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ABSTRACT

Packet losses are common in data center networks, may be
caused by a variety of reasons (e.g., congestion, blackhole),
and have significant impacts on application performance and
network operations. Thus, it is important to provide fast

detection of packet losses independent of their root causes.

We also need to capture both the locations and packet header
information of the lost packets to help diagnose and mitigate
these losses. Unfortunately, existing monitoring tools that
are generic in capturing all types of network events often
fall short in capturing losses fast with enough details and
low overhead. Due to the importance of loss in data centers,
we propose a specific monitoring system designed for loss
detection. We propose LossRadar, a system that can capture
individual lost packets and their detailed information in the
entire network on a fine time scale. Our extensive evaluation
on prototypes and simulations demonstrates that LossRadar
is easy to implement in hardware switches, achieves low
memory and bandwidth overhead, while providing detailed
information about individual lost packets. We also build a loss
analysis tool that demonstrates the usefulness of LossRadar
with a few example applications.

1. INTRODUCTION

Packet losses are common in data center networks and can
happen for a variety of reasons. For example, Jeff Dean’s
keynote [7] indicates on average in a production data center
for one year, up to 40-80 machines can experience packet
losses, 4 network maintenance jobs can cause 30-minute
random connectivity losses, and 3 router failures can cause
immediate traffic blackholing for an hour. Such losses can
significantly affect application tail latency and throughput
especially when applications often view losses as a signal of
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congestion. It also takes operators tens of hours to diagnose
the root causes of losses and recover from them.

It is important to detect losses fast and independent of the loss
types (e.g., congestion, blackholes). With fast loss detection,
operators have enough time to diagnose their root causes and
mitigate the impact of losses. Being independent of loss types,
we can capture all kinds of losses, especially unexpected
ones such as those caused by hardware and software errors.
Moreover, to diagnose the root causes, operators often need
the detailed location on where losses happen, and the packet
header information on what kind of packets get lost, the
timing of losses, and other loss patterns.

Unfortunately, existing monitoring tools that are generic in
capturing all types of network events often fall short in cap-
turing losses fast with enough details and low overhead. End-
host based solutions [37, 25, 12] cannot provide the exact
location information on where losses happen. Packet mir-
roring [38, 13] either incurs large bandwidth overhead of
mirroring all the traffic, or selectively mirrors some packets
and thus miss capturing all types of losses. Some counters at
switches (e.g., SNMP counters) can report a few loss types
(e.g., ACL drops) but often miss the other losses that are
harder to capture (e.g., caused by hardware and software er-
rors). Flow-based monitoring tools (e.g., FlowRadar [21],
NetFlow [26]) keep counters for individual flows and com-
pare them across hops to identify losses, which do not have
the timing and sequence patterns of losses and have an over-
head associated with the number of flows (which can be large
in large data centers [33]). One common theme of these
approaches is to detect loss by keeping records of ongoing
flows and identify the missing ones.

Due to the importance of loss in data centers, we propose a
specific monitoring system designed for loss detection. In-
stead of keeping records whose overhead is proportional to
the ongoing traffic or flows, we propose to keep records
whose overhead is proportional to the number of losses.

We propose LOSSRADAR, a lightweight packet loss detection
service that quickly reports the locations and 5-tuple flow
information of individual lost packets in 10s of milliseconds.
The very basic component we introduce for LOSSRADAR is a
meter, a light-weight traffic digest generation logic. We place
several meters at various vantage points in a network. Then,
each meter periodically generates small digests summarizing
all the traffic passing through itself and exports the digests



to a remote collector. The collector then decodes the digests
exported by the meters. The way collector performs such
analysis is inspired by the flow conservation rule in graph
theory (and the current conservation rule in electrical-circuit
theory as well). Given any segments (a link, switch, or group
of switches) in a network and all uni-directional flows passing
through the segment, the collector compares between the
traffic digests generated by all the meters surrounding the
segment. Any mismatch across the digests indicates packet
losses, and the collector decodes the digest mismatch further
to restore the identifiers of each lost packet. We also introduce
an analyzer that can identify several (but not all) types of root
causes of packet losses.

We design a Bloom-filter based data structure to collect traffic
digests at each meter in real time with three key benefits: (1)
Its memory requirement only grows linearly with the number
of lost packets instead of all the transferred packets. (2)
It keeps all the details of the lost packets such as 5 tuples,
timing, and sequences of packets. (3) These traffic digests
are generic to capture all types of losses and can be easily
implemented in today’s commodity switches.

Our extensive testbed evaluations with open vSwitch based
prototype and large-scale packet-level simulations show that
LOSSRADAR uses only 1.4% of memory usage compared to
the state-of-the-art approach when the loss rate is lower than
0.1%, and 0.5% of the bandwidth overhead of full mirroring,
while providing detailed information for all the lost packets.

2. PACKET LOSS IN DATA CENTERS

Packet losses not only significantly affect application per-
formance but also make network management tasks such as
traffic engineering and diagnosis hard [12]. In this section,
we first discuss the key requirements of loss detection: fast
detection to minimize the impact of losses, generic detection
of all types of losses, and capturing the locations and the
headers of lost packets to help diagnosis. Next, we discuss
existing tools in data centers which fall short in supporting
these requirements of loss detection with low overhead.

2.1 Requirements on loss detection

We summarize three key requirements on loss detection: (1)
We need to detect packet losses fast to minimize their impact.
(2) We need a generic approach to capture all types of packet
losses ranging from congestion losses to random losses. (3)
We need to know the locations and all the details of lost
packets (e.g., header fields) to infer their root causes.

Fast detection. Packet losses are common in data center net-
works. Studies have shown that, on average in a production
data center for one year, up to 40-80 machines can experience
up to 50% packet loss rates, four network maintenance jobs
can cause 30-minute random connectivity losses, and three
router failures can cause immediate traffic blackholing for an
hour [7]. Microsoft also reports one to ten new blackholes
every day in a data center [12].

Packet losses often have significant impacts on application
performance and network operations. Just a few non-
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Figure 1: Switch packet processing pipeline

congestion-related losses can cause significant tail latency
increase and throughput drop (especially because TCP treats
them as congestion signals) [23, 30], leading to violations of
service level agreements (SLAs) and revenue drops of online
services [8, 35]. Moreover, it often takes operators tens of
hours to identify whether a failure or performance problem is
caused by packet losses, where losses happen, which flows
are affected, and finally identify the root causes of losses and
figure out fixes [1, 2].

Instead, we need a loss detection solution that can identify
losses and narrow down their root causes fast (e.g., in tens of
milliseconds). In this way, we can give operators enough time
to identify their root causes or take actions to eliminate these
losses, in order to minimize their impact on applications and
network operations.

Generic detection of all loss types. Losses can be related
to different components in the network (Figure 1) and be
caused by different reasons. It is impossible to enumerate all
types of losses, so we highlight a few common ones normally
reported in data centers to illustrate the diversity of losses.
Congestion: Congestion loss happens at the output buffer and
is caused by multiple flows competing for the same output
port, and the total rate exceeds the capacity of that port.
Persistent blackholes: The persistent blackhole is a kind of
problem that drops all packets matching a certain “pattern”
at a switch [12, 38]. Persistent blackholes could be caused
by match-actions table corruptions [12, 38] or the controller
misconfiguring the rules.

Transient blackholes: The transient blackhole is similar to the
persistent blackhole, but only during a short period. Transient
blackholes could be caused by non-atomic rule updates [19]
or network-wide inconsistent updates [14].

Random drops: The random drop is a type that the switch
persistently drops packets randomly without reporting [12,
38]. Random drops could be caused by component problems
such as not-well-seated linecards or faulty links [12].

Of course, there are many other losses we have not mentioned
here. Such a diversity of losses demands a tool that can detect
all losses regardless of the types.

Capturing location information. The first step to diagnose
a packet loss is to identify the location of it—which switch,
NIC, or host that incur the packet loss. Knowing the location,
we can take quick actions (e.g., reboot the switch, reroute
the traffic) to quickly mitigate the impact [36] or analyze the
flows at the location to help diagnose the root causes [12].

Capturing packet header information. We need to distin-
guish different types of losses to identify the best solution
to mitigate these losses (Table 1). For example, if there are



Loss types Example error places

Mitigation Details

Congestion Buffer

Re-schedule flows Flows, timing

Persistent blackholes | Switch match-action tables, Controller

Reboot, fix config Flows, sequences

Transient blackholes | Controller, switch software

Debug controller or switch software | Flows, sequences, timing

Random drops switch hardware

direct traffic away Flows, timing

Table 1: Example types of packet losses

congestions, operators can re-schedule the flows to avoid
congested links or move the applications to other servers. For
persistent blackholes, we need to reboot the switches to fix
table corruptions, or to correct the misconfigurations at the
controller. If there is a transient blackhole, it helps opera-
tors to identify and fix the bugs in the controllers or switch
softwares. If there are silent random drops, operators have to
shut down and RMA (return merchandise authorization) the
faulty components [12].

To distinguish different types of losses and understand the
impacts of losses, we need different types of details. (1)
flow information such as 5 tuples (source, destination IP
addresses, ports, and protocol). Different flows may have
different loss patterns, so it is important to know the 5 tuples.
Also, such 5-tuple information can indicate the applications
affected by the losses and allow operators to take fine-grained
actions to help these applications. (2) Timing information.
Many types of losses are very short, such as congestions
or transient blackholes, so it is good to know the timing of
each individual loss, which can help identify the temporal
pattern of the losses. (3) Loss pattern. It is also important to
identify the loss pattern, because different types of losses have
different loss patterns (e.g., blackhole losses are continuous,
while others may not be).

2.2 Existing monitoring tools

In data centers, there have already been a lot of monitoring
tools. Some of them can be used for detecting packet losses.
However, we now show that these solutions fall short in
achieving the above goals. Due to the importance of loss
detection in data centers, we need a new monitoring tool that
is specifically designed for packet losses.

End host based solutions. End host based solutions [37, 25]
can capture losses at the TCP level or by inspecting packets
at the hypervisors. Although these solutions can capture all
the details of lost packets independent of their types, it is hard
to pinpoint the exact location of packet losses.

Pingmesh [12] can infer the location of packet losses through
all-to-all probing, but cannot identify the exact switch that
causes the problem within the leaf or spine groups. However,
it does not track the packet losses of the actual applications.
Moreover, its probing frequency is at least 10 seconds to
reduce its overhead. Thus, it may miss many transient losses
that happen between probes.

Packet mirroring at switches. Everflow [38] selectively
mirrors packets to the collector, so the operators can know
the traces of packets matching pre-selection filters and can

detect losses by identifying those packets that do not have
complete traces to reach the destination. However, it is not
good at capturing most types of losses, and it is unclear if the
packets get lost or if the report to the collectors gets lost.

Counters at switches. Switch vendors provide various coun-
ters (e.g., SNMP) to indicate the health conditions and op-
erations at switches, some of which are related to losses.
However, due to the diversity of loss types, it is difficult to
identify and implement the right set of counters.

FlowRadar [21] captures per-flow counters at each switch
at a fine time scale (e.g., 10s of milliseconds). One can use
FlowRadar to detect packet losses by comparing the counters
at two nearby hops. However, since it is hard to synchronize
the counters to capture the same batch of packets, we often
have to wait for a flow ends (or a flowlet ends with enough
idle time after it [3]). The memory usage for FlowRadar is
proportional to the number of flows we need to capture.

2.3 LossRapar Design

Instead of relying on generic monitoring tools which often fall
short in loss detection, we propose to build a monitoring tool
specific to loss detection given the prevalence and importance
of packet losses in data centers. We propose to design a new
loss detection solution that can capture all types of losses
that happen at anywhere anytime and identify individual lost
packets, while keeping the overhead low.

Generic to all types of losses. To detect losses regardless
of their types and root causes, our key idea follows the Flow
Conservation Rule: The set of packets that comes into any
network domain (a link, a switch module, a switch, or an area
of network devices) should be equal to the set of packets that
leaves the domain, as long as the domain does not include
any packet sources and sinks (e.g., middleboxes, hosts)'.

Fast detection of losses and their locations. Based on the
Flow Conservation Rule, we design LOSSRADAR as shown
in Figure 2. LOSSRADAR installs meters to capture uni-
directional traffic before it enters and after it leaves a domain
in the network (called upstream and downstream meters).
Each meter encodes the unique identifiers for individual pack-
ets into a traffic digest, and periodically reports traffic digests

"We recognize that a network switch can occasionally be-
have as a packet source or sink for certain types of packets
(e.g., routing protocol messages, switch management proto-
col messages). Those packets, however, can be easily and
unambiguously distinguished and hence can be filtered out
from the LOSSRADAR mechanism.



Loss detection tools Detection time Generic Location | packet header info | Overhead

Host monitoring [37, 25] | 10s of ms Yes No Yes Host CPU

Pingmesh [12] 10s of seconds Only persistent losses | Infer No Host CPU

Mirroring [38] 10s of ms Miss congestion Yes Yes B/w prop. to # packets
Flow-level counters [21] | After a flow(let) ends | Yes Yes Only per-flow info | Memory prop. to # flows
LossRadar 10s of ms Yes Yes Yes Memory prop. to # losses

Table 2: State-of-the-art datacenter monitoring solutions

e Traffic Digest

( —
\

— ey \
N - \ Traffic Digest L
- *”"'\:\\“i;/——

Figure 2: LOSSRADAR architecture (Red circles are meters)

to a central LOSSRADAR collector. LOSSRADAR collector
compares traffic digests from upstream and downstream me-
ters, detects violations of the Flow Conservation Rule, and
reports detailed information of lost packets.

Capture packet header information with low overhead.
We want to store detailed information (e.g., 5 tuples, timing,
sequences) to help the diagnosis of lost packets. However,
switches have limited memory (only tens of MB for all the
counters and match-action tables). Thus, it is important to
capture important information about packet losses in limited
memory. Rather than keeping information about all the traffic
(e.g., FlowRadar [21]), we propose to build a traffic digest
whose size is proportional to the number of packet losses
independent of the total traffic or flows in the system.

With LOSSRADAR, operators only need to provision the
switch memory based on the number of losses they expect
and the amount of details they need. When the number of
losses goes beyond the expected number, LOSSRADAR can
still report the total number of losses at each location but may
miss the detailed information such as 5 tuples for some losses.
This is reasonable because when there is a large number of
losses at a place, it is more important to reboot the entire
switch or direct traffic away from it.

To collect more useful details of unknown lost packets, op-
erators may also choose to pre-filter expected losses (e.g.,
those packets dropped by access control list) by specifying
the right set of packets that LOSSRADAR needs to keep in its
traffic digests.
Challenges:
LOSSRADAR:
Small size digests: To capture individual lost packets and
their detailed information with low overhead, we proposed
data structures that can capture all the packets in the digest
while keeping the digest small enough to reduce the storage,
bandwidth, and processing overhead. The key insight is

There are three key challenges in building

we leverage coding techniques[10] to only keep information
about lost packets. (Section 3)

Meter placement: To locate where losses happen in the
network, we identify the right places to install meters that can
cover the entire network. In some networks where we cannot
deploy meters at all places, we can still install the meters at
some locations that can narrow down the potential location
of losses. (Section 4)

Loss analyzer: Given the details of losses, we design tem-
poral and spatial loss analysis algorithms that can quickly
identify some root causes such as blackholes, congestions
and random drops. Moreover, we develop algorithms that
can identify the set of rules that may cause the blackhole.
(Section 5)

3. LossraparR TRAFFIC DIGESTS

In this section, we describe the design of traffic digests with
low memory overhead and the benefits of our design, and
then discuss the challenges in collecting the digests.

3.1 Capturing losses with small digests

We observe that although the number of packets in the net-
work is too large for the meters to keep track of, the number
of lost packets are much smaller. Thus if we can only keep
track of the lost packets rather than all packets, we can re-
duce the overhead a lot. The question is how to track lost
packets? Our idea is to keep traffic digests at an upstream
meter and a downstream meter. When we compare the two
meters, the same packets at both digests will cancel out, so
only the packets that do not appear at the downstream (i.e.,
lost packets) remain in the result. In this way, the digest size
only needs to be large enough for the number of losses, not
the total number of packets.

We build traffic digests using Invertible Bloom Filter (IBF)
[10], as shown in Figure 3. The digest has an array of cells.
Each cell contains two values: xorSwum and count. When a
packet x arrives, we insert it into k cells. Each cell is updated
as xorSum = xzorSum @ x.sig, count = count + 1. The
z.stg denotes x’s signature, which includes the immutable
header fields that can uniquely identify the packet (e.g. 5-
tuple and IP_ID) and other information about the packet,
which we will discuss in Section 3.2. The k cells are indexed
by k hash functions (h; ... hy) calculated on x.sig.

Figure 3 (a) and (b) shows two traffic digests, each of which
is taken at the upstream meter UM and the downstream meter
DM respectively. The upstream digest contains four packets
from two flows, and the downstream one contains only one
packet — the other three are lost.




F2.P2 F2.P2

(@ UM LF2PZ] F1P2 | FLp2 | F2P1 | F2P1
[FLP1 |[F2P1 | FLPL |[FLPL || FLP2

xorSum| a®d bec |a®bed| a®c |beced
count 2 2 3 2 3

(b) DM [FLP2 | F1.P2 ] [FLP2 |
xorSum| 0 b b 0 b
count 0 1 1 0 1

© L= | F2.p2 | |F2p2 |[ F2.P1 | F2.P2 ]

UM-DM| F1.P1 |[E2.P1 || F1.P1 || F1P1 |[F2.P |

xorSum| a®d c a®d a® ¢ ced

count 2 1 2 2 2

Figure 3: Traffic digests to get individual lost packets. (a) two
flows, each with two packets at the upstream meter, indicated
as a (F1.P1), b (F1.P2), ¢ (F2.P1), d(F2.P2); (b) only F1.P2 is
received at the downstream meter; (c) the result of the subtrac-
tion contains only lost packets

To identify lost packets, the digest collector subtracts
each cell ¢ in DM’s digest from the corresponding one in
UM’s digest. That is: L;.xorSum = UM;.xorSum &

DM;.xorSum; L;.count = UM;.count — DM;.count.

We can decode lost packets from the digest difference L as
follows: We first find the cells of L that contain exactly one
packet (i.e., count = 1) which are called pure cells. The
zorSum of a pure cell is exactly the signature of the packet
in it. We then remove the packet from all the £ cells in which
the packet was hashed into. Once this is done, some other
pure cells may appear, and we repeat the same process for
them. By doing this iteratively, we can retrieve all packets
in L with a very high probability (we will explain this in
Section 3.2). For example, in Figure 3 (c), we first identify a
pure cell whose count is 1 (F2.P1). After removing F2.P1,
we get the packet F1.P1 (the 4" cell’s updated count is 1);
and finally after removing F1.P1, we decode F2.P2.

3.2 Benefits of digests

There are two benefits of the digests.

The size of the digest in the meter is proportional to the
number of lost packets, but not the total number of pack-
ets that go through the meter. Suppose both UM and DM
have n..;; cells. Then L, as a result of the subtraction, also
has n..;; cells. Because L only needs to be large enough
to decode the nj,s5 lost packets, n.e; is determined by the
Njess- EXisting works have shown that n.;; only needs to be
proportional to n;,ss (i.€., ¢ = Z“” is a constant) to achieve

loss

a high success rate for decoding all losses>. Eppstein et al.
[10] shows empirically that ¢ = 1.3 to achieve a 99% success
rate when 7,55 > 1000 for £ = 3. Thus, we only need to set
the size of the digest in data plane with a small c times the
expected number of losses to achieve a high success rate.

2A success for decoding all losses means we can always find
a pure cell until all lost packets are decoded.

Because packet loss rate is very low (less than 0.01%) in
data centers [12], we only need small sized digests. Thus
we set our digest size small enough to capture lost packets
based on an upper bound of expected loss rate R (e.g., 0.1%).
When the loss rate is below R, we can decode individual lost
packets with high probability (e.g., >99%). When the loss
rate is above R, however, we can still detect the total number
of lost packets per port, but may fail to identify individual
lost packets. This is because the digest may have so many
lost packets in each cell, and thus the occurrence of pure cells
become progressively less probable. Note, however, this may
be still be quite acceptable for most network admins because,
when the loss rate is this high, it is much more crucial to take
urgent action to fix the problem (e.g., shut down the link or
the switch) than to diagnose the problem or to account for
individual losses to particular applications that are affected.

We can include a lot of details we are interested in of
each lost packet. The basic setting is to include two pieces
of information in the signature of a packet. (1) Flow-level
information. We store the 5-tuple information to provide
enough details of individual packets. (2) Packet identifier.
We use the IP_ID field because the IP_ID field is consecutive
within each 5-tuple, so it can be used to uniquely identify
a packet. In case the IP_ID field is not sufficient (e.g., if
more than 64K packets from a single flow are monitored in a
single monitoring window), we can include other fields such
as fragment offset, TCP sequence number or a small fraction
of the payload in the signature. In the basic setting, each
signature is 120 bits>.

Additionally, operators can configure to include any other
fields of a packet that they are interested in (e.g., TCP flags).
Note that if the field changes across hops, we need to consider
that. For example, if we want to include TTL, and the TTL
will decrement h in between, operators need to configure
the DM to insert TTL + h instead of TTL into the digest.
Operators can also include other metadata that are related
to but not part of the packet, such as the timestamp when
the packet arrives at the UM. In this case, the UM needs to
tag the metadata in the packet header, so that the DM can
use the same value. Including other fields require more bits
in the signature. For example, if we include the TCP-SYN
bit, TTL (only need 1 bit to distinguish zero and non-zero)
and timestamp, we need to extend the signature by 16 bits?,
which are used in our loss root cause analysis (Section 5).

3.3 Digest configuration

With LOSSRADAR, operators only need to provision the
switch memory based on the number of losses they expect
and the amount of details they need. When the number of
losses goes beyond the expected number, LOSSRADAR can
still report the total number of losses at each location but may
miss the detailed information such as 5 tuples for some losses.
This is reasonable because when there is a large number of

3104 bits for 5-tuple, and 16 bits for IP_ID.
41 bit for TCP-SYN, 1 bits for TTL, and 14 bits for
microsecond-level timestamp in 10 ms (2'4us>10ms).



losses at a place, it is more important to reboot the entire
switch or direct traffic away from it.

To collect more useful details of unknown lost packets, op-
erators may also choose to pre-filter expected losses (e.g.,
those packets dropped by access control list) by specifying
the right set of packets that LOSSRADAR needs to keep in
its traffic digests. Recent programmable switches can export
information of which packets they decide to drop because of
access control lists or buffer overflow (e.g., using negative
mirroring, which is presented at P4 workshop). With these
techniques, we can also exclude the lost packets known by
switches, and thus focus LOSSRADAR digests on those losses
the switches cannot diagnose.

3.4 Measurement batch

To capture packet losses in near real time, we capture packets
in batches at both upstream and downstream. So the operator
needs to ensure the same packet goes to the same batch in
both the upstream meter and the downstream meter.

To report packet losses in near real time, meters should keep
collecting traffic digests for a small batch of packets every T’
(e.g., 10 ms) and immediately report the digests to the central
collector as soon as the batch is over. To compare traffic
digests correctly across meters, however, we need to ensure
that a pair of upstream and downstream meters must agree on
the boundary of batches so that they can put the same packet
in the same batch. Otherwise, digests will always end up with
mismatches. Unfortunately, relying on time-synchronization
protocols or devices (e.g., NTP [27], PTP [32], GPS) to let
meters agree on batch boundaries has fundamental limitations:
no matter how accurate the time-sync protocol can ensure,
there could always be packets on the fly, i.e. packets that leave
the upstream meter, but have not arrived at the downstream
meter. Hence, if we rely on the time-sync protocols, batch
disagreement is inevitable.

Another possible solution is to use signal packets to synchro-
nize the starting and ending times of a pair of upstream and
downstream batches. However, if the signal packet is dropped
or gets reordered, some packets may be classified into the
wrong batch.

To work with packet losses and reordering, we propose to let
each packet carry a batch identifier to tell the downstream
meter which upstream batch the packet belongs to. Thus
which batch at the downstream a packet belongs to is not
based on the packet’s arrival time, but the batch_ID it carries.
If there is no packet reordering, a downstream batch can
be terminated when a packet with a new batch_ID arrives.
However, if there is reordering (e.g., due to different priority
queues), packets from different batches may interleave at the
downstream meter, so multiple downstream batches have to
coexist. As aresult, we set the lifetime of a downstream batch
to T' 4 timeout, starting at the first packet’s arrival of this
batch. The downstream batch is timeout longer than the up-
stream batch, which is for the delay in between. The operator
can set the value of timeout based on their expectation of
the maximum delay.

There is one question raised that how many downstream
batches can coexist at the same time, which is related to the

memory consumption. In data centers, the RTT is a few
hundreds of microseconds [4], and per-hop delay should be
shorter, so for T' > 1ms, there will be at most two batches
coexist at a downstream meter.

4. NETWORK WIDE DEPLOYMENT

In this section, we discuss where to install the meters to detect
packet losses that happen at any place in the network, and
pinpoint the exact loss locations. We consider two cases:
When we have access to all the devices in the network, or we
only have access to some switches.

4.1 Cover the entire network

We need to install meters to meet two goals: (1) Each pair
of meters covers a segment of paths where packets have a
unique path. In this way, we can easily compare the traffic
digests taken at a pair of meters (upstream and downstream)
to identify lost packets; (2) All pairs of meters together cover
the entire network. In this way, we would not miss any packet
loss event.

The high-level idea is to install one upstream meter at each
output port of every switch, and one downstream meter at
each input port of every switch as shown in Figure 4(a). In
this way, both directions of every link are covered. Note that
although we do not draw in Figure 4(a), there is also traffic
from S2 to S1, so actually we also need an upstream meter at
S2’s output port connected to S1, and a downstream meter at
S1’s input port connected to S2. In fact, we need two pairs of
upstream meter and downstream meter for each bidirectional
link. We only draw one pair in Figure 4(a) for conciseness.
Then, given the packet processing pipeline of a switch, we
need to figure out at which stages to install the meters. Con-
sidering that losses could happen at any stage of the pipeline,
we need to make sure the meters cover every part of the data
plane. We choose to put the meters at the end of the ingress
pipeline of tables, and before the shared buffer, as shown
in Figure 4(b). And, we put the upstream meters before the
downstream meters within a switch, rather than the other way
around, so that the segments between the upstream meters
and downstream meters are also covered. In addition, we
install meters for each network interface at hosts.

We choose this place to install meters for 2 reasons. First, at
the place where upstream meters are installed, the decision of
which output port(s) a packet goes to need to have been made,
so that the switch knows which upstream meter (output port)
to insert the packet into. Thus, the meters must be after all the
ingress pipeline of tables, because the decision could be made
at any of the ingress tables. Note, by doing so, we can handle
multicast by inserting the packet into the upstream meters of
all the output ports it goes to. Second, the timestamp collected
at this stage is the closest to the time a packet is enqueued, so
the timestamp can be used to describe the temporal pattern
of congestion losses. By doing so, we make the most use of
the timestamp of the packet.

4.2 Incremental deployment

We do not expect LOSSRADAR to be deployed at all the
switches in data centers at once. Now we consider the incre-
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Figure 4: Placing meters to cover the entire network (solid and
empty circles are respective upstream and downstream meters)

mental deployment case where only a subset of the switches
support LOSSRADAR. We define blackboxes as those areas
where we cannot install the meters. The strawman approach
is to install one meter at each port of the blackbox and com-
pare across meters. When meters do not have synchronized
clocks, we propose to let each meter maintain multiple small
digests instead of one. Moreover, our solution can reduce the
memory usage of the strawman approach by almost 2 times.

Strawman approach. Intuitively, we can insert an upstream
meter at each entrance to the blackbox, and a downstream
meter at each exit of the blackbox. Each upstream meter
and downstream meter maintains one digest. To retrieve the
losses, we can add up the digests at all upstream meters and
the digests at all downstream meters respectively, and com-
pare the two sums. Here adding up two digests a and b means
for each corresponding cell i, a;.xorSum @ b;.xorSum,
a;.count + b;.count. So the sum is also a digest of the same
size with a and b.

The memory usage of each digest in this case is larger than
in a non-blackbox case. The reason is as follows. Let us
call the size of a digest in a non-blackbox case as normal
size. Suppose there are n upstream meters and n downstream
meters. During the comparison of the two sums, the total
number of losses could be n times of the number of lost
packets from a single upstream meter. Thus, the size of the
sum digest has to be n times of the normal size. As a result,
the size of the digest at each meter has to be the same with
the sum, which is n times of the normal size.

Handle unsynchronized clock across meters. The prob-
lem with the strawman solution is that if the clocks of the
upstream meters are not well synchronized, packets from the
same batch of the same upstream meter may arrive at differ-
ent batches at one downstream meter. For example (Figure
5(a)), UM-a’s batch 1 is earlier than UM-b’s batch 1. The
packet al from UM-a’s batch 1 goes to DM-x, and starts the
downstream batch 1. The packets from UM-b’s batch 1 also
goes to DM-x. The packet bl from the early part of UM-
b’s batch 1 arrives at the late part of DM-x’s batch 1, since

(b) Solution for blackbox case

Figure 5: Challenge and solution to blackbox case

DM-x’s batch 1 has already started for a while. The packet
b2, however, arrives after DM-x’s batch 1 ended. So bl and
b2 are in the same upstream batch, but end up in different
downstream batches.

As long as the clocks of the upstream meters are not ac-
curately synchronized, there is always a chance of batch
disagreement.

Solution. Our solution is that each downstream meter main-
tains separate digests for each upstream meter, as shown in
Figure 5(b). To detect the packet losses, we can add up all
the digests for the same upstream meter across all the down-
stream meters (e.g., the digests for UM-a’s batch 1 at DM-x
and DM-y respectively), and compare the sum with the digest
at the upstream meter (e.g., UM-a’s batch 1). Thus, we can
identify all the lost packets between one upstream meter and
all its downstream meters.

Note that the downstream meters do not always know which
upstream meter a packet comes from. Our solution is to let
each upstream meter mark its meter ID in the packet header.
This solution has another benefit that it reduces the memory
usage. In the strawman approach, the size of each digest
(no matter at an upstream or a downstream) is n times of
normal size. In our solution, however, we compare one up-
stream digest with the sum of its corresponding downstream
digest, so the total number of losses in each comparison is
just the number of lost packet from one upstream meter, not
all upstream meters. So the size of each digest only needs
to be normal size. Thus, although each downstream meter
maintains n separate digests, the total size is still n times of
normal size. But for each upstream meter, the total size is
only normal size, which is reduced by n times.

In practice, each port of a blackbox can be both entrance and
exit, so each switch connects to the blackbox need to install
both upstream meter and downstream meter. In this case, the
memory usage reduction is 2n/(n + 1) per switch, which is
almost 2 times.

S. LOSS ANALYZER

Using the detailed information of lost packets, we build an
analyzer to classify the causes of packet losses by analyzing



traffic digests across the network over time. The loss analyzer
consists of (1) a root cause analyzer, which uses only the loss
information from LOSSRADAR to analyse the root causes
of the losses, and (2) an ACL rule corruption analyzer as an
application of the root cause analyzer, which can infer the
corrupted rules of an ACL table based on the correct version
of the ACL (from controller) and the blackhole losses from
the root cause analyzer.

5.1 Root cause analyzer

The root cause analyzer classifies the reasons for the losses
on each individual switch. In a short time (e.g. 10 ms) at one
switch, we assume losses are dominated by one reason, so
we can identify the root causes by recognizing the unique
patterns of different types of losses, given the details collected
by LOSSRADAR. We then relax the assumption to handle
multiple problems all causing losses.

5.1.1 Classification based on loss patterns

We can classify the losses based on the unique patterns of
different types of losses, given the details such as 5 tuples,
IP_ID, TTL, timestamps and TCP flags. We list the common
types of losses here. For other uncommon types, we classify
them as unknown. However, after diagnosis, we can extract
patterns of them based on the details we have, and use the
patterns for future classification.

Congestion. We observed that the congestion losses are
bursty, and the gap between back-to-back losses is only a
few microseconds. The TCP sends a batch of packets every
RTT, and the flows that experience losses will shrink their
congestion windows, so in the next RTT congestion is much
less likely to happen. Thus the congestion losses are bursty.
The gap between back-to-back losses is only a few microsec-
onds because the transmission time of a packet is microsec-
ond level. For 10G link, the transmission time of a 1500B
packet is 1.2us. Thus, even if the total receiving rate is only
10% higher than the sending rate of an output port, there will
be one loss every 11 packets, which is one loss every 13.2us.
Blackholes. We observed three different loss patterns.

(1) Bursty and consecutive losses within a flow. If a blackhole
happens and affects ongoing large flows (e.g., file transfer-
ring, video delivering), the affected ongoing large flows have
consecutive lost packets, and the losses are bursty.

(2) Non-bursty and consecutive losses within a flow. If a
blackhole happens and affects some ongoing small flows,
which only carries small pieces of data (e.g., sending mes-
sages), the affected ongoing small flows have consecutive,
but non-bursty losses.

(3) Only a SYN packet loss from each flow. In the above
two cases, each flow has multiple losses, but there are cases
some flows only have one loss for more than a few seconds.
After further investigation, we found that these lost packets
are mostly SYN or SYN-ACK. This means that for the new
flows, their handshake packets are dropped, so there are no
follow-up packets until the retransmission of the SYN packet,
which waits for a few seconds (normally 3 seconds for the
first retransmission, then the waiting time doubles).
Random drops. The random drops are evenly distributed

over time. This is because random drops are caused by prob-
lematic hardware components of a switch, which randomly
drops packets passing it with certain drop rates.

Loop. Packets dropped by loops have TTL = 0. So we can
use the TTL field to detect the losses caused by loops.

5.1.2 Root cause inference algorithms

There is still a small chance that during a given time period,
there may be multiple types of losses together, which blurs
the patterns. Thus, we design the root cause inference algo-
rithms based on two principles. (1) Identify bursty losses
first. We identify bursty losses first because other types of
losses have long term patterns (e.g. random drops are evenly
distributed over time, and the SYN packets dropped by black-
holes should represent a large fraction of losses), which can
be blurred by the burst of losses. (2) It is fine to correctly
classify only one type of losses when multiple types are
mixed. This is because we can fix the problems for one type
of losses first. Moreover, if the missed types are caused by
persistent problems, we can detect them in the future when
they are not mixed. (3) Keep the false alarm rate low for
blackholes and random drops, because both of them re-
quire human involvement: operator needs to check the switch
configuration for blackholes, and hardware components for
random drops. Thus, when blackholes/random drops are
mixed with congestion, we believe classifying the losses as
congestion losses is better’.

Before performing the inference algorithm, we first exclude
the expected losses such as packets dropped by ACL tables.
All the expected losses can be pre-filtered by programmable
switches. If the switch does not support pre-filtering, the
collector can easily identify this kind of losses by matching
the lost packets against the table rules. We also exclude
losses with TTL = 0, which could be dropped by loops, or are
expected by the applications (e.g., traceroute). We can map
the 5-tuple of the lost packets to the application to decide if
the loss is expected or not.

The algorithm has two steps on different time scales: (1)
For each new batch, we classify the bursty losses; (2) Every
long_term_interval (e.g. 100 ms), we classify the remain-
ing losses (from multiple batches) into non-bursty types. We
now describe the algorithm.

Analysis of bursty losses. We first perform an analysis of
bursty losses for each new batch at each port (Algorithm 1).
A burst is identified by at least 1,5+ losses with gaps less
than ¢4, between back-to-back losses. A burst of losses may
be caused by either congestion or blackholes. If a flow’s
losses are non-consecutive in this burst, it cannot be caused
by a blackhole, so we know there is congestion. In this case,
according to the design principle (3), we classify the whole
burst as congestion losses (Line 15 to 20). If all losses are
consecutive, we only classify the flows that lost almost one

>We understand that different networks have different require-
ments, so operators may use other principles if necessary.



congestion window (#losses > ny,%) as blackhole losses,
and the rest as congestion losses (Line 21 to 24).

Our idea to measure the consecutiveness is to examine the
IP_ID of the lost packets. In current Linux, the IP_ID of
each 5-tuple is consecutive [5], so we can use the IP_ID to
determine if the losses are consecutive or not.

We should set ¢4, large enough and 7y,,,s; small enough
to detect slight and short congestion, but still keep the prob-
ability of randomly dropping np,,-s¢ packets with less than
t4ap back-to-back gap low. nyy, should be set slightly lower
than the bandwidth-delay product for flows with still-growing
windows, while large enough to keep the probability of con-
gestion dropping ny, consecutive packets of a flow low.

Long term analysis. Every long_term_interval (e.g. 100
ms), we classify the rest of the losses (Algorithm 2).

We first classify the consecutive losses within a flow as black-
hole losses (Line 2 to 6), because its per-flow pattern is not
affected by other types of losses, and after removing these
losses, the pattern of other losses are clearer. We set a small
threshold n,,;” (line 3) for the length of the consecutive losses.
nnp Needs to be large enough to keep the probability of ran-
domly dropping n,; consecutive packets of a flow low.
After that, for the rest of the packets, we first classify SYN
losses as blackhole losses (line 8 to 11) if the fraction of SYN
packets in an interval is large (> pgyn). Psyn should be set
large enough to keep false alarm rate low. Finally, we measure
the distribution of the rest of the losses over time (line 12 to
14). We divide the time interval into n (number of losses)
equal bins, and count the fraction of non-empty bins (bins
with at least one loss) in all bins. We empirically estimate
this fraction using a simple experiment: we randomly throw
m balls into m bins following even distribution, and count
the fraction of non-empty bins. The fraction is around 0.63
for different m. This fraction gives an upper bound of p,.qn4,
because in practice packets’ arrivals are non-uniform.

In practice, we should set npy-st < npp, because otherwise
if a congestion loss burst of n packets where n < Npyrst
contains > n,,;, consecutive losses of a flow, the losses of that
flow would be classified as blackhole losses.

5.2 Rule corruption detection

For blackhole losses, after confirming with the configuration,
we can determine if there are misconfigurations or not. If
not, there must be rule corruptions. We develop algorithms
that can locate the set of rules whose corruption may cause
the blackhole. We take the access control list (ACL) table
as an example. Given the list of blackhole losses and ACLs,
we need to identify the rule that may get corrupted. For
simplicity, we only consider one bit flip in the table, which is
the most common case. There are three cases for unexpected
losses: (a) a deny rule’s match field corrupted, so it denies
flows originally not covered by it; (b) an accept rule’s match
field corrupted, and the flows originally covered by it now
match other deny rules; (c) an accept rule’s action changes

®bb stands for Bursty Blackhole
"nb stands for Non-bursty Blackhole
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Algorithm 1: LoSSRADAR bursty loss analysis

Function bursty_loss_analysis (B: a new batch of losses)
Mark the types of all losses in B as unknown;
burst = find_next_burst(B);
while burst /= Null do
classify_burst(burst);
burst = find_next_burst(B);
end
Function find_next_burst (B)
Find the next B;.. ; that Byy1.time — By .time < tgqp, and
the gap before B; and after B is larger than ¢g4p;
while j — ¢+ 1 < npyrse do
\ Find the next B;.. j;
end
return B;.. ;;
Function classify_burst (burst)
foreach flow fin burst do
if f’s lost packets have non-consecutive IP_ID then
Mark all losses in burst as congestion;
Return;
end
end
foreach flow f that has more than nyp losses in burst do
\ Mark all losses of f as blackhole;
end
Mark losses in burst whose types are unknown as congestion;

Algorithm 2: LOSSRADAR root cause inference

Function long_term_analysis (L: all losses at a port in
long_term_interval)
foreach flow fin L do
if ’s lost packets have consecutive IP_ID and
#(unclassified losses) >= nnp then
Mark losses in f whose types are still unknown as
blackhole;
end
end
rest = all the losses in L whose types are still unknown;
if fraction of SYN packets in rest > psyn then
Mark all the SYN packets’ types in rest as blackhole;
Remove the SYN packets from rest;

end
if random_distribution(rest) then
‘ Mark all packets’ types in rest as random;
end
Function random_distribution (L)
n = number of losses in L;
Divide the time period of L into n equal time interval 1. ,;
Count the number of losses in each T3;
if fraction of T; that has losses > prqna then
| return True;
end
return False;

to deny. We enumerate all three cases. For case (a), we
enumerate all deny rules in the correct ACL table, and find
the candidates whose match field corrupted by one bit would
match all unexpected loss. For case (b) and (c), we check
if all unexpected loss all match the same rule in the correct
ACL table. If so, then this rule is a candidate. Our evaluation



in Section 7.5 shows that this algorithm often narrows down
the candidate rule set of 2-2.5 rules and always successfully
cover the corrupted rules.

6. IMPLEMENTATION

We implemented LOSSRADAR in both Open vSwitch [28]
and P4 behavioral model [29].

6.1 Open vSwitch implementation

We modify Open vSwitch to support traffic digest collection.
We direct all the packets to the user space and collect traffic
digests there. We create a sending thread which sends digests
at the end of each batch to a digest collector via a persistent
TCP connection. Each time the collector receives both the
traffic digests from a pair of upstream meter (UM) and down-
stream meters (DM), it runs the decoding process to report
lost packets.

6.2 P4 implementation

At a high level, we put LOSSRADAR’s functions in two ta-
bles, at the end of the ingress pipeline. The first table is for
updating UMs, and the second is for DMs. We now inspect
the different components needed by LOSSRADAR.

Storing traffic digests. LOSSRADAR’s traffic digest is im-
plemented on the register in P4. We defined two arrays of
registers for zorSum and count respectively. The width of
each register in the xor Sum array is set to the total number
of bits in a packet’s signature (5-tuple, IP_ID, TTL, TCP
flag, timestamp, etc.). The lengths of the arrays are the num-
ber of cells n..;;, which is defined by users according to their
expected number of losses.

Each port of a switch has a UM and a DM. Each meter keeps
two digests for different batches of packets. We put all 215,
upstream digests in an array®, and all 2npor¢ downstream
digests in another array. The ¢-th cell in the b-th batch of the
p-th port is indexed by ¢ + (b - npore + D) - Neceir-

Updating digests. This includes calculating hash values
based on the packets’ stgnatures, and updating the cells in-
dexed by these hash values. We define 3 hash functions, calcu-
lated on a field_list that is defined to include the signature
of each packet. The signature is a bit different for UM and
DM. The mutable part of the signature (e.g. timestamp and
TTL) for the DM should be the same as the part for the UM at
the previous hop. So each UM uses the timestamp at this hop,
and each DM uses the timestamp carried by the packet. The
DM uses TTL+1 instead of TTL to cancel out the decrement
between hops.

Getting timestamps. LOSSRADAR uses timestamps when
packets are inserted into the UM. In current P4 behavioral
model [29], among the timestamps exposed, the closest to our
need is the timestamp when the switch starts processing the
packet (ingress_global_timestamp). This choice sacrifices
the time spent in the ingress pipeline, which, however, is
stabler and smaller (sub-microsecond) than the queuing delay,
so it is also useful for congestion detection. We believe in

8For brevity, we conceptually treat the two arrays for respec-
tive zorSum and count as one array.

future programmable switch design, exposing timestamp at
arbitrary stages in the pipeline is possible.

Pre-filtering. In P4, every packet go through the whole
pipeline, including the ones dropped by tables. So we can
pre-filter the table-dropped packets by inserting them into
only the DM (not the UM). In this way, these packets will
cancel out with the UM in the previous hop, without affecting
decoding other lost packets. We add a metadata drop with
a default value O for each packet, and update it to 1 in the
dropping actions of the tables. At the UM, we use a matching
field to filter out packet with drop = 1.

Header modification. LOSSRADAR needs the header to
carry batchID and optionally the timestamp and meterID
(if in a blackbox case). We either store these data in unused
header fields (e.g. VLAN, DSCP) or add a header, and modify
parsers or add a parser for these data accordingly.

Each hop needs to modify the batchID and timestamp in the
header to the ones the UM uses. However, this modification
cannot be performed before or at the UM, because after the
UM, the DM needs the previous hop’s batchID and times-
tamp, which is carried by the header. Thus, we store the new
batchID and timestamp in a metadata at the UM, and copy
the metadata to the header after the DM finishes the update.

7. EVALUATION

Our evaluation focuses on answering five key questions:

1. What is the memory and bandwidth usage of LOSS-
RADAR, and how they compare to other solutions such as
FlowRadar [21] and full packet mirroring [38, 13]? We
test them with a single pair of switches with traffics of differ-
ent loads and different loss rates. We use simulation to test
up to 100G traffic load. The result shows that LOSSRADAR
always uses less memory than FlowRadar in large data cen-
ters where the number of flows is large and less bandwidth
than full mirroring.

2. Under realistic network traffic, how effective are the
detection and the root cause inference of LOSSRADAR?
We run a network with 80 switches and 128 hosts in ns-3
simulations and evaluate LOSSRADAR with different traffic,
different loss patterns and loss rates. The result shows that we
only need a few KB per digest to capture more than 99.99%
lost packets. Our root cause inference algorithm can capture
all the root causes within a few 100s ms.

3. What is the memory usage per switch for different
deployments? We evaluate a full deployment and different
types of blackboxes cases, based on the same topology, traffic
and loss problems in the previous question. The result shows
that the memory usages per switch in blackbox cases are
higher than in a full deployment, but are still acceptable.

4. How fast is the loss detection? Our result in a testbed
with Open vSwitch [28] on a FatTree topology shows that the
detection delay is only 12 ms.’

5. Is the information LOSSRADAR provides useful? We
show two applications that use the loss details to improve
performance and identify corrupted rules.

We evaluate the delay with Open vSwitch rather than P4
behavior model due to performance concerns.
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Figure 6:

RADAR vs. NetSight vs. FlowRadar.

7.1 Bandwidth and memory overhead

We set up a simulation with a simple topology where there
are two switches. By default, we use 10G traffic, and the aver-
age packet size is 175B according to Facebook’s data center
traffic [33]. We change the traffic volume and the number
of concurrent flows during the experiment for comparison
with different state-of-the-art solutions. For LOSSRADAR,
each meter in LOSSRADAR reports the digests every 10ms.
Because it is possible that we fail to decode a digest, the size
of the digest we tested is large enough so that it can decode
all losses with 99% probability.

Bandwidth usage of LOSSRADAR is much less than full
packet mirroring. Both Everflow [38] and NetSight [13]
capture packets at every hop in the entire network and sends
them to a centralized analyzer. While Everflow mirrors raw
packets, NetSight introduces compression to reduce the over-
head. Thus we compare with NetSight’s best compression
(Van Jacobson style compression plus gzip compression),
which is reported 10Bytes per packet. In order to detect every
loss, we configure it to capture every packet.

We evaluated the bandwidth usage with different traffic vol-
ume from 4Gbps to 100Gbps, and two loss rates 0.1% and
1%, and show the percentage of LOSSRADAR bandwidth
usage to full packet mirroring bandwidth usage in Figure 6.
The result shows that LOSSRADAR saves 95% and 99.5% of
the bandwidth usage, for 1% and 0.1% loss rates respectively.
For example, for 10Gbps traffic, full packet mirroring uses
513Mbps, while LOSSRADAR only uses 2.9Mbps for 0.1%
loss rate, and 25.6Mbps for 1% loss rate.

LOSSRADAR saves memory when the number of con-
current flow is large or loss rate is low, compared with
FlowRadar. FlowRadar [21] maintains per-flow counters at
switches. It can get the loss counter by comparing the packet
counters across hops. Its memory usage is proportional to the
number of concurrent flows.

We perform experiments to find the number of concurrent
flows, loss rate and throughput at which LOSSRADAR and
FlowRadar need the same amount of memory, and plot the
curves in Figure 7. The red, orange and blue curves are for
3 Gbps, 5 Gbps and 10 Gbps (which is also a 40G link at
25% utilization) throughput respectively. In the area above

loss rate (%)

10 100 2 4 6 8 10 12 14 16
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Bandwidth usage: Lo0sS- Figure 7: Memory usage: LOSSRADAR Figure 8: Memory usage under realistic

traffic

the curves LOSSRADAR uses less memory; below the curves
FlowRadar uses less memory.

We also calculate and plot the average number of flows in
10ms at a cluster switch in Facebook. In Facebook, each
server talks to 250 different racks in Sms on average, and
a cluster has 4 cluster switches and at least 64 racks. Thus,
assuming each rack has 44 hosts (assuming the top of rack
switch has 48 ports, 4 of which is connected to cluster
switches), the total number of concurrent flows on average
could be 352K in 10ms at a cluster switch. The green dotted
line represents this number. This means that as long as the
loss rate <5% at 10 Gbps, LOSSRADAR uses less memory
than FlowRadar. At a lower throughput, LOSSRADAR can
even support a higher loss rate (up to 10% and 20% for 5
Gbps and 3Gbps) while using less memory than FlowRadar.

7.2 Detection and inference effectiveness

We evaluate the fraction of losses being detected given differ-
ent amounts of memory and the accuracy of the root cause
inference, under realistic traffic with injected random drops
and blackholes.

We run larger networks and higher link speed in the ns-3
simulator. We simulate a k=8 FatTree topology, which in-
cludes 16 core switches, 8 pods (8 switches per pod), and 128
hosts, all connected with 10G links. The simulated switch
per-packet processing time is 5 us (not including queueing
delay). We deploy 1536 meters in total at switches and hosts.
To get realistic packet inter-arrival times, traffic distribution
across switches, and realistic loss patterns, we implement
DCTCP [4] and ECMP in the simulator. We take the same
workload distribution from production data center [4], but
add 1000 partition-aggregate queries per second to generate
incast-related congestion losses. We set the default incast
degree (i.e., the number of senders to one receiver in a query)
as 20. The query traffic characteristics also follow the study
in [4]. By default, we set the total traffic volume as 40% of
the input bandwidth (i.e., 40% x 1280Gbps in our topology),
and a network-wide loss rate of 0.1%. (Note that the per
switch port loss rate can go much higher.)

We also inject blackhole and random drops. We select 3 bidi-
rectional links to have 1% random drops, one for each layer
(host to ToR, ToR to Aggr, Aggr To Core). We also select 3
switches (a ToR, an Aggr and a Core) to have blackholes. The
blackhole is blocking a randomly selected specific destination
IP address. Both the random drops and the blackholes are



tgap (US) Nburst [Tbb Nnb  |Psyn Prand
Default|{20 5 30 5 0.9 0.5
Range [[10,30] |[3,5] [[20,50]{[5,10]{[0.85,0.95]{[0.45,0.55]

Table 3: Root cause inference parameter settings

inserted in the middle of the simulation (not at the beginning).
Moreover, we choose the time to inject the blackholes so that
they will drop some ongoing large flows, in order to have all
types of loss patterns (discussed in section 5.1.1).

7.2.1 Loss detection accuracy

LOSSRADAR needs a small digest size to capture most
losses. We evaluate different digest sizes and show the per-
centage of lost packets being captured in Figure 8 for different
incast degrees. A captured lost packet means the packet is re-
trieved from the digest. With a 20 incast degree, we just need
2KB digest size to capture around 90% of lost packets. Note
that LOSSRADAR can still get the right number of losses at
each switch, but only provide details for 90% of these packets.
We need 7.6 KB to capture the details for more than 99.99%
of the lost packets. With a 40 incast degree, the network-wide
loss rate grows from 0.1% to 0.3%. Thus we need 14.25 KB
to capture more than 99.99% of the lost packets.

LOSSRADAR can capture most batches successfully with
a small digest. We also evaluate the percentage of batches
where all lost packets in the digest of that batch are success-
fully retrieved (Figure 8) as compared with all the batches
with at least one loss here. With a 40 incast degree, we need
6 KB per digest to capture around 90% of the batches. The
percentage of captured batches is more than the percentage
of captured lost packets because LOSSRADAR sometimes
fails to decode some packets when there are too many lost
packets in a batch. For these batches, it is ok to just get the
total numbers of losses because they have large numbers of
losses and operators should inspect the entire switch port.

7.2.2  Root cause inference accuracy

We run our root cause inference on all the losses we get
from the trace, and classify each loss into congestion loss,
random drop, blackhole loss, or unknown reason. We set the
digest size to 7.6 KB according to section 7.2.1. We set the
parameters according to the guideline described in Section
5.1.2, as shown in Table 3. We compare the inference result
with the ground truth, and show the precision and recall of the
three types of losses in Figure 9. We also vary each parameter
within a range while keeping other parameters with default
values; the error bars in the figure shows the range of the
precisions and recalls over all these different settings.

The precision is close to 100%. We design the algorithm
to keep the false alarm rates of blackholes and random drops
low. The high precision shows our algorithm achieves this
goal. The precision of blackholes is 100%, which means
there is no false alarm.

With different parameter settings, the precisions of random
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Figure 9: Root cause inference accuracy

drops are all above 97.6%. The precision of blackhole losses
are almost all 100%, except when ny, = 20 it becomes 94.7%.
We inspect this case, and find that all false positives are 27
consecutive losses of a flow in a congestion. The reason for
such long consecutive losses is similar to the outcast problem
[31]. However, this phenomenon is exaggerated in simulation
because all delays are deterministic.

Every injected problem is captured. We correctly classify
90.3% of the random drops and 73.1% of the blackhole losses.
The missed blackhole losses are all short bursts (e.g. 5 losses)
of consecutive losses, so they are classified as congestion
losses. The missed random drops have two types: (1) a
small number of random drops happen closely (e.g. 3 random
drops with gaps less than 10 ms), so they are classified as
congestion losses; (2) during some intervals, there are other
losses being classified as unknown together with random
drops, so the distribution is uneven, and we classify all the
losses in these intervals as unknown. However, because the
blackholes and the random drops are all persistent, we always
correctly classify the losses caused by them in the next few
intervals. Thus, the classified losses are sufficient for us to
detect all problems.

With different parameter settings, most losses of each type
are correctly classified, and we detect all problems as well.

7.3 Memory usage in partial deployments

We evaluate the memory usage per switch in different deploy-
ment scenarios based on the same topology, traffic pattern
and injected problem in Section 7.2.

With a full deployment, we need 243.2 KB for all the di-
gests in each switch!?. We also evaluate the memory usage
when we do not have access to some parts of the network,
which is treated as blackboxes. In data centers, upgrading a
ToR switch requires notifying applications or tenants running
under the ToR on the planned downtime, or migrating the
applications or tenants to other racks. On the other hand,
upgrading an aggregation or a core switch is easier, because
the traffic can be automatically rerouted to other paths when
the switch is shut down without affecting applications.

Thus we evaluate the case that we have access to aggregation
and core switches but treat ToR switches as blackboxes. We

107.6 KB for each digest, two digests (batches) per meter, two
meters (UM and DM) per port and eight ports.
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deploy more meters at the devices around the ToR switches.
On an aggregation switch, each of the 4 ports that connect to
ToR switches receives packets from the 4 hosts under the ToR
switch, which requires 4 downstream meters; each port that
connects to a core switch only needs 1 downstream meter. So
each aggregation switch needs 20 downstream meters, plus
8 upstream meters (one per port). We need 425.6 KB for all
the digests in each aggregation switch.

We also evaluate other scenarios. If each aggregation switch
is a blackbox, we need 608 KB in each core switch and each
ToR switch. If each core switch is a blackbox, we need 608
KB in each aggregation switch.

7.4 Detection latency

We evaluate the detection latency in a testbed. We build a
topology of k=4 FatTree in Deterlab [9] with our modified
version of Open vSwitch [28] that supports LOSSRADAR.
Every 10 ms the upstream switch sends a batch to the col-
lector. The downstream switch keeps each batch for 12 ms
(Timeout = 2 ms). The size of each digest is set to 5 KB.

Detection latency is bound by the batch length plus the
timeout. We break down the detection delay into meter wait-
ing time, transfer time and decoding time (Figure 10). The
meter waiting time dominates, during which the packets
dropped, but its digest has not been sent out. The trans-
fer time and the decoding time is negligible. For the waiting
time, the 99th percentile of packets are close to 12 ms, bound
by the waiting time at the downstream.

7.5 LossRapar applications

Improving flow throughput. We run four iperf flows (A, B,
C, D) through two ECMP paths in our FatTree testbed, with
two flows on each path. The two paths share the same edge
and aggregation switches but differ at the core. We inject
two types of losses. One is blackholing flow A (Figure 11).
LoSSRADAR quickly identifies that flow A is experiencing
blackhole, and installs an entry matching flow A at the aggre-
gation switch to moves A’s path to the other. The throughput
recovers after 250ms. The other case is randomly dropping
1% packets on A and B’s link (Figure 12). LOSSRADAR
detects random drops on this link, so it moves both flows to
the other path.

Time (second)

Figure 11: Recovery from blackhole

Time (second)

Figure 12: Recovery from random drops

Correlating lost packets with ACLs. We use ClassBench
ACL rules [34] and staggered data center traffic matching
these rules as used in [24]. ClassBench has been shown to
generates rules representative of real-world access control
with accept and deny actions. The traffic is created by first
generating staggered traffic for VMs and then assigning VMs
with IP address ranges that match the ACL rules. The details
are described in [24]. We take four rule sets of 50K, 100K,
150K, and 200K rules. We run the experiment 100 times by
flipping a different random bit each time. We install the rules
at a single switch, and send the traffic through the switch.
We compare the upstream and downstream traffic digests
collected to get the set of lost packets. Given the set of lost
packets, our loss analyzer first excludes the intended drops
based on the correct set of rules, and then runs flow space
correlation algorithm to narrow down the set of candidate
rules that may cause the loss. The whole process takes 0.7-
2.5ms. Our result shows that we have zero false negatives
(i.e., the rule with flipped bit is always in our reported set).
From 50K to 200K rules, we narrow down to 2-2.5 candidate
rules that may get bit flip. Sometimes a high priority rule
which covers all the losses is treated as a candidate rule but
sometimes it is not the corrupted rule.

8. DISCUSSION

Avoid modifying packet header fields. It is possible to
avoid tagging headers with the batch ID (section 3.4) and the
meter ID (section 4.2), by tolerating on-the-fly packets.

Without the batch ID and the meter ID to synchronize batches,
an on-the-fly packet would appear in two different batches at
the upstream meter and the downstream meter, so it would
appear as a difference in both the two batches’ subtractions.
Thus, we need to compare the results across batches and
identify the true losses (only appear once not twice). The
number of batches to compare depends on the time a packet
takes from the upstream to the downstream, which is less
than an RTT—100s of microseconds in data centers. Thus,
as long as the batch length 7" > 1 ms, we only need to wait
for one more batch to conclude a packet is lost or on-the-fly.
Now the downstream digest is no longer a subset of the
upstream digest. We leverage the original IBF design [10],
which can handle two-way set difference. We also need larger
digests, because the difference also include the on-the-fly
packets besides the losses. The new trend of more synchro-



nized clocks across switches (e.g. down to sub-microsecond
level [20]) can help reduce the extra size. We leave how to
further reduce the size to future works.

Improving root cause inferences. Our root cause inference
algorithms take the first step in identifying root causes for
packet losses. There are a few ways to improve the inference:
One way is to use machine learning instead of threshold-
based conditions to better classify different types of losses
with dynamics. Another way is to incorporate the header
patterns of blackholes (e.g. specific 5-tuple or specific dest
IP) to help better distinguishing blackhole losses from other
types. In addition, when a previously unknown type of losses
happen, how the analyzer correctly reports the existence of
an unknown type is an open question.

Reducing memory usage for incremental deployment
cases. In a blackbox case, each downstream meter needs to
maintain one digest for each upstream meter, and the size
of each downstream digest has to be equal to the size of an
upstream digest, which results in a high memory usage per
switch. If we can partition the the upstream digest based
on which downstream each packet goes to, the downstream
digests can be smaller. This requires path-awareness at the
upstream; we leave it to future works.

9. RELATED WORK

We discussed host passive mirroring [37, 25], Pingmesh
[12], Mirroring [38], and FlowRadar [21] in Section 2.2.
FlowRadar is the closest work to LOSSRADAR, but differs
in four aspects: (1) FlowRadar collects per-flow counters at
each switch, which can also be used for counting the aggre-
gated number of losses per flow. In contrast, LOSSRADAR
provides details of individual losses. (2) The memory usage
of FlowRadar is proportional to the number of flows, while
LOSSRADAR’s is proportional to the number of losses. Thus,
the memory usage of LOSSRADAR is lower than FlowRadar
when the loss rate is low, as shown in Section 7.1. (3) To
detect loss, FlowRadar needs to compare flow counters be-
tween two switches, and thus has to wait till an idle reporting
interval (at least 10ms) to synchronize the two counters. In
contrast, LOSSRADAR immediately detects the packet loss
soon after a reporting interval. (4) FlowRadar uses Invert-
ible Bloom Lookup Table [11] which also uses multiple hash
functions per item and has a similar decoding process to IBF
[10]. The key difference is that LOSSRADAR utilizes the
subtraction operation to cancel out the packets between up-
stream and downstream meters. FlowRadar cannot use the
subtraction, because each flow’s 5-tuple would cancel out in
the subtraction, resulting in useless data.

Some other research solutions are available for loss detection.
LDA [18] leverages packet counters to identify losses, but
cannot identify individual lost packets and their flow infor-
mation. NetSight [13] can detect packet loss by sending the
packet headers of all the packets at each hop to a centralized
controller, but incurs significant bandwidth overhead. In con-

trast, LOSSRADAR provides detailed loss information with
low memory and bandwidth overhead.

Many research works on network verification [15], [16], [17]
performs static analysis of forwarding tables, and thus can de-
tect blackholes caused by misconfiguration. Complementary
to network verification, LOSSRADAR capture all lost packets
in the network in real time.

The paper [6] allows the switch to send to end hosts the
packet header information of those packets that are dropped
due to congestion. Rather than focusing on one type of losses
(misconfiguration or congestion), LOSSRADAR is generic to
all types of packet losses.

Our traffic digest is inspired by Invertible Bloom Filters
(IBFs). IBFs were introduced in [10] to identify two-way
set differences for application-layer systems such as peer-to-
peer networks and link-state databases. Our loss detection is
a one way set difference problem, where one set is always a
subset of the other. Therefore, we simplify the IBF design
with XOR-based codes and counters, but store more flow
information in the XOR-based codes. Moreover, because
our data structure is used at switches with high-speed links,
we face new challenges of synchronizing the data collection
across nodes, and identifying the lost packets among multiple
upstream and downstream meters around a blackbox. Counter
Braids [22] are novel data structures to store estimated flow-
based counters with low memory usage, but does not work
for loss detection because it does not provide accurate counts
and does not store flow information with counters.

10. CONCLUSION

With diverse types of packet losses in data center networks,
and their significant impact on application performance and
network operations, it is important to detect these losses in
time and with detailed information of individual lost pack-
ets. We presented LOSSRADAR, a generic, light-weight loss
detection system that can identify individual lost packets,
their locations, and the flows they belong to in near real
time. LOSSRADAR is easy to implement with programmable
switch hardware, and can capture all the individual lost pack-
ets with small memory and bandwidth overhead. We also
propose root cause inference algorithms based on the loss
information from LOSSRADAR.
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