j

may be an over-approximation and removing them from cest
i, j

makes our p j estimate conservative. For case (2), we use the
Markov inequality to bound the collision of undetected small
items. However, instead of T , now we should use the traffic
of only undetected small items. Let A be the set of detected
HHs whose estimation is not affected by other HHs (no hit
on minimum counter). Replacing T with T −∑k∈A creal

k in
Equation 4, we can estimate p j in Equation 5. However,
we do not know creal

k∈A because of the over-approximations of
counts in the sketch. Thus, as an estimate, we use cest

k∈A after
reducing the average collision error of only small items from
it. Figure 9 shows that our estimation based on Equation 5
is close to the real precision, even under traffic dynamics. In
Section 6.4, we have validated that this improvement applies
across all the traces we have used in our evaluations, and that
this improvement is essential for SCREAM.

3 Cormode [18] also used this technique to find a resource-
accuracy trade-off for Count-Min sketch assuming the skew
of traffic is known, but our goal is to estimate p j for each
HH without assuming a model of traffic.



P(creal
j > θ)> 1−

d

∏
i=1

T −∑k∈A creal
k

w(cest
i, j −∑k∈Bi, j

cest
k −θ)

(5)

Multiple switches: As described in Section 3, our resource
allocator estimates a global accuracy for the task, as well as
a per-switch local accuracy [33]. It uses these to add/remove
resources from switches. Similar to the single switch case,
we compute the global precision by finding p j for each de-
tected HH.

Markov’s inequality is too loose when a HH has traffic
from a set of switches, so the single-switch accuracy esti-
mator does not work well. The reason is that the network-
wide collision (a random variable) is the sum of collisions at
individual switches (sum of random variables) [11]. How-
ever, since the collision on a sketch is independent from the
collision on another, we can replace Markov’s bound with
Chernoff’s bound [11] to get a more accurate estimation of
p j (see our technical report [34]). We still use the Markov’s
inequality to estimate precision if a HH has traffic from a
single switch.

Once we calculate p j, we compute local accuracies by at-
tributing the estimated precision p j to each switch. If a given
HH j has traffic at a single switch, the p j is only used for the
local accuracy of that switch. Otherwise, we attribute preci-
sion proportionally to each switch based on its average error
as, intuitively, the switch that has smaller average error com-
pared to others must have higher precision.

Hierarchical heavy hitters: If a detected HHH has no
descendant HHH (e.g., 0000, 010*, 0111 in Figure 5), its
p j can be easily calculated using the Markov or Chernoff
bound. However, if a detected HHH has descendant HHHs,
we cannot just apply those equations to cest

j (volume exclud-
ing descendant HHHs) as its p j depends on the p j of de-
scendent HHHs, because even if the sketch approximated
the volume of a HHH accurately, the over-approximation
of the descendant HHHs can make it a false HHH. For ex-
ample in Figure 5, if we detected 0000, 010*, and 0111 as
HHHs and over-approximated only the volume of 010* as
17, the weight for 0*** excluding descendant HHHs will be
49−40= 9 and will not be detected. Instead, we detect ****
as a HHH with volume 54− 40 = 14. In this scenario, al-
though we may have approximated the volume of **** cor-
rectly, it will be incorrectly detected as a HHH. Thus, we
need to find if the sum of over-approximations in a set of de-
scendants could make a true descendant HHH below j and
avoid j to become a true HHH.

Instead, SCREAM uses a simpler but conservative approach.
First, we notice that in the worst case, the over-approximated
traffic has been excluded from one of children of the detected
HHH. For each child prefix, we check if these over-approxi-
mations could make it a HHH. If any child with a new vol-
ume becomes HHH, the parent cannot be, so as a heuristic,
we halve p j. Second, we find a conservative bound for the
over-approximations of each descendant HHH and add them
up instead of going through the probability distribution of
the sum of over-approximations. The over-approximation

error bound, say êcm
D( j), for each descendant HHH of j, D( j),

is the upper bound on its error, ecm
D( j): P(ecm

D( j) < êcm
D( j)) >

0.1. 4 We find this upper bound using Markov’s inequality
for HHHs originated from a single switch and Chernoff’s
bound otherwise. For example, Equation 6 derived from
Equation 5 shows the maximum error that a descendant HHH
at a single switch at level l can have while keeping p j ≥ 0.1.

ecm
D( j) ≤

T −∑k∈Al
creal

k

w d
√

0.9
(6)

Multiple switches: For the global accuracy, we just replace
the Markov inequalities in HH tasks and Equation 6 with
Chernoff’s bound. Finding the local accuracy on each switch
is similar to HH with one difference: when the p j of a HHH
decreases because of its descendants, we need to consider
from which switch the data for descendants come and assign
lower accuracy to them. So in these cases, we also consider
the average error of sketches per descendant for each switch
and attribute the accuracy proportionally across switches.

Finally, we have found in our experiments (Section 6)
with realistic traffic that, for HHH, recall is correlated with
precision. Our intuition is that because the total size of de-
tected HHHs is smaller than T [15] and no non-exact HHH
prefix can have a size ≥ 2θ [33], detecting a wrong HHH
(low precision) will also be at the cost of missing a true HHH
(low recall).

Super source or destination: The p j of a SSD depends on
both the distinct counter error (edc) and hash collisions (ecm)
because their errors add up [22]. For a false positive SSD, j,
that has counter cest

i, j for ith hash function, the error, edc
i, j +ecm

i, j
must have been greater than cest

i, j −θ ′ where θ ′ is computed
based on the threshold θ and our version of Equation 1 (see
our technical report [34]). If the SSD has d′ ≤ d such coun-
ters (remember we choose median instead of minimum), p j
is computed using Equation 7. We can compute p j, based
on the individual error distributions of Count-Min sketch
and the distinct counter (see formulations in the technical re-
port [34]). The error of HyperLogLog sketch has the Gaus-
sian distribution with mean zero and relative standard devi-
ation of 1.04/

√
m when it has m replica counters [21]. The

collision error because of Count-Min sketch is also bounded
using Markov inequality as before.

P(creal
j > θ

′) = 1−
d′

∏
i=1

P(edc
i, j + ecm

i, j ≥ cest
i, j −θ

′) (7)

In contrast to HH tasks, the recall of SSD is not 1 because
the distinct counters can under-approximate. However, the
probability of missing a true SSD can be calculated based
on the error of the distinct counter [22]. The error of Hyper-
LogLog distinct counter depends on the number of its replica
counters, and we can configure it based on the user require-
ment just at the task instantiation.

Multiple switches: We merged distinct counters on differ-
ent switches into one distinct counter for each row of Count-
Min sketch. Thus, for SSDs, accuracy estimation on mul-
4 In practice, we found 0.1 a reasonable value.



tiple switches is the same as one switch. To compute local
accuracies, we use the average error of sketches from differ-
ent switches to attribute the computed global accuracy, p j,
proportionally across switches.

6. EVALUATION
In this section, we use simulations driven by realistic traf-

fic traces to show that SCREAM performs significantly bet-
ter than OpenSketch, and is comparable to an oracle both on
a single switch and on multiple switches.

6.1 Evaluation setting
Simulator: Our event-based simulator runs sketches on 8
switches and reports to the controller every second. Tasks
at the controller generate task reports and estimate accuracy,
and the resource allocator re-assigns resources among tasks
every second. The reject and drop parameters of the resource
allocator are set the same as DREAM [33]. The resource al-
locator is scalable to more switches, and the average number
of switches that a task has traffic from is the dominating fac-
tor for controller overhead [33]. Therefore, we make each
task to have traffic from all 8 switches and put the evaluation
for more switches for future work.

Tasks and traffic: Our workload consists of three types
of tasks: HHs, HHHs and SSDs. In a span of 20 minutes,
256 tasks with randomly selected types appear according to
a Poisson process. The threshold for HH and HHH tasks
is 8 Mbps and the threshold for SSD tasks is 200 sources
per destination IP. We choose 80% as the accuracy bound
for all tasks since we have empirically observed that to be
the point at which additional resources provide diminishing
returns in accuracy. Each task runs for 5 minutes on a part
of traffic specified by a random /12 prefix. We use a 2-hour
CAIDA packet trace [3] from a 10 Gbps link with an average
of 2 Gbps load. Tasks observe dynamically varying traffic as
each task picks a /4 prefix of a 5-min chunk of trace and
maps it to their /12 filter. Thus, our workload requires dy-
namic resource adjustment because of traffic properties vari-
ations and task arrival/departure. For scenarios with multiple
switches, we assign /16 prefixes to each switch randomly
and replay the traffic of a task that matches the prefix on
that switch. This means that each task has traffic from all
8 switches. In a data center, SCREAM would monitor traf-
fic on the source switches of traffic (the ToRs), thus network
topology is irrelevant to our evaluation.

Evaluation metrics: The satisfaction rate is the percentage
of task lifetime for which accuracy is above the bound. We
show the average and 5th% for this metric over all tasks. The
5th% value of 60 means that 95% of tasks had an accuracy
above the bound for more than 60% of their lifetime: it is im-
portant as a resource allocator must keep all tasks accurate,
not just on average. The drop ratio shows the percentage of
tasks that the SCREAM resource allocator drops to lower the
load if it cannot satisfy accepted tasks, and the rejection ratio
shows the ratio of tasks that had been rejected at instantia-
tion in each algorithm. These metrics are important because
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Figure 10: Comparison for OpenSketch (different rela-
tive error%) and the oracle at a single switch

a scheme can trivially satisfy tasks by rejecting or dropping
a large fraction of them.

Comparison with OpenSketch: OpenSketch [40] allo-
cates resources to a task based on worst-case traffic to reach
a given relative error at a single switch. To bound the error
to x% of the threshold θ on a HH/HHH detection task that
has an average traffic of T , it configures a Count-Min sketch
with w = eT

xθ
. For example, if a task has 128 Mbps traffic,

a sketch with w = 435 and d = 3 can guarantee that the rel-
ative error is lower than 10% of the threshold θ = 1 MB
with probability 1− e−3 = 0.95. In our experiments, we fix
the number of rows, d, to 3 and find w based on the error
rate. For SSD detection, OpenSketch solves a linear opti-
mization to find the best value for distinct counter parameter
(m) and Count-Min sketch width (w) that minimizes the size
of sketch [40].

At task arrival, OpenSketch finds the required amount of
resources for the relative error guarantee and reserves its re-
sources if there is enough free resources; otherwise, it rejects
the task. We run OpenSketch with a range of relative errors
to explore the trade-off between satisfaction and rejection.
OpenSketch was originally proposed for the single-switch
case, so for comparison on multiple switches, we propose
an extension as follows. We run a separate OpenSketch al-
locator for each switch and if a task cannot get resources on
any switch it will be rejected. However, setting the resources
based on the worst case traffic for all switches would require
too many resources as some tasks may have most of their
traffic from a single switch. Therefore, given the total traffic
T for a task, we configure the sketch at each switch based on
the average traffic across switches (T/8).

Comparison with Oracle: We also evaluate an oracle that
knows, at each instant, the exact resources required for each
task in each switch. In contrast, SCREAM does not know
the required resources, the traffic properties or even the error
of accuracy estimates. We derive the oracle by actually exe-
cuting the task, and determining the resources required to ex-
ceed the target accuracy empirically. Thus, the oracle always
achieves 100% satisfaction and never drops a task. It may,
however, reject tasks that might be dropped by SCREAM,
since the latter does not have knowledge of the future.

6.2 Performance at a single switch
SCREAM supports more accurate tasks than OpenSketch.
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Figure 11: Comparison for OpenSketch (different rela-
tive error%) and the oracle at multiple switches

Figure 10 compares SCREAM to OpenSketch with three dif-
ferent relative error percentages for a combination of differ-
ent types of tasks over different switch memory sizes 5. We
ran the experiment 5 times with different task arrival pat-
terns and show the error bars in Figure 10b which are very
tight. Note that OpenSketch uses the worst-case guarantee
and even a relative error of 90% of threshold can result in
high satisfaction. SCREAM has higher satisfaction rate than
OpenSketch with high relative error (90%), but its rejection
rate is lower. SCREAM can support 2 times more tasks with
comparable satisfaction (e.g., the curve 50% error on switch
capacity of 1024 KB). Finally, OpenSketch needs to reject
up to 80% of tasks in order to get much higher satisfaction
than SCREAM (in 10% relative error curve).

SCREAM can match the oracle’s satisfaction for switches
with larger memory. For switches with larger memory,
SCREAM can successfully find the resource required for each
task and reach comparable satisfaction as the oracle while re-
jecting no tasks (Figure 10). For switches with smaller mem-
ory, SCREAM has similar rejection rate as the oracle, but its
satisfaction rate is smaller than the oracle. The reason is that,
in this case, SCREAM needs to dynamically adjust task re-
sources over time more frequently than for larger switches
and waits until tasks are dropped, during which times some
tasks may not be satisfied.

6.3 Performance on multiple switches
Figure 11 shows that SCREAM can keep all task types

satisfied. However, OpenSketch either has high rejection for
strict error guarantee that over-allocates (OS_10), or cannot
keep tasks accurate for relaxed error guarantees that admit
more tasks (OS_50, OS_90). Note that the satisfaction of
OpenSketch for multiple switches is lower than its satisfac-
tion on a single switch especially for 5th% because OpenS-
ketch uses the error bounds that treat every switch the same.
(OpenSketch is not traffic aware, and cannot size resources
at different switches to match the traffic). As a result, it ei-
ther sets low allocation for a task on all switches and reaches
low satisfaction or sets high allocation and wastes resources.
However, SCREAM can find the resource requirement of a
task on each switch and allocate just enough resources to
reach the required accuracy. Our experiments for each in-

5 Switch memory size and network bandwidth overhead are
linearly related and both depend on the number of counters
in each sketch.
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Figure 12: Changing skew for HH detection at multiple
switches with capacity 64 KB

dividual task type, described in a technical report [34], also
show the superiority of SCREAM over OpenSketch.

Like the single switch case, SCREAM can also achieve a
satisfaction comparable to the oracle for multiple switches
(Figure 11a). In Figure 11b, SCREAM has a lower rejection
rate than oracle for small switches but still has no drop. This
is because SCREAM does not know the future resource re-
quirements of tasks, thus it admits them if it can take enough
headroom of free resources from highly accurate tasks. But
if later it cannot support them for a few epochs, it drops them.
Thus, SCREAM can tolerate tasks to be less accurate for a
few epoch and does not reject or drop them. However, the
oracle is strict and rejects these tasks at task instantiation;
hence, it has higher rejection.

SCREAM supports more accurate tasks than OpenSketch
over different traffic traces. Above, we showed SCREAM’s
superior performance for tasks with different traffic traces.
Now, we explore the effect of traffic skew by changing the
volume of traffic from each source IP at each second: Recall
that the frequency (denoted by volume) of elements (source
IPs) of rank i in ZipF distribution with exponent z is de-
fined by i−z. Thus to change the ZipF exponent to s× z,
it is enough to raise to the power of s the traffic volume from
each source IP in each measurement epoch. Note that we
keep the total traffic volume the same by normalizing the
traffic volume per source IP by the ratio of new total volume
over old total volume. Figure 12 shows that SCREAM can
keep tasks satisfied in a wide range of skew. For example, if
we reduce the skew to 60%, the mean (5th%) of satisfaction
is 98% (92%) and no task is rejected or dropped. However,
as OpenSketch considers the worst case irrespective of traf-
fic properties, it either ends up with low satisfaction for less
skewed traffic (OS_50, OS_90) or over-provisioning and re-
jecting many tasks (OS_10).

6.4 Accuracy estimation
SCREAM’s superior performance requires low accuracy

estimation error. Our experiments show that our accuracy
estimation has within 5% error on average. Although we
define accuracy based on precision, SCREAM achieves high
recall in most cases.

SCREAM accuracy estimation has low errors. We cal-
culated the accuracy estimation error (the percentage dif-
ference of the estimated accuracy and the real accuracy) of
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Figure 13: HHH satisfaction on multiple switches
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Figure 14: Accuracy estimation error

tasks for the single switch and multiple switches cases. Fig-
ure 14 shows that SCREAM can estimate the accuracy of
tasks with about 5% error on average. As an aside, using the
strawman accuracy estimator for HH detection (Section 5),
resulted in about 15%(40%) error in average (std) and forced
SCREAM to reject or drop all tasks in this scenario.

The error of our accuracy estimator varies across different
task types but goes down for switches with larger capacity.
The reason is that the error of our accuracy estimators de-
creases for higher accuracies and with larger switches more
and more tasks can reach higher accuracies. We found that
the cases with high error in accuracy estimation usually only
have very few detected items that are close to the threshold.
For such items with small margin over the threshold, Markov
inequality is loose, resulting in error in accuracy estimation.

Tasks in SCREAM have high recall. Figure 13b shows
that the satisfaction of HHH detection tasks based on recall
is higher than that of OpenSketch. This is because the recall
of HHH detection is correlated with its precision (see Sec-
tion 5). Hence, the curves for satisfaction based on recall
(Figure 13b) are similar to the curves for satisfaction based
on precision (Figure 13a). As mentioned in Section 5, the
recall of HH detection is always 1, and the recall for SSD
detection depends on the number of replica counters in the
distinct counter. In our experiments, the average recall was
above 80% for all switch sizes.

7. RELATED WORK
Sketch-based measurement on individual tasks: There
have been many works on leveraging sketches for individual
measurement tasks. Some works propose sketch-based mea-
surement solutions on a single switch for HH [14], HHH [15],
and SSD [17]. Other works [5, 22] provide algorithms to
run sketches on multiple switches with a fixed sketch size on
each switch. Instead, SCREAM provides efficient resource
allocation solutions for multiple measurement tasks on mul-

tiple switches with different sketch sizes at these switches.

Resource allocation for measurement tasks: Most re-
source allocation solutions focus on sampling-based mea-
surement. CSAMP [37] uses consistent sampling to dis-
tribute flow measurement on multiple switches for a single
measurement task and aims at maximizing the flow cover-
age. Volley [31] uses a sampling-based approach to monitor
state changes in the network, with the goal of minimizing the
number of sampling. Payless [12] decides the measurement
frequency for concurrent measurement tasks to minimize the
controller bandwidth usage, but does not provide any guar-
antee on accuracy or bound on switch resources.

OpenSketch [40] provides a generic data plane that can
support many types of sketches with commodity switch com-
ponents. It leverages the worst-case accuracy bounds of
sketches to allocate resources on a single switch for mea-
surement tasks at task instantiation. On the other hand, SCRE-
AM dynamically allocates sketch resources on multiple swit-
ches by leveraging the instantaneous accuracy estimation of
tasks, and thus can support more tasks with higher accuracy.

DREAM [33] focuses on flow-based counters in TCAM,
and dynamically allocates TCAM resources to multiple mea-
surement tasks to achieve their given accuracy bound. DRE-
AM develops accuracy estimators for TCAM-based zoom-
in/out algorithms, and its paper’s evaluations show that DRE-
AM is better than simple task-type agnostic schemes such as
equal TCAM allocation. In contrast, SCREAM explores the
accuracy estimation for sketch-based tasks, where the sketch
counters are not accurate compared to TCAM counters be-
cause of random hash collisions. We show that SCREAM
supports 2 times more accurate tasks than a task-type aware
allocation, OpenSketch [40], and has comparable performance
as an oracle that knows future task requirements.

8. CONCLUSION
Sketches are a promising technology for network mea-

surement because they require lower resources and cost with
higher accuracy compared to flow-based counters. To sup-
port sketches in Software-defined Measurement, we design
and implement SCREAM, a system that dynamically allo-
cates resources to many sketch-based measurement tasks and
ensures a user-specified minimum accuracy. SCREAM es-
timates the instantaneous accuracy of tasks to dynamically
adapt to the required resources for each task on multiple
switches. By multiplexing resources among network-wide
measurement tasks, SCREAM supports more accurate tasks
than current practice, OpenSketch [40]. In the future, we
plan to add more sketch-based tasks such as flow-size distri-
bution and entropy estimation.
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