
SmartNIC Security Isolation in the Cloud with S-NIC
Yang Zhou

Harvard University
Mark Wilkening∗
Harvard University

James Mickens
Harvard University

Minlan Yu
Harvard University

Abstract
Modern smart NICs provide little isolation between the net-
work functions belonging to different tenants. These NICs
also do not protect network functions from the datacenter-
provided management OS which runs on the smart NIC. We
describe concrete attacks which allow a network function’s
state to leak to (or be modified by) another network function
or themanagement OS.We then introduce S-NIC, a new hard-
ware design for smart NICs that provides strong isolation
guarantees. S-NIC pervasively virtualizes hardware accelera-
tors, enforces single-owner semantics for each line in on-NIC
cache and RAM, and provides dedicated bus bandwidth for
each network function. Using this design, we eliminate side
channels involving shared hardware state, and give each net-
work function the illusion of having a private smart NIC. We
show how these virtual NICs can be integrated with preex-
isting datacenter technologies for virtual LANs and trusted
host-level computations like SGX enclaves. The overall result
is that S-NIC enables strongly-isolated, NIC-accelerated data-
center applications; in these applications, network functions
and host-level code receive hardware-guaranteed isolation
from other applications and the datacenter provider.

CCS Concepts: • Security and privacy → Tamper-proof
and tamper-resistant designs; • Hardware → Network-
ing hardware; • Networks → Middle boxes / network
appliances.

Keywords: Trusted execution environment, Network func-
tions, Smart NICs
ACM Reference Format:
Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu. 2024.
SmartNIC Security Isolation in the Cloud with S-NIC. In Nineteenth

∗Now at AMD Research and Advanced Development.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3650071

European Conference on Computer Systems (EuroSys ’24), April 22–25,
2024, Athens, Greece. ACM, New York, NY, USA, 19 pages. https:
//doi.org/10.1145/3627703.3650071

1 Introduction
In amodern distributed system, network functions (i.e., pieces
of code which manipulate packets) are critical [41, 60, 65, 69,
70, 77, 78]. Some network functions are simple, like packet
compressors, but others are complex, stateful applications
like WAN optimizers, NATs, intrusion detection systems,
and split-browser web proxies. When a distributed service
is deployed, a developer (or a function-as-a-service com-
pany [8, 88, 117, 127]) must push functions in addition to
web servers, database engines, and other software compo-
nents.

Traditionally, datacenter tenants execute functions inside
of virtual machines, relying on the hypervisor to isolate a
function from other VMs [54, 80, 100, 124]. However, a func-
tion’s code and data are still accessible to the hypervisor
itself; this is unattractive if tenants do not trust the data-
center operator, e.g., because functions manipulate keys for
encrypted traffic that should be hidden from the datacenter
operator [64, 98, 108]. Running a function as an SGX enclave
within a VM [98] offers weak protection against hypervisor
snooping due to well-known side channel vulnerabilities in
SGX hardware [18, 21, 46, 118].

Recently, “smart” NICs [41, 76, 78, 97] have introduced an
alternative deployment model. A smart NIC uses a system-
on-a-chip design, aggregating general-purpose cores as well
as hardware accelerators that optimize common networking
tasks like TCP checksumming. A server can offload a func-
tion to a smart NIC, allowing the function to compute on
packets directly, via cores and accelerators on the same die as
NIC packet buffers. Smart NICs typically contain RISC cores
that have lower capital costs and power consumptions than
x86 server cores. Thus, offloading functions from server cores
to a smart NIC can greatly reduce a datacenter provider’s
total-cost-of-ownership (TCO) [68]. For many functions, of-
floading also improves performance [60, 69, 70, 77]. For exam-
ple, a function might contain a task that runs faster on a NIC
accelerator than a host-level x86 core. Offloading can also
improve function performance by avoiding PCIe latencies
that would otherwise be incurred by transferring packets
between on-NIC RAM and host RAM. Because of these cost
and performance advantages, major datacenter operators

https://doi.org/10.1145/3627703.3650071
https://doi.org/10.1145/3627703.3650071
https://doi.org/10.1145/3627703.3650071

EuroSys ’24, April 22–25, 2024, Athens, Greece Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu

like Microsoft and Baidu have already started to migrate
functions to smart NICs [45, 68]. Application developers
have also started to offload a variety of work to smart NICs,
including data caching [77], transaction ordering [69], and
distributed consensus protocols [60, 70].
Unfortunately, commodity smart NICs provide weak iso-

lation between functions. These NICs also enforce weak
isolation between a function and the datacenter operator.
The reason is that on-NIC RAM has few access controls, and
low-level hardware resources like checksum accelerators
are not virtualized. These deficits hurt function robustness
and security (§3), making multi-tenant occupation of a sin-
gle NIC unsafe. Even in single-tenant scenarios (where all
functions and privileged software on a NIC belong to the
datacenter provider), buggy or subverted code anywhere
is a threat to all other software on the NIC. These prob-
lems cannot be solved by a trivial application of standard
isolation approaches (e.g., extended page tables [14] and SR-
IOV [56]); those approaches do not prevent side channels,
do not have full (or any) enlightenment about the specific
hardware affordances of smart NICs (e.g., on-die IO buffers
and workload accelerators), and do not protect tenants from
privileged software. Prior work on performance isolation
between smart NIC functions [47, 73] does not directly ad-
dress side channel isolation, and thus is also insufficient for
providing comprehensive non-interference guarantees. The
goal of this paper is to show that, with minimal changes
to smart NIC hardware, datacenters can provide offloaded
functions with strong isolation, while preserving many of
the TCO reductions and performance boosts that offloading
has traditionally provided. We introduce a new smart NIC
design, called S-NIC, that has three important features.

Aggressive disaggregation of internal resources: In re-
cent years, datacenter operators have connected compute
servers and storage servers via full-bisection networks [49,
85]; these networks enable locality-oblivious assignment
of datacenter resources to datacenter tenants [83, 90]. S-
NIC uses a similar principle within a NIC, allowing a net-
work function to be assigned to a set of programmable cores,
TX/RX queues, hardware accelerators, and DRAM regions.
These components are stitched together using trusted bus
management hardware that provides reserved memory band-
width for the function.

Side-channel-free virtualization of NIC resources: S-
NIC uses the abstraction of a virtual smart NIC to expose a
collection of physical NIC resources. S-NIC virtualizes each
resource in a way that is free of side channels; S-NIC also
provides traditional notions of confidentiality and integrity
for network function state. For example, consider the phys-
ical RAM that belongs to a network function. S-NIC uses
per-core, hardware-controlled memory denylists (§4.2) to
ensure that other network functions (and even the on-NIC

OS) cannot read or write those pages. S-NIC also reserves
L1/L2/L3 cache space for the function in a way that elimi-
nates cache-based side channels.

Integration with preexisting datacenter management
technologies: S-NIC allows a network function to act as a
VXLAN endpoint [55]; in this manner, a function can inte-
grate directly with the (virtual) Layer 2 datacenter topology
that is owned by a tenant [55]. S-NIC also allows functions
to remotely attest their state [95], enabling remote endpoints
to trust a function to act a TLS middlebox [86, 105] or per-
form other sensitive operations. We show that, by stitching
together a set of S-NIC functions and SGX enclaves, a tenant
can build a high-performance, strongly-isolated distributed
system that is resilient to malicious datacenter operators.

In summary, this paper provides three contributions:
• We empirically demonstrate that commodity smart NICs
provide weak isolation that allows functions to corrupt
each other’s packets, steal computational state, and launch
denial-of-service attacks on shared hardware resources.

• To prevent these exploits, we introduce new hardware-
level isolation mechanisms for smart NICs (§4). A key
research challenge was determining how to pervasively
virtualize on-NIC resources without invasive microarchi-
tectural changes.

• Using extensive hardware-level simulations, we evaluate
S-NIC, showing that our isolation mechanisms decrease
function throughput by less than 1.7%. Enforcing isolation
requires only modest amounts of new silicon: chip area
increases by up to 8.89%, and power draw increases by
up to 11.45%. Overall, our analysis demonstrates that S-
NIC preserves 91.6% of the TCO benefit that function
offloading typically provides.

S-NIC is the first smart NIC to provide safe, efficient multi-
tenancy for network functions and management software
that distrust each other.

2 Threat Model
We consider eight types of principals. Tenants want to run
network functions atop S-NIC hardware. The NIC (and
the attached host machine) are owned by a datacenter
operator. The host machine runs a host OS and other un-
privileged host software. The NIC runs a NIC OS. Both
the host OS and the NIC OS are provided by the datacenter
operator.
S-NIC’s goal is to isolate a function from all host-level

software and all NIC-level software (i.e., the NIC OS and
other functions). Isolation prevents external software from
directly tampering with function state, or indirectly observ-
ing it through side channels induced by NIC-level co-tenancy.
By eliminating side channel attacks on the NIC’s microar-
chitecture, we also provide performance isolation between
co-located functions. Network-observer side channels caused

SmartNIC Security Isolation in the Cloud with S-NIC EuroSys ’24, April 22–25, 2024, Athens, Greece

Memory (e.g., on-chip SRAM, off-chip DRAM)

PCIe

RX Port

TX Port

Packet Input
Module

Packet Output
Module

Internal I/O Bus

Cores

…

…

DPI
Accel.

ZIP
Accel.

RAID
Accel. …

Packet
Scheduler

Figure 1. High-level architecture of a smart NIC.

by the rate or contents of a function’s packet stream are out-
of-scope for this paper; however, S-NIC is compatible with
software-level mitigations for those side channels [27, 67].
S-NIC’s isolation guarantees are enforced by hardware.

Thus, we assume that NIC hardware is trusted and bug-free.
We also assume that NIC hardware is resistant against physi-
cal possession attacks in which, e.g., the datacenter provider
tries to tap memory buses. S-NIC leverages preexisting tech-
niques to thwart such attacks [38, 51, 84].
When building a constellation of trusted computations

(§4.7), we assume that NIC-level functions and host-level
secure computations (e.g., SGX enclaves) attest to each other
before exchanging packets. Attestation lets endpoints verify
their identity and integrity, and generate cryptographic keys
for encrypting subsequent communication. Encryption is
necessary because datacenter operators may snoop on or
tamper with the bus that connects a NIC to its host. Once
S-NIC transfers data to a host-level isolation environment,
S-NIC cannot prevent any host-level side channels caused by
host-level microarchitectural deficiencies; fixing such prob-
lems (e.g., [58, 91, 106]) is orthogonal to S-NIC’s design.

3 Background
In this paper, we target non-trivial network functions writ-
ten in high-level languages like C++ or Rust. Thus, we focus
on smart NICs that use a system-on-a-chip design. SoC NICs
often include custom ASICs to accelerate certain tasks; re-
gardless, SoC NICs always include general-purpose CPUs
that can run arbitrary code. FPGA-based smart NICs [23, 126]
are well-suited for simple, deterministic code that is highly
parallel. However, more complex functions are difficult to
map to FPGA implementations [76].

3.1 Building Blocks

As shown in Figure 1, a SoC-based smart NIC contains six
types of hardware components.
• Programmable cores run the tenant-provided code be-
longing to network functions. A commodity smart NIC
contains up to dozens of programmable cores.

• Management cores execute the software which orches-
trates NF execution. For example, management CPUs as-
sign NFs to programmable cores, and configure on-NIC
routing hardware to determine which packets get for-
warded to which NFs. On some smart NICs, there is no
distinction between a programmable core and a manage-
ment core, i.e., each core runs network functions side-by-
side with management software. Management cores pull
a function’s initial code and data using DMA transfers
from host memory.

• A smart NIC also containsmemory. A NIC has a few GBs
of general-purpose DRAM; this memory is accessible by
all cores (programmable or management), with each core
having the same access latency. A NIC may supplement
general-purpose DRAM with smaller SRAM units that
have non-uniform access latencies; in the extreme, a unit
may be completely inaccessible to some cores.

• Hardware accelerators are special-purpose cores that
are optimized for a single task like encrypting data or cal-
culating checksums. Network functions write to memory-
mapped accelerator registers to install packet-matching
rules or cryptographic keys or other kinds of configura-
tion data. Once a function has installed the necessary in-
formation, accelerators communicate with programmable
cores via input instruction queues and output data queues
that live in general-purpose DRAM. Accelerators use local
SRAM to cache the NF data being actively processed.

• A smart NIC also provides circuitry to handle packet
ingress and egress. The specifics vary across different
NIC designs. For example, in the Mellanox BlueField NIC,
incoming packets enter an RX buffer. A packet input mod-
ule copies a packet from the RX buffer to the DRAM re-
gion that belongs to a particular function. The packet
input module uses switching rules to determine how to
forward packets; these rules are configured by manage-
ment software. Rules are typically expressed as predicates
over a packet’s “5-tuple”, i.e., a packet’s source IP, des-
tination IP, protocol, source port, and destination port.
A programmable core learns of packet arrival by polling
hardware structures or receiving an interrupt from the
packet input module. After the core has finished handling
a packet, the core notifies the packet output module, e.g.,
by sending an interrupt, or by adding a work item to a
shared queue that lives in DRAM. The packet output mod-
ule copies the packet from DRAM to the TX buffer. Later,
the NIC places the packet on the wire.

• An IO bus enables communication between the compo-
nents described above. As we discuss later, network func-
tions contend for bus bandwidth. Ostensibly fair alloca-
tion of other resources like hardware accelerators will be
unfair in practice if NFs lack the necessary bus bandwidth
to optimally use those resources.

EuroSys ’24, April 22–25, 2024, Athens, Greece Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu

A smart NIC also needs a way to communicate with its host
machine, e.g., DMA via a PCIe bus. Our proposed design in
Section 4 makes no changes to the NIC/host bus.

3.2 Representative Smart NIC Architectures

Marvell LiquidIO: A LiquidIO NIC [81] uses an OCTEON
processor with 12–48 MIPS64 cores. Each core has a private
L1 i-cache and d-cache; however, all cores share an L2 cache
and general-purpose DRAM. The NIC provides hardware ac-
celerators for checksumming and cryptographic operations.

In the MIPS64 architecture, a virtual address space is par-
titioned into regions called segments.
• The xuseg segment is mapped to physical memory using
TLB entries configured by privileged software.

• The xkseg segment is also mapped to physical memory
using TLB entries, but xkseg is only accessible when the
CPU’s privilege bit is 1. xkseg stores kernel state.

• The xkphys segment is direct-mapped to physical mem-
ory, without being translated via TLBs. For example, the
hardware automatically translates the first virtual address
in xkphys to the first physical address in DRAM. The ker-
nel configures the MMU to determine whether user-level
code may access virtual addresses in xkphys.

Unlike an x86 chip, a MIPS processor uses software-defined
page table walks. So, a MIPS processor has no explicit page
table pointer register; TLB misses are handled by software.
A LiquidIO NIC supports two execution models. In both

models, a MIPS CPU acts as both a management core and a
programmable core.
• In SE-S mode, the NIC’s bootloader installs each function
on a core and then exits. Functions cannot be created or
destroyed until the next boot cycle. There is no kernel—
instead, all functions run in privileged mode. The boot-
loader configures each core’s TLB entries so that xuseg
points to function-specific state. Each function also re-
ceives complete access to xkphys.

• In SE-UM mode, the management OS is a multicore Linux
kernel which creates and destroys network functions as
requested by the host machine. Each function is a stan-
dard Linux process that the kernel assigns to a core. The
kernel sets the core’s TLB entries to map a function’s
xuseg to the physical location of the function’s code and
data. Depending on how the NIC is configured, the kernel
may also give each function access to xkphys, so that a
function can directly manipulate packets and memory-
mapped registers for accelerators. Alternatively, the NIC
can be configured to force functions to use system calls
to manipulate packets.

In SE-S mode (and SE-UM mode with function-level xkphys
access enabled), an NF can read and write arbitrary physical
addresses. Furthermore, an NF can directly manipulate the
packet scheduler and hardware accelerators. This approach

maximizes NF performance, but means that LiquidIO pro-
vides no isolation between NFs or any privileged manage-
ment software. Even if a NIC uses SE-UMmodewith function-
level xkphys access disabled, functions cannot protect them-
selves from a buggy or malicious OS. Also, in both modes,
the NIC does not isolate microarchitectural state (e.g., cache
lines) belonging to different functions.

Netronome Agilio: An Agilio LX [87] makes an architec-
tural distinction between programmable cores and manage-
ment cores. Up to 120 Intel IXP cores execute network func-
tions, with management software running on a small num-
ber of StrongARM or XScale cores. Programmable cores
are grouped into islands. Each island has 256 KB of island-
private SRAM. The NIC defines additional banks of memory,
including a 6GB bank of DRAM. These additional banks
are accessible to all islands (but with non-uniform access
latencies). Importantly, all of the memory units are accessed
using raw physical addresses—programmable cores are not
restricted via page tables or TLBs. This approach simplifies
the NIC architecture, but unfortunately prevents isolation
between NFs.
Management cores are responsible for configuring the

NIC’s packet scheduler and performing other control plane
tasks. The management OS can also tamper with arbitrary
function state. For example, the management OS can install
its own network function which can access all of an island’s
private memory.

An Agilio NIC has several cryptographic accelerators. Pro-
grammable cores use special instructions to encrypt or de-
crypt data with an accelerator. Accelerators are shared by all
cores, so contentionmay increase the latency of a core’s cryp-
tographic tasks. Contention also creates side channels that let a
core determine whether other cores are doing cryptography.

Mellanox BlueField: A BlueField NIC uses ARM cores,
with each one acting as both a management core and a pro-
grammable core. Each core has the same access latency to
on-NIC DRAM. BlueField uses ARM’s TrustZone technol-
ogy [6] to isolate functions. To the best of our knowledge,
BlueField provides the best isolation of any commodity smart
NIC.We give a brief overview of TrustZone before describing
the BlueField architecture in more depth.
TrustZone provides hardware-isolated secure computa-

tions. TrustZone adds a new privilege bit indicating whether
a CPU is running in the “normal world” or “secure world”.
Memory is split into a normal region and a secure region;
code in the normal world cannot access secure memory, but
code in the secure world can access all memory. The memory
split is managed by secure code, and can change dynamically.
Secure code can mark specific hardware accelerators as

secure-only, meaning that the accelerators are inaccessible
to normal code. Secure code can also determine which in-
terrupt types are handled by which world. The TrustZone

SmartNIC Security Isolation in the Cloud with S-NIC EuroSys ’24, April 22–25, 2024, Athens, Greece

DMA controller ensures that normal code cannot use DMA-
capable devices to read or write secure memory. However,
the two worlds can communicate via shared memory. A CPU
in normal mode switches to secure mode when a secure in-
terrupt arrives, or when normal code explicitly invokes the
secure world via the smc (“secure monitor call”) instruction.
The secure world switches to the normal one via smc too.

Both worlds support the traditional user/kernel privilege
levels. The normal world runs a heavyweight OS like Linux.
The secure world runs a small, security-focused kernel like
OP-TEE [74]; small user-mode applications called trustlets
run atop the secure kernel.
BlueField uses TrustZone to implement privilege separa-

tion for a network function’s code [9]. An untrusted driver
in the normal world pulls packets from the wire, and trans-
fers them to the trusted part of the function that lives in the
secure world. The trusted code handles the packet and then
returns it to the normal world for transmission over the wire.

Note that BlueField does not isolate a network function from
the secure-world management OS. This means that a network
function has no protection from a secure-world OS that is
corrupted (or intentionally malicious). BlueField also does
not prevent side channels through shared microarchitectural
resources like the memory bus.

3.3 Concrete Attacks

The previous section explained why commodity smart NICs
provide weak performance isolation, confidentiality, and
integrity to functions. Here, we describe proof-of-concept
attacks which leverage these problems.

Packet corruption (LiquidIO): In SE-S mode, we ran the
MazuNAT [36] network function on one core, and a mali-
cious function on another. The MazuNAT function modified
packet headers using translation rules that resided in the
function’s xuseg segment. The malicious function leveraged
xkphys to scan the metadata structures belonging to the
buffer allocator used by all functions. The metadata allowed
the malicious function to discover the buffers allocated to
MazuNAT’s packets; the malicious function then corrupted
the packet headers in those buffers, disrupting the intended
NAT translations.

DPI ruleset stealing (LiquidIO): A LiquidIO NIC has accel-
erators for deep packet inspection (DPI). A DPI accelerator
is basically a regular-expression engine. A network function
stores its DPI rules in DRAM, with the accelerator pulling in
rules as necessary. We wrote a malicious function which uses
xkphys to steal the ruleset belonging to another function; to
locate the ruleset, the malicious function iterated through
the metadata of the buffer allocator. This kind of information
leak is damaging because it allows a malicious function to
learn which threat signatures a target application is using.

IO bus denial-of-service (Agilio): To the best of our knowl-
edge, no commodity smart NIC implements bandwidth reser-
vations for the NIC’s internal IO bus. Thus, different net-
work functions contend for bus bandwidth, with no trusted
hardware-level arbiter to guarantee fair access. On the Agilio,
we ran a function which sat in a tight loop, repeatedly issu-
ing a test_subsat instruction to decrement a semaphore in
DRAM. The function saturated the bus and caused the NIC
to hard-crash, requiring a power cycle to recover.

We do not possess a BlueField NIC. Thus, we could not launch
concrete attacks against it. However, as described above, even
a BlueField NIC (with its comparatively strong isolation)
does not protect functions from the secure world OS or from
microarchitectural-level side channels. S-NIC’s goal is to
prevent all of the attacks described in this section, with only
modest impacts on performance and die area.

4 Design
S-NIC binds each network function to a virtual smart NIC.
A virtual smart NIC aggregates a physical collection of pro-
grammable cores, hardware accelerators, and RAM areas;
a virtual smart NIC also possesses reserved bandwidth in
the memory bus and the packet input/output modules of
the physical smart NIC. The state of a virtual smart NIC is
hidden at both the ISA level and the microarchitectural level
from other virtual smart NICs, and from the NIC OS that
runs on management cores. ISA-level isolation means that
external network functions or the NIC OS cannot use ISA-
level instructions to read or write the virtual NIC’s state.
Microarchitectural-level isolation means that each microar-
chitectural resource is either strictly bound to a single func-
tion, with no time-slicing, or is shared, but with hardware-
enforced resource reservations that do not leak information
about the usage patterns of the reservation’s owner. Table 1
summarizes the interfaces that S-NIC exposes to software;
we explain those interfaces in more detail below.

To implement its isolation semantics, S-NIC employs the
microarchitecture shown in Figure 2. The key research chal-
lenge was determining how to pervasively virtualize a NIC’s
resources. Using memory denylists that can only be con-
trolled by trusted hardware, S-NIC implements single-owner
semantics for RAM areas (§4.2). To bind hardware accelera-
tors to specific network functions, S-NIC groups individual
hardware threads into clusters and then places each clus-
ter behind a single TLB bank; the cluster acts as a virtual
accelerator, with S-NIC configuring the cluster’s TLB bank
so that the cluster’s hardware threads can only access the
RAM belonging to a single network function (§4.3). To en-
force fair-sharing of the IO bus, S-NIC adds a trusted bus
arbiter; the arbiter, in combination with several other compo-
nents, provides guaranteed memory bandwidth and packet
throughput to a virtual NIC (§4.4 and §4.5). Finally, S-NIC
uses remote attestation [3, 95, 115, 116] to allow a network

EuroSys ’24, April 22–25, 2024, Athens, Greece Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu

PCIe

Internal I/O BusNIC OS

NF0 NF1 NF2

Cores

…

…

NF0

NF1
NF2

…⓵

Memory

⓶

TLB bank
TLB bank

TLB bank

Q

TLB bank
TLB bank

TLB bank

Q
…

PKI

TLB bank
TLB bank

TLB bank

Q

TLB bank
TLB bank

TLB bank

Q
…

PKE

Packet Scheduler

…

TLB bank
TLB bank

TLB bank

Q TLB bank
TLB bank

TLB bank

Q TLB bank
TLB bank

TLB bank

Q

TLB bank
TLB bank

TLB bank

Q

…⓷

TL
B b

an
k

TL
B b

an
k

TL
B b

an
k

Q

TL
B b

an
k

TL
B b

an
k

TL
B b

an
k

Q

TL
B b

an
k

TL
B b

an
k

TL
B b

an
k

Q

TL
B b

an
k

TL
B b

an
k

TL
B b

an
k

Q

TLB bank TLB bankTLB bank TLB bank
…

DPI

TLB bankTLB bank

TLB bank

Q

TLB bankTLB bank

TLB bank

Q

TLB bank TLB bankTLB bank TLB bank
…

RAID

TLB bankTLB bank

TLB bank

Q

TLB bankTLB bank

TLB bank

Q

TLB bank
TLB bank

TLB bank

Q

⓸hash(NF0)
hash(NF1)

hash(NF2)

RX Port

TX Port

Figure 2. S-NIC’s high-level architecture. Locked-down TLB entries
(1○) restrict the memory that each network function can access.
Virtualized hardware accelerators are also restricted using TLB
locks (2○). Bus arbiters provide reserved bus bandwidth to pro-
grammable cores and other disaggregated components (3○). Using
a hardware root of trust, network functions can remotely attest the
confidentiality and integrity of their state (4○).

function to vouch for the confidentiality and integrity of
its state. Remote attestation allows a datacenter tenant to
stitch together a constellation of S-NIC network functions
and secure host-level computations, e.g., SGX enclaves or
TrustZone worlds (§4.7).

4.1 Launching a Function

To launch a network function, a remote developer first up-
loads the function’s initial code and data to the RAM of a
datacenter host. The developer also uploads the function’s
configuration state. Some of that state describes reservation
requests for hardware resources. For example, a function
may request a virtual smart NIC with three cores, 40 MB of
RAM, two cryptographic accelerators, and a compression
accelerator. A function’s configuration state also specifies
the 5-tuple packet matching rules that the NIC should use
to determine whether to forward a packet to the function.

The on-NIC OS uses DMA to transfer the initial function
state from host RAM to on-NIC RAM. S-NIC runs the NIC OS
on a dedicated core; all other cores are used to run functions.
Once the DMA transfers complete, the NIC OS executes the
privileged nf_launch instruction (Table 1). This instruction
atomically installs a new function. The instruction takes
six arguments that are specified via CPU registers. Each
argument describes a specific set of physical resources that
should be bound to a virtual NIC. We discuss the first two
arguments now, and the rest in later sections.
The first argument to nf_launch is a bitmask that lists

the cores which the trusted hardware should bind to the
new function. The second argument is a pointer to a page
table; the referenced physical pages contain the initial code,
data, and configuration settings for the new function. The
untrusted NIC OS controls these arguments, and may specify

incorrect values. Fortunately, such problems are detectable
later, during function attestation (§4.7).
The trusted hardware maintains a bitmap which tracks

which cores have been allocated to a network function. The
hardware maintains another bitmap which tracks which
physical RAM pages have been allocated to a network func-
tion.1 When the NIC OS invokes nf_launch, the instruction
checks whether the requested cores are unassigned, failing
if some of the cores are currently bound to live functions.
Otherwise, nf_launch walks the page table referenced by the
second argument. If any of the physical pages mapped by
the page table already belong to a function, nf_launch fails.

4.2 Single-owner RAM Semantics

RAM is perhaps the most important ISA-visible resource on
a smart NIC. When packets arrive, the packet input module
copies the packets to RAM; the switching rules that deter-
mine exactly where to copy each incoming packet also live
in RAM. Hardware accelerators pull instructions from RAM,
and output results to RAM. A network function also uses
RAM to store general-purpose code and data. Thus, a major
security goal of S-NIC is to implement single-owner seman-
tics for each region of RAM: a region exclusively belongs to
either a running network function or the management OS.

Isolating the new function from the management core:
If nf_launch validates both arguments, the instruction in-
stalls a memory page denylist on the management core. The
denylist prevents the management core from accessing any
physical pages that belong to the new function. To implement
the denylist, S-NIC associates a denylist page table register
with the management core. The denylist page table, which
resides in private hardware memory, contains a mapping for
a physical address if that address should not be accessed by
the management core. When the management core suffers a
TLB miss, the management core walks its normal page table
(if using an x86-style approach) or uses software to update a
TLB register (if using aMIPS-style approach). When the man-
agement core tries to install a virtual-to-physical mapping,
the trusted hardware uses the physical address in the new
mapping to walk the denylist page table. If the denylist table
has an entry for the physical address, the trusted hardware
rejects the management core’s attempt to update the TLB. S-
NIC’s use of dual page tables is somewhat reminiscent of the
EPTmechanism used to implement shadow paging [15]; thus,
S-NIC’s denylist implementation can use the same hardware
optimizations that efficient EPT implementations use.

Isolating old functions and the management core from
the new function: Once nf_launch has installed the TLB

1At the microarchitectural level, this “bitmap” could be implemented in a
variety of ways. For example, the bitmap could literally be a bitmap, or its
logical functionality could be implemented by traversing the page tables of
programmable cores. The former option is faster but requires more die area.

SmartNIC Security Isolation in the Cloud with S-NIC EuroSys ’24, April 22–25, 2024, Athens, Greece

Management APIs Trusted instructions Descriptions

NF_create(net_config, core_config,
dpi_config, ...)→ nf_id or failure

nf_launch: core_mask, page_table, pkt_pipeline_config,
accel_mask→ nf_id or failure

Atomically install a network function on a virtual smart
NIC: reserve the necessary physical resources, configure
the isolation hardware, calculate a hash of the initial
function state, and then launch the function.

N/A
nf_attest: pointer to <𝑔, 𝑝 , 𝑛, 𝑔𝑥 mod 𝑝>
→ 𝑆𝐴𝐾𝑝𝑟𝑖𝑣 <Hash<nf’s initial state>, 𝑔, 𝑝 , 𝑛, 𝑔

𝑥 mod 𝑝>
Using the attestation key𝐴𝐾𝑝𝑟𝑖𝑣 , sign the hash of the
function’s initial state plus the Diffie-Hellman parameters.

NF_destroy(nf_id)→ success or failure nf_teardown: nf_id→ success or failure Atomically destroy an NF and release its resources.

Table 1. The first column describes the host-visible management APIs exposed by an S-NIC OS. The second and third columns describe the
underlying S-NIC hardware instructions.

denylist for the management core, nf_launch installs the
memory mappings for a function’s programmable cores. At
a high level, each core receives a mapping that allows the
core to access its own DRAM pages, but not pages belonging
to other functions or the NIC OS. The details of the mapping
depend on how the core accesses memory. For example, com-
mon network functions require less than 70 MB of virtual
address space to hold the state for active flows; the largest
function that we tested required 360 MB (Appendix B). Ad-
dress spaces of this size can be covered by a handful of TLB
entries, with variable-sized pages (e.g., 2 MB, 32 MB, and
128 MB) minimizing internal fragmentation. Thus, a typical
hardware implementation for S-NIC will not associate a page
table pointer with a programmable core. Instead, each core
will get a small number of TLB entries which are configured
by nf_launch to cover all valid mappings for the function.
Once nf_launch completes, the hardware sets the TLBs to
read-only; any subsequent TLB misses represent a bug in the
network function, and cause S-NIC to destroy the function.
In an alternate design that does associate a page table with
each programmable core, the page table pointer register (and
the pointed-to memory pages) would become read-only after
nf_launch completes.

A network function may want to transfer data to or from
host-level memory. S-NIC’s DMA controller must provide
isolation for both transfer directions. In other words, the host
should only be able to transfer data to a specific on-NIC RAM
location that is owned by the function; the function should
only be able to transfer data to a host-sanctioned region in
host RAM. S-NIC achieves these properties using a multi-
bank DMA controller, with one bank per programmable core.
Each bank has TLB entries for the upstream and downstream
transfer directions. This approach is similar to the one used
by SR-IOV DMA engines [56].

Eliminating side channels: After configuring the MMUs
for the management core and the function’s programmable
cores, nf_launch reserves dedicated L1/L2/L3 cache space
for the function. Since S-NIC must prevent cache-based side
channels, soft partitioning schemes like Intel CAT [57] pro-
vide insufficient isolation.2 S-NIC has two options. The first
2The partitioning is “soft” because a core can only write to a specific cache
region, but can read (i.e., satisfy a cache hit) from any region.

SRAM
Graph cache

16 H/W
Threads

…

Frontend Scheduler

DRAM
Instruction Queue

Complete DPI graph

SRAM
Graph cache

16 H/W
Threads

…

DPI

(a) A traditional smart NIC.

Frontend SchedulerSR-IOV
DPI

SRAM

…

…

DRAM IQ1G1 G2 G# IQ2 IQ#… …

vDPI1

TLB bank1

vDPI2

TLB bank2

Cache1 Cache2 Cache#

vDPI#

TLB bank#

(b) S-NIC.

Figure 3. Virtualizing hardware accelerators

is to use a hard partitioning of the cache; this suffices to
eliminate side channels [93], but prevents S-NIC from dy-
namically resizing cache allocations as a function’s workload
changes. Alternatively, if S-NIC is willing to allow side chan-
nels from the NIC OS to functions (but not vice versa), S-NIC
can use SecDCP cache partitioning [120]. In this approach,
each function receives a minimum cache allocation. Trusted
cache hardware [99] examines utilization by functions and
the NIC OS, and only resizes allocations in response to the
cache behavior of the NIC OS.

4.3 Virtualizing Hardware Accelerators

In commodity smart NICs, a single hardware accelerator
consists of one or more “hardware threads.” A scheduler
inside the accelerator pulls requests from a queue in RAM,
and assigns each request to a thread. To complete the re-
quest, a thread may need to pull additional data from RAM.
For example, Figure 3a shows a DPI accelerator (§3.3) in a
traditional smart NIC. A network function uses the accel-
erator by (1) writing a finite automata graph to RAM, (2)
registering the graph with the DPI, and then (3) registering
the instruction queue with the DPI. The function performs
steps (2) and (3) by writing to the DPI’s memory-mapped
IO registers. Internally, the DPI caches parts of the graph in
private SRAM.
Commodity smart NICs often provide hardware threads

with unfettered access to physical RAM. Many NICs also
provide network functions with unrestricted RAM access
(§3.2), meaning that accelerator state has no confidentiality
or integrity. To fix this problem, S-NIC statically assigns
each thread to a cluster, and places a TLB bank in front of
each cluster. When nf_launch installs a network function,
the hardware checks whether the requested number and

EuroSys ’24, April 22–25, 2024, Athens, Greece Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu

types of clusters are available. If so, the hardware marks the
clusters as allocated and then configures the associated TLB
banks so that hardware threads can only access the physical
memory that belongs to the new function. The hardware
also ensures that each thread’s memory-mapped registers
are privately and directly mapped to a well-known location
in the function’s virtual address space. This prevents other
functions or the NIC OS from configuring the threads.

Figure 3b shows an example of a virtual DPI (vDPI). Using
memory denylisting, each function’s DPI graph and instruc-
tion queue receive confidentiality and integrity. The front-
end hardware scheduler also reserves guaranteed DRAM
bandwidth for each vDPI (§4.5), preventing side channels via
DRAM contention.

A cluster’s TLB bank is read-only after nf_launch finishes.
A cluster does not require a page table, because a cluster only
needs access to a small, contiguous range of virtual memory.
Thus, S-NIC treats any cluster TLB misses as fatal errors.

4.4 Virtualizing Packet IO

To isolate the packet handling workflow for each network
function, we take inspiration from SR-IOV [56], a preexist-
ing technology for virtualizing a (non-smart) NIC. SR-IOV
assigns a MAC address to each virtual NIC. When a packet
arrives, an internal Layer 2 switch inspects the MAC address
and adds the packet to the queue of the relevant virtual NIC.
An IOMMU restricts the physical pages that a virtual NIC
can access via DMA.
In S-NIC, a virtual packet pipeline (VPP) is a bundled

group of hardware resources that move a function’s packets
between the wire and the function’s private RAM. A VPP
consists of:
• buffer space in the physical RX and TX ports,
• a packet scheduler (which copies incoming packets from
the RX queue to RAM, and outgoing packets from the TX
queue to the wire), and

• switch configuration rules that live in RAM and determine
which incoming packets are forwarded to the VPP.

The pkt_pipeline_config argument to nf_launch configures
a function’s VPP. The argument points to a buffer in mem-
ory that specifies the requested amount of RX/TX buffer
space, the desired packet scheduling algorithm [107, 110],
and the switch configuration rules. If nf_launch can find
the requested amount of buffer space in the physical ports,
nf_launch marks the associated regions as allocated. Then,
nf_launch installs the desired scheduler, and adds the switch
configuration rules to the set of denylisted physical mem-
ory pages. S-NIC assigns one scheduler unit to each pro-
grammable core, and locks the scheduler’s TLB entries to
ensure that the scheduler can only perform DMA opera-
tions on memory regions that are owned by the associated
network function.

VXLAN [55] is a popular datacenter technology for giving
a tenant the illusion of a private Layer 2 network. When

tenant-owned software tries to send a Layer 2 frame, the
frame is actually encapsulated within a VXLAN frame. The
VXLAN header contains the Virtual Network Identifiers
(VNIs) for the tenant-visible Layer 2 source and destination;
however, the VXLAN frame traverses switches as determined
by the datacenter’s mapping from the tenant’s virtual L2
topology to the physical L2 topology. The ultimate receiver
strips the VXLAN header before injecting the frame into the
receiver’s network stack. S-NIC supports VXLAN by allow-
ing developer-specified switching rules to mention VNIs in
addition to MAC addresses and 5-tuple data. This allows a
NIC to direct specific VXLAN flows to specific functions.

4.5 Bus Arbitration

To prevent side channels via IO bus contention, S-NIC must
prevent interference between the bus requests that are is-
sued by different tenants. S-NIC is compatible with various
approaches for doing so [33, 103, 119]. The S-NIC proto-
type that we evaluate in Section 5 uses temporal partition-
ing [119], a particular approach that has simple hardware
requirements and works well for applications like network
functions that generally create a lot of bus traffic. As shown
in Figure 2, S-NIC places bus arbiters in front of hardware
components that access the IO bus. S-NIC divides time into
epochs; during each epoch, only a single bus client may
initiate memory operations. When the epoch expires, the
bus switches to another client. To ensure that any in-flight
memory operations complete before the end of the epoch,
the arbiter must only allow new memory operations to is-
sue during the first part of the epoch. Despite the “dead
time” at the end of each epoch, temporal partitioning de-
creases computational speeds by less than 5% [119] when
using four security domains (which in our setting trans-
lates to four concurrently-executing, potentially multi-core
network functions). In concert with VPP hardware reserva-
tions, temporal partitioning eliminates watermark attacks
that leverage packet flow interference [11].

4.6 Function Execution and Teardown

As nf_launch installs various parts of a function, nf_launch
updates a cumulative hash. When nf_launch completes, the
hash will represent a fingerprint of the state used to create
the function. For example, the hash will cover the initial code
and data pages of the function, as well as the switching rules
which select the packets that are forwarded to the function.
This hash will later be used during remote attestation (§4.7).

If nf_launch succeeds, it stores the arguments to nf_launch
in hardware-private memory. The instruction then returns
an opaque integer representing the function’s id. The func-
tion is now running. At this point, the NIC OS is no longer
involved in the management of the hardware resources that
are bound to a function. Indeed, the NIC OS cannot even ac-
cess those resources due to memory denylisting and S-NIC’s
techniques for microarchitectural-level isolation.

SmartNIC Security Isolation in the Cloud with S-NIC EuroSys ’24, April 22–25, 2024, Athens, Greece

NIC

Cloud
Provider

Client
Enterprise

Dest.
Enterprise

Other
connectionTLS

S-NIC
Tunnel

Server ServerGate
way

Gate
way

(a) Simple detour route through
a trusted function.

Cloud Provider

NIC!

Enclave!

NIC"
Enclave"

Untrusted
Host!

Untrusted
Host"Untrusted

Host# NIC#

Enclave#

(b) Constellation of secure com-
putations.

Figure 4. Sample use cases for S-NIC. In use case (a), two enterprises
use S-NIC to outsource packet processing (e.g., intrusion detection)
for a cross-enterprise flow; an S-NIC tunnel connects the gateways
and the function to hide packet headers from the untrusted cloud. In
use case (b), a tenant creates a constellation of trusted computations
within an untrusted cloud.

The NIC OS does require the ability to destroy a function
in a way that leaks no information about the function. S-NIC
provides this capability via nf_teardown. This instruction,
which executes atomically, is the dual of nf_launch. For ex-
ample, nf_teardown marks 𝐹 ’s cores as unallocated, unbinds
𝐹 ’s accelerators, and zeroes out 𝐹 ’s physical pages before
removing them from the memory denylist. The instruction
also zeroes out the registers and cache lines used by 𝐹 .

4.7 Attestation and Secure Constellations

Attestation [3, 95, 115, 116] allows a network function to
prove to external peers that the function (1) is running atop
an authentic S-NIC, and (2) had a specific initial state, where
“state” corresponds to the information covered by the cu-
mulative hash that trusted hardware built during function
initialization (§4.6). In Appendix A, we describe the low-level
cryptographic details of how S-NIC attestation works. At
a high level, a function 𝐹 attests to a peer 𝑃 by engaging
in a Diffie-Hellman exchange [34]. 𝐹 ’s contributions to the
exchange include the cumulative hash of 𝐹 ’s initial state; 𝐹
retrieves that value from the trusted S-NIC hardware, who
signs the value with a NIC-specific private key whose public
key is endorsed by a certificate from the NIC’s hardware
vendor. At the end of the attestation protocol, both 𝐹 and
𝑃 have established a symmetric key that only they know.
Furthermore, 𝑃 is convinced that 𝐹 had a known initial state
and is running atop a legitimate S-NIC.
If 𝑃 runs atop trusted hardware as well (e.g., because 𝑃

resides within an SGX enclave [82] or a TrustZone secure
world [6]), 𝐹 can now ask 𝑃 to attest to 𝐹 . If the pairwise
attestations succeed, the endpoints now share an encrypted
network channel and possess mutual confidence in the in-
tegrity and confidentiality of both computational environ-
ments. Pairwise attestations allow a developer to build a
constellation of trusted computations spanning multiple S-
NIC functions and host-level hardware enclaves. Figure 4
provides a visual overview.

4.8 Discussion

Implementing nf_launch: nf_launch is a complex instruc-
tion. Thus, we expect it to be implemented in microcode, sim-
ilar to how complex SGX instructions are implemented [31].
A single nf_launch instruction will require tens of thousands
of cycles to complete, but S-NIC targets datacenter environ-
ments in which network functions live for minutes or hours.
Thus, the cost of an nf_launch instruction is amortized over
minutes or hours.

Underutilization: S-NIC provides a virtual NIC with strong
isolation of both its ISA-visible state and its microarchitec-
tural state. However, this strong isolation may lead to under-
utilization of physical resources. For example, suppose that
the NIC OS allocates 𝑃 pages of physical memory to function
𝐹 , and then calls nf_launch. After the call to nf_launch, 𝐹 can-
not return pages to the OS, e.g., if 𝐹 ’s workload decreases. S-
NIC intentionally prohibits such interactions to prevent side
channels via the status of OS-managed resources [44, 121].
Similarly, if a function goes idle, the function cannot tem-
porarily relinquish one of the programmable cores in its
virtual NIC. The tension between strong isolation and under-
utilization is fundamental, given the lack of trust between
the different code on the NIC. When using an S-NIC, physi-
cal utilization should be kept high by creating or destroying
functions in response to time-varying load.

We note that, in practice, commodity clouds allocate cores
to non-burstable VMs at the granularity of a full core, binding
each VM to a unique set of physical cores [125]. Thus, S-NIC’s
core-granular allocations to NFs should not be surprising to
developers of cloud applications.

Denial of service attacks:TheNICOSmay refuse to launch
functions, or tear them down prematurely. Denial of service
attacks are out of scope for this paper. A buggy or mali-
cious NIC OS may also improperly setup a function, e.g., by
omitting a code page from the registration process. Remote
clients can detect improper function setups by requiring the
function to attest (§4.7).

Chaining functions: In prior sections of the paper, we as-
sumed that S-NIC runs a single function in each virtual NIC.
S-NIC’s strict isolation semantics prohibit the sharing of
memory data between functions in different virtual NICs.
However, commodity smart NICs often support function
chains in which a single packet is passed through a series
of functions. S-NIC is compatible with function chaining
via compiler-enforced isolation [13, 63, 98]. For example, us-
ing the strong types and language-level isolation primitives
provided by Rust, S-NIC could place multiple distrusting
functions in the memory region belonging to a single virtual
NIC. However, this approach would enable cross-function
side channels via core-local microarchitectural state (§4.2).

EuroSys ’24, April 22–25, 2024, Athens, Greece Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu

An extended version of S-NIC could have NFs exchange data
via localhost networking, such that S-NIC hardware would
transfer messages directly between the side-channel-isolated
VPPs (§4.4) owned by different NFs. Assuming that the cross-
VPP management hardware exposed no side channels itself,
this approach would restrict the information leakage be-
tween two communicating VPPs to just the information that
is revealed via overt traffic timings and packet content. We
leave the design of such management hardware to future
work.

5 Evaluation
In this section, we demonstrate that S-NIC’s hardware costs
are modest: chip area increases by only 8.89% and power
consumption increases by only 11.45%. As a result, S-NIC
reduces the TCO advantage of a smart NIC by only 8.37%.
Furthermore, S-NIC’s TLB denylisting, cache partitioning,
and bus arbitration reduce function throughput by less than
1.7% in the worst case. Thus, S-NIC preserves the traditional
performance benefits of function offloading.

5.1 Workloads

We used six different network functions to evaluate S-NIC.
• Firewall (FW): A stateful firewall that drops packets by
scanning a list of rules. Recently-accessed rules are cached
in aHashMap implemented by Rust’s standard library.We
limit the cache size to 200,000 entries, which is the cached
flow limit in Open vSwitch [96]). The function uses rules
from the Emerging Threats site [40]. We configure the
function with 643 rules, as in the SafeBricks paper [98].

• DPI: A pattern-matching application that uses the Aho-
Corasick algorithm [1].We use an efficient SIMD-accelerated
implementation provided by the aho_corasick Rust crate.
We use 33,471 patterns extracted from six open source
rulesets [29, 39].

• NAT: A network address translator derived from Mazu-
NAT [36]. The NAT uses a HashMap to cache frequently-
used translations. The cache only records the translation
results of the first 65,535 flows that can be successfully
assigned a distinct port number.

• Load Balancer (LB): Google’s software load balancer
called Maglev [37]. This function uses consistent hashing
to distribute flows.

• LPM: Longest prefix matching using the DIR-24-8 algo-
rithm [52] for IP packet routing. Like NetBricks [94], we
generate 16,000 random rules to construct the lookup
table.

• Monitor (Mon): Uses a HashMap to record the number
of packets for each 5-tuple flow.

We implemented the DPI and Monitor functions ourselves.
The other four implementations were derived from versions
in the NetBricks repository [30].
Traces: Our evaluation used two traces. The first was a one-
hour, anonymous CAIDA trace from 2016 [24]. This trace

4-core
A9 Total

4-core
NIC

8-core
NIC

16-core
NIC

48-core
NIC

366MB per core
(183 TLB entries)

Area (mm2) 4.984 0.045 (0.90%) 0.090 0.179 0.538
Power (W) 1.909 0.026 (1.36%) 0.052 0.104 0.311

512MB per core
(256 TLB entries)

Area (mm2) 4.999 0.060 (1.20%) 0.120 0.239 0.718
Power (W) 1.913 0.035 (1.81%) 0.069 0.139 0.416

1024MB per core
(512 TLB entries)

Area (mm2) 5.102 0.163 (3.19%) 0.326 0.652 1.956
Power (W) 1.971 0.088 (4.45%) 0.175 0.351 1.052

Table 2. Estimated hardware costs for TLBs on programmable cores.
We assume a 2MB page size, and use our memory profiling results
(Table 6 in Appendix B) to calculate the minimum TLB size (i.e.,
183 entries) that can map each function’s memory. We examine a
variety of core counts, based on the counts of existing smart NICs:
a Marvell NIC has 12–48 cores, a Mellanox NIC has 4–16 cores, and
a Broadcom NIC has 8 cores. In the 4-core S-NIC configuration, we
provide (in parentheses) relative hardware overheads compared to
the total cost of a 4-core A9 processor.

DPI ZIP RAID
TLB size per cluster 54 70 5

16 clusters
(4 threads per cluster)

Area (mm2) 0.074 0.091 0.050
Power (W) 0.037 0.044 0.023

8 clusters
(8 threads per cluster)

Area (mm2) 0.037 0.046 0.025
Power (W) 0.019 0.022 0.012

4 clusters
(16 threads per cluster)

Area (mm2) 0.019 0.023 0.012
Power (W) 0.009 0.011 0.006

Table 3. Estimated hardware costs for TLB banks on virtualized
accelerators. For each accelerator, we estimate its per-cluster TLB
size based on memory profiling (see Table 7 in Appendix B). We
assume there are 64 hardware threads for each accelerator.

had 26.7 million TCP flows and 1.34 billion packets. The
second trace was an ICTF trace from 2010 [113]. This trace,
from which we randomly sampled 100,000 flows (§5.3), was
collected during a wide-area “capture-the-flag” competition,
and was the same trace used by the SafeBricks paper [98].
We ran each experiment 10 times, and we report the median
for memory usage and throughput.

5.2 Die Area and Power Consumption

Existing smart NIC vendors do not publicly share the chip
area and power consumption of their products. So, we eval-
uated the additional hardware cost of S-NIC by extending
an ARM Cortex-A9 multicore processor [7]. Although the
overall size and complexity of the A9 might be different than
that of current smart NICs, the process technology (28nm)
and frequency target (2.0GHz) match current smart NIC de-
signs. So, the absolute hardware sizes for components like
TLBs should be comparable. Given that the A9 is a relatively
small processor, we expect our estimates of relative cost to
be high compared to actual smart NIC designs.

To generate our cost estimates, we used the McPAT mod-
eling framework [71]. This framework, widely used in the
architecture community, provides area, power, and timing
estimates for multi-core processors.

SmartNIC Security Isolation in the Cloud with S-NIC EuroSys ’24, April 22–25, 2024, Athens, Greece

Virtual packet pipeline DMA
TLB size per VPP/vDMA 3 2

12 VPP/vDMA
(4 cores per NF)

Area (mm2) 0.037 0.037
Power (W) 0.017 0.017

6 VPP/vDMA
(8 cores per NF)

Area (mm2) 0.019 0.019
Power (W) 0.009 0.009

3 VPP/vDMA
(16 cores per NF)

Area (mm2) 0.009 0.009
Power (W) 0.004 0.004

Table 4. Estimated hardware costs for TLB banks on the virtual
packet pipeline and the DMA controller that mediate NIC/host
data transfers. We assume there are 48 programmable cores on the
smart NIC. Note that, in McPAT, 2 TLB entries have the same cost
estimation as 3 TLB entries because the size difference is so small.

Overall cost: The majority of S-NIC’s hardware costs de-
rive from three sources: (1) TLBs for programmable cores,
(2) TLBs for virtualized accelerators, and (3) TLBs for the
virtual packet pipeline and the DMA controller that manages
NIC/host data transfers. Smaller costs arise from denylisting
logic and bus arbiters; we discuss those costs later.

Table 2 shows how cost changes with the number of pro-
grammable cores and the amount of memory that each core
must be able to access. Our analysis assumes a 2 MB page
size, since many NFs leverage huge pages to minimize TLB
miss costs. Note that a TLB’s size does not need to be a
power of two, as TLBs use fully-associative logic. Table 2
shows that, for a smart NIC with 4 processors, S-NIC only
requires an additional 3.19% die area and 4.45% energy, rela-
tive to a 4-core A9. With additional cores, the relative costs
of the TLB will decrease. The reason is that TLB area scales
roughly linearly with core count, but total processor area
will scale superlinearly due to larger cache directories and
core interconnects.

Table 3 shows how cost changes with the accelerator type
and cluster size. Aggregating over the total TLB costs for
the DPI, ZIP, and RAID accelerators, S-NIC adds up to 4.2%
more die area and 5.3% more power consumption, given a
baseline 4-core A9 with a TLB size of 512 entries.

Table 4 shows how cost changes with the number of cores
per network function. The total cost is a 1.5% increase in
chip area, and 1.7% additional power draw, given a baseline
4-core A9 with a TLB size of 512 entries. To summarize all
three tables, S-NIC’s additional TLB entries add 8.89% more
chip area and 11.45% more power consumption compared to a
baseline 4-core A9.

TCO impact: Here, we give a rough estimate of the total-
cost-of-ownership (TCO) for an S-NIC and a traditional smart
NIC (namely, a 12-core Marvell LiquidIO NIC). According
to analysis from Liu et al. [78], the LiquidIO NIC has a peak
power draw of 24.7W, and a purchase cost of $420. A 12-core
Intel E5-2680 v3 processor (as used by a host server) has a
peak power draw of 113W, and a purchase cost of $1745 [59].

Page size settings TLB size Area (mm2) Power (W)
Equal (2MB) 183×16 0.538 0.311

Flex-high (128KB,2MB,64MB) 51×16 0.214 0.106
Flex-low (2MB,32MB,128MB) 13×16 0.150 0.069

Table 5. TLB hardware costs as a function of the supported page
sizes and the number of programmable cores. For each page size
configuration, we profiled six popular network functions (Table
6 in Appendix B), and used the maximum number of TLB entries
that any function would require. We assume that there are 48 pro-
grammable cores on the smart NIC.

Similar to the analysis of Liu et al., we use the average elec-
tricity price in a U.S. datacenter [109]—$0.0733/kWh—to cal-
culate the three-year TCO per core in a LiquidIO NIC and
a host server: the LiquidIO NIC has a three-year TCO of
$38.97 per core, whereas a host server has a three-year TCO
of $163.56 per core. Given that S-NIC increases SoC chip
area by up to 8.89% and power consumption by 11.45%, the
three-year TCO of an S-NIC-extended LiquidIO NIC would
increase to $42.53 per core in the worst case. Thus, S-NIC
decreases a smart NIC’s TCO advantage over a host-based so-
lution by up to 8.37%. The 8.37% number is a rough estimate,
and is sensitive to various factors, like whether a datacenter
operator can purchase NICs more cheaply using bulk dis-
counts. However, the high-level observation is that S-NIC’s
extra security still preserves most of the TCO advantages
conferred by smart NICs.

Sizing a programmable core’s TLB: Table 5 estimates the
number of TLB entries required by a programmable core. To
estimate the appropriate TLB sizes, we profiled themaximum
memory usage of our six evaluation functions (§5.1). For
the Monitor function, we measured flows in the CAIDA
trace every five minutes (as in the UnivMon paper [79]) and
recorded the maximum memory usage. The other functions
had bounded memory usage, even with increasing numbers
of flows.

Table 5 shows the required number of TLB entries under
three page size settings: the Equal setting only allows 2 MB
pages; the Flex-low setting allows page sizes of 128 KB, 2 MB,
and 64 MB; and the Flex-high setting allows page sizes of 2
MB, 32 MB, and 128 MB. Our evaluated NFs typically only
required 13–69 MB memory; thus, to handle most network
functions, a programmable core only needs dozens of TLB
entries. The Monitor function required the most memory
(361 MB) and the most TLB entries (183).

Sizing a virtualized accelerator’s TLB: We profiled the
memory usage of three popular accelerators: a deep packet
inspection (DPI) engine, a data compressor (ZIP), and a stor-
age accelerator (RAID). For DPI, we used a matching graph
with 33K rules, consuming 97 MB of RAM. For ZIP, the com-
pression dictionary was 32KB. For RAID, the SGP buffer size
was 128 MB. Table 7 in Appendix B shows detailed memory

EuroSys ’24, April 22–25, 2024, Athens, Greece Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu

profiles for each accelerator. Here, we simply note that, if
TLBs only support a 2 MB page size, then a virtualized DPI
engine requires a 54-entry TLB. A virtualized ZIP accelerator
requires 70 entries, but a virtualized RAID unit only needs 5.

Sizing the TLB for a virtual packet pipeline and DMA
controller: A virtual packet pipeline (§4.4) accesses three
buffers:
• a packet buffer (PB) for storing packet data;
• a packet descriptor buffer (PDB) for storing packet meta-
data like the address and length of a packet buffer; and

• an output descriptor buffer (ODB) for storing metadata
about outgoing packets.

On a LiquidIO NIC, these buffer sizes are 2 MB, 128 KB, and 1
MB respectively. Thus, if S-NIC uses the same sizes, a virtual
packet pipeline will require 3 TLB entries.
To manage DMA transfers between a network function

and its host, a DMA engine requires access to the function’s
PB (2 MB), and a DMA instruction queue (which is 256 KB
per SR-IOV function on a LiquidIO NIC). Thus, an S-NIC
DMA engine needs 2 TLB entries per function.

Cost of management-core denylisting and bus arbitra-
tion: As mentioned in Section 4.2, S-NIC implements mem-
ory denylisting via dual page table walks. The hardware-level
costs will be similar to those of EPT [15], which are small.
Section 4.5 explains why the cost for bus arbitration is also
small.

5.3 Performance Costs of Strong Isolation

As mentioned in Section 1, offloading a function to a smart
NIC can improve performance. S-NIC might decrease those
benefits in three ways:
• S-NIC eliminates cache-based side channels by cache par-
titioning (§4.2). Restricting a function’s access to cache
lines might prevent the function’s working set from com-
pletely fitting in the cache.

• S-NIC eliminates bus-based side channels using bus arbi-
tration (§4.5). Arbitration might cause a memory-bound
function to stall more frequently.

• To enforce ownership semantics for RAM (§4.2), S-NIC
puts TLBs in front of accelerators and programmable
cores.

On modern architectures, TLB translations impose negligible
overhead (assuming that there are no TLB misses, which S-
NIC ensures (§4.2 & 4.3)). Thus, S-NIC’s performance costs
arise solely from cache partitioning and bus arbitration.

To evaluate these costs, we used gem5 [16] to simulate an
S-NIC that used static partitioning for the cache and tem-
poral partitioning [119, 122] for the bus. Static partitioning
allocated 1/𝑁 of the cache to each of the 𝑁 functions. Our
simulated NIC had multiple out-of-order, 1.2 GHz ARM cores
that used a two-level cache and 16 GB of 1,600 MHz DDR3
RAM. We configured the core frequency, cache line size, L1

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

0

1

2

3

IP
C

de
gr

ad
in

g
p

er
ce

nt
(%

)

FW

DPI

NAT

LB

LPM

Mon.

(a) Varying L2 cache size (2 co-
located NFs).

2
NFs

3
NFs

4
NFs

8
NFs

16
NFs

0

5

10

IP
C

de
gr

ad
in

g
p

er
ce

nt
(%

)

FW

DPI

NAT

LB

LPM

Mon.

(b) Varying co-tenancy (4MB L2
cache).

Figure 5. IPC degradation induced by cache partitioning and bus
arbitration. For each experimental setting, we calculate the median
IPC degradation of a function by running every possible colocation
with other functions, and determining the median IPC decrease;
we also plot 1st and 99th percentile error bars across all possible
colocations.

cache size, and cache associativity and latency tomatch those
of the Marvell smart NIC described in the iPipe paper [76].
Other microarchitectural settings used the gem5 defaults.

Since gem5 does not currently simulate high-speed NICs,
we fed packets directly into RAM and rewrote functions to
directly access packets in memory. Packet streams came from
a pool of 100,000 flows that were uniformly sampled from
the ICTF trace; those traces had a Zipf distribution with a
skewness of 1.1. Before collecting experimental results, we
ran 1 billion instructions to warm microarchitectural struc-
tures like caches and branch predictors. We then collected
experimental data for the next 100 million instructions. We
measured the impact of cache partitioning and bus arbitra-
tion on instructions-per-cycle (IPC), since, for a function
that always has work to do, IPC is directly correlated with
function throughput. IPC degradation was calculated with
respect to the IPC of baseline hardware with the same cache
size and the same degree of function cotenancy, but no cache
partitioning and no bus arbitration.

As shown in Figures 5a and 5b, S-NIC’s performance over-
heads increase as the L2 cache size decreases and the degree
of cotenancy increases. However, network functions that
only examine packet headers are not memory-intensive [61],
so IPC is mostly insensitive to cache size. For example, when
running 2 NFs and using a 4MB L2 cache (equivalent in size
to a Marvell NIC’s L2 cache), the average (median) IPC degra-
dation is 0.24%. When colocating 4 NFs and using 4MB L2
cache, the average (median) IPC degradation is 0.93%, with a
worst (99th percentile) IPC degradation of 1.66%. With 8 NFs,
the average of the median IPC degradation is 3.41%, with a
99th-percentile degradtion of 5.12%.With 16 NFs, the average
is 9.44% with a 99th-percentile degradation of 13.71%. The
firewall, DPI, and NAT functions suffered the worst degrada-
tions due to their larger working sets. Regardless, we believe
that these IPC reductions are acceptable, given the strong
isolation that S-NIC provides.

SmartNIC Security Isolation in the Cloud with S-NIC EuroSys ’24, April 22–25, 2024, Athens, Greece

6 Related Work

Trusted execution environments: A variety of prior re-
search has investigated hardware support for secure com-
putation [17, 25, 32, 43, 66, 72, 92, 111, 112]. Commercially,
Intel SGX [82] and ARMTrustZone [89] are the most popular
approaches. SGX and TrustZone provide helpful isolation
guarantees. Unfortunately, both platforms are vulnerable to
a variety of side channel attacks due to microarchitectural
co-tenancy of trusted and untrusted code [2, 12, 20, 26, 42, 48,
75, 104, 123]. For example, if a single hyperthreaded physical
core runs secure code on one logical core, and insecure code
on another, side channels arise from contention on the phys-
ical core’s functional units. S-NIC removes such problems
by eliminating microarchitectural co-tenancy.

Unlike SGX and TrustZone, S-NIC does not force a secure
computation to rely on an untrusted OS to perform IO. In
S-NIC, a network function has direct control over a virtual
packet pipeline. The datacenter-provided NIC OS cannot
tamper with the VPP once a function has been launched.

S-NIC also enables fine-grained virtualization of heteroge-
neous components like DPI units. In contrast, SGX focuses
on isolating CPUs and memory. TrustZone allows devices
to be attached to the normal world or the secure world, but
does not provide fine-grained partitioning and side-channel
avoidance at the microarchitectural level.

Host-level network functions: Before the advent of smart
NICs, network functions had to run on the host machine.
xOMB [4], CoMB [102], FastClick [10], and Metron [62]
run all functions in a single process, and provide no iso-
lation. NetVM [54], OpenNetVM [124], ClickOS [80], Hyper-
Switch [100], mSwitch [53], OpenBox [19], and Slick [5] rely
on VMs to isolate different NFs.

NetBricks [94] requires network functions to be written in
Rust; NetBricks takes advantage of Rust-level isolation fea-
tures to prevent functions from tampering with each other’s
state. The SafeBricks extension [98] runs network functions
inside enclaves to protect functions from an untrusted OS.
However, as discussed earlier, SGX enclaves do not solve
important challenges involving side channels, fair resource
allocation, and fine-grained hardware virtualization. Also
note that, even though SafeBricks uses DPDK to enable user-
level networking, a malicious OS can still tamper with IO
traffic; since enclave memory cannot be the target of a DMA
operation, a SafeBricks function must pull packets into nor-
mal memory that is accessible by a malicious kernel.

NIC-accelerated applications: By offloading functionality
to a smart NIC, applications reduce packet copying between
the host and NIC, and leverage optimized hardware accelera-
tors to implement common packet-handling tasks. For exam-
ple, ConsensusBox [60] and NOPaxos [70] offload distributed

systems primitives like atomic broadcast. Incbricks [77] pro-
vides in-network data caching. Eris [69] performs on-NIC
ordering for transactions in a distributed storage system.
To offload functions to a LiquidIO NIC, developers use

programming frameworks like E3 [78], Floem [97], and iP-
ipe [76]. 𝜆-NIC [28] supports offloading to a Netronome NIC.
However, these NICs enforce weak memory isolation, and
thus cannot provide hardware-level protections against ma-
licious functions or malicious NIC OSes (§3). 𝜆-NIC does
use compiler-emitted guards to restrict a function’s memory
accesses, but if those restrictions are subverted (e.g., via ROP
attacks [101]), all NIC state can be compromised. These NICs
also cannot provide fine-grained, side-channel-free virtu-
alization of a NIC’s resources. S-NIC achieves these goals
using novel hardware-level primitives.

Formal verification: Recent work from the hardware com-
munity has explored whether a processor’s architecture can
be formally verified to be free of side channels [22, 50, 114].
S-NIC hardware is amenable to such analyses, although state-
of-the-art approaches currently have practical limitations
with respect to scalability and completeness. For example,
InSpectre [50] introduces a formal language for modeling a
CPU, and can prove whether a particular CPU design (ex-
pressed in that language) is vulnerable to side channel leak-
age. However, InSpectre’s analyses are restricted to a single
core, and do not provide security guarantees about the actual
RTL implementation of a CPU.

7 Conclusion
S-NIC is a new design for smart NICs. Using a novel hardware
architecture, S-NIC isolates functions at both the ISA level
and the microarchitectural level, enforcing confidentiality,
integrity, and the absence of side channels in the midst of
malicious tenants and malicious datacenter providers. S-NIC
provides minimal degradations in performance and total-
cost-of-ownership, with only modest hardware costs. S-NIC
evaluation code is available at https://github.com/SNIC-
EuroSys24/SNIC.

Acknowledgments
We thank our shepherd Meni Orenbach and the anonymous
reviewers for their comments. We thank Cloudlab [35] for
providing us with evaluation infrastructure. This work was
supported in part by ACE, one of the seven centers in JUMP
2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA. Yang Zhou was also supported by a
Google PhD Fellowship.

References
[1] Alfred V Aho and Margaret J Corasick. Efficient String Matching: an

Aid to Bibliographic Search. Communications of the ACM, 18(6):333–
340, 1975.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida García, and Nicola Tuveri. Port Contention for Fun

https://github.com/SNIC-EuroSys24/SNIC
https://github.com/SNIC-EuroSys24/SNIC

EuroSys ’24, April 22–25, 2024, Athens, Greece Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu

and Profit. In Proceedings of IEEE Symposium on Security and Privacy,
pages 870–887, 2019.

[3] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. In-
novative Technology for CPU Based Attestation and Sealing. In
Proceedings of International Workshop on Hardware and Architectural
Support for Security and Privacy, 2013.

[4] James W Anderson, Ryan Braud, Rishi Kapoor, George Porter, and
Amin Vahdat. xOMB: Extensible Open Middleboxes with Commodity
Servers. In Proceedings of ACM/IEEE Symposium on Architectures for
Networking and Communications systems, pages 49–60, 2012.

[5] Bilal Anwer, Theophilus Benson, Nick Feamster, and Dave Levin.
Programming Slick Network Functions. In Proceedings of ACM SIG-
COMM Symposium on Software Defined Networking Research, pages
1–13, 2015.

[6] ARM. ARM TrustZone. https://developer.arm.com/ip-products/sec
urity-ip/trustzone, 2020.

[7] ARM. Cortex-A9 – Arm Developer. https://developer.arm.com/ip-
products/processors/cortex-a/cortex-a9, 2020.

[8] Aryaka. Cloud-First WAN: Managed SD-WAN and MPLS Alternative
- Aryaka. http://www.aryaka.com/, 2020.

[9] Anonymous authors. Non-NDA discussions with Mellanox, 2019.
[10] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast Userspace

Packet Processing. In Proceedings of ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems, pages 5–16,
2015.

[11] Adam Bates, Benjamin Mood, Joe Pletcher, Hannah Pruse, Masoud
Valafar, and Kevin Butler. On Detecting Co-Resident Cloud Instances
Using Network FlowWatermarking Techniques. International Journal
of Information Security, 13(2):171–189, 2014.

[12] J. Bech, A. Biesheuvel, M. Brown, and D. Thompson. Implications
of Meltdown and Spectre: Part 2, February 7, 2018. Linaro blog.
https://www.linaro.org/blog/meltdown-spectre-2/.

[13] Theophilus Benson. In-Network Compute: Considered Armed and
Dangerous. In Proceedings of HotOS, pages 216–224, 2019.

[14] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha
Manne. Accelerating Two-Dimensional Page Walks for Virtualized
Systems. In Proceedings of ACM ASPLOS, pages 26–35, 2008.

[15] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha
Manne. Accelerating Two-Dimensional Page Walks for Virtualized
Systems. In ACM SIGOPS Operating Systems Review, pages 26–35,
2008.

[16] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower,
Tushar Krishna, Somayeh Sardashti, et al. The gem5 Simulator. ACM
SIGARCH computer architecture news, 39(2):1–7, 2011.

[17] Rick Boivie and Peter Williams. SecureBlue++: CPU Support for
Secure Execution, April 12, 2013. IBM Research Report: RC25369.
https://domino.research.ibm.com/library/cyberdig.nsf/papers/BE73
A643EFE8274B85257B51006760C0/$File/rc25369.pdf.

[18] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand
Exposure: SGX Cache Attacks Are Practical. In Proceedings USENIX
Workshop on Offensive Technologies, 2017.

[19] Anat Bremler-Barr, Yotam Harchol, and David Hay. OpenBox: a
Software-Defined Framework for Developing, Deploying, and Man-
aging Network Functions. In Proceedings of ACM SIGCOMM, pages
511–524, 2016.

[20] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T.F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution. In Proceedings of USENIX Security, pages 991–1008,
2018.

[21] J.V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.
Telling Your Secrets without Page Faults: Stealthy Page Table-based
Attacks on Enclaved Execution. In Proceedings of USENIX Security,

pages 1041–1056, 2017.
[22] Gianpiero Cabodi, Paolo Camurati, Fabrizio Finocchiaro, and Danilo

Vendramietto. Model-Checking Speculation-Dependent Security
Properties: Abstracting and Reducing ProcessorModels for Sound and
Complete Verification. In Proceedings of the International Conference
on Codes, Cryptology, and Information Security, pages 462–479, 2019.

[23] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, et al. A Cloud-Scale Acceleration Ar-
chitecture. In Proceedings of IEEE/ACM MICRO, page 7, 2016.

[24] Center for Applied Internet Data Analysis (CAIDA). The CAIDA
Anonymized Internet Traces 2016 Dataset. https://www.caida.org/da
ta/passive/passive_2016_dataset.xml, 2016.

[25] David Champagne and Ruby B Lee. Scalable Architectural Support
for Trusted Software. In Proceedings of IEEE International Symposium
on High-Performance Computer Architecture, pages 1–12, 2010.

[26] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. SgxPectre: Stealing Intel Secrets from SGX
Enclaves via Speculative Execution. In Proceedings of IEEE European
Symposium on Security and Privacy, pages 142–157, 2019.

[27] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-
Channel Leaks in Web Applications: A Reality Today, a Challenge
Tomorrow. In Proceedings of IEEE Symposium on Security and Privacy,
pages 191–206, 2010.

[28] Sean Choi, Muhammad Shahbaz, Balaji Prabhakar, andMendel Rosen-
blum. 𝜆-NIC: Interactive Serverless Compute on Programmable
SmartNICs. In Proceedings of IEEE ICDCS, pages 67–77, 2020.

[29] Cisco. Community Rulesets for Snort v3.0 and v2.9. https://www.sn
ort.org/downloads, 2020.

[30] Comcast. NetBricks Open Source. https://github.com/williamofoc
kham/NetBricks/tree/5e92f07410a67178fb837adf8b47b40f524ade67,
2019.

[31] Victor Costan and Srinivas Devadas. Intel SGX Explained, February
20, 2017. Cryptology ePrint Archive: Version 20170221:054353. https:
//eprint.iacr.org/2016/086.pdf.

[32] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In Proceedings of
USENIX Security, pages 857–874, 2016.

[33] Peter W Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S
Emer, and Mengjia Yan. DAGguise: Mitigating Memory Timing Side
Channels. In Proceedings of ACM ASPLOS, pages 329–343, 2022.

[34] Whitfield Diffie and Martin E. Hellman. New Directions in Cryp-
tography. IEEE Transactions on Information Theory, 22(6):644–654,
1976.

[35] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, et al. The Design and Operation of CloudLab. In
Proceedings of USENIX ATC, pages 1–14, 2019.

[36] Eddie Kohler. MazuNAT. https://github.com/kohler/click/blob/mas
ter/conf/mazu-nat.click, 2011.

[37] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney,
Wentao Shang, and Jinnah Dylan Hosein. Maglev: A Fast and Reliable
Software Network Load Balancer. In Proceedings of USENIX NSDI,
pages 523–535, 2016.

[38] Reouven Elbaz, David Champagne, Catherine Gebotys, Ruby B Lee,
Nachiketh Potlapally, and Lionel Torres. Hardware Mechanisms
for Memory Authentication: A Survey of Existing Techniques and
Engines. In Transactions on Computational Science IV, pages 1–22.
2009.

[39] Emerging Threats Site. DPI Rulesets. https://rules.emergingthreats.
net/open/, 2020.

[40] Emerging Threats Site. Firewall Rulesets. https://rules.emergingthre
ats.net/fwrules/, 2020.

https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a9
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a9
http://www.aryaka.com/
https://www.linaro.org/blog/meltdown-spectre-2/
https://domino.research.ibm.com/library/cyberdig.nsf/papers/BE73A643EFE8274B85257B51006760C0/$File/rc25369.pdf
https://domino.research.ibm.com/library/cyberdig.nsf/papers/BE73A643EFE8274B85257B51006760C0/$File/rc25369.pdf
https://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.snort.org/downloads
https://www.snort.org/downloads
https://github.com/williamofockham/NetBricks/tree/5e92f07410a67178fb837adf8b47b40f524ade67
https://github.com/williamofockham/NetBricks/tree/5e92f07410a67178fb837adf8b47b40f524ade67
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
https://github.com/kohler/click/blob/master/conf/mazu-nat.click
https://github.com/kohler/click/blob/master/conf/mazu-nat.click
https://rules.emergingthreats.net/open/
https://rules.emergingthreats.net/open/
https://rules.emergingthreats.net/fwrules/
https://rules.emergingthreats.net/fwrules/

SmartNIC Security Isolation in the Cloud with S-NIC EuroSys ’24, April 22–25, 2024, Athens, Greece

[41] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silber-
stein. NICA: An Infrastructure for Inline Acceleration of Network
Applications. In Proceedings of USENIX ATC, pages 345–362, 2019.

[42] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev. Branch-
Scope: A New Side-Channel Attack on Directional Branch Predictor.
In Proceedings of ACM ASPLOS, pages 693–707, 2018.

[43] Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy, Dmitry Ponomarev,
Nael Abu Ghazaleh, and Ryan Riley. Iso-X: A Flexible Architecture for
Hardware-Managed Isolated Execution. In Proceedings of IEEE/ACM
MICRO, pages 190–202, 2014.

[44] Yangchun Fu, Erick Bauman, Raul Quinonez, and Zhiqiang Lin. SGX-
LPAD: Thwarting Controlled Side Channel Attacks via Enclave Ver-
ifiable Page Faults. In Proceedings of International Symposium on
Research in Attacks, Intrusions, and Defenses, pages 357–380, 2017.

[45] GlobeNewswire. Stingray SmartNIC Powering Baidu Cloud. https:
//www.globenewswire.com/news-release/2020/03/31/2009195/0
/en/Broadcom-Stingray-SmartNIC-Accelerates-Baidu-Cloud-
Services.html, 2020.

[46] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo
Müller. Cache Attacks on Intel SGX. In Proceedings of European
Workshop on Systems Security, pages 1–6, 2017.

[47] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C Snoeren.
Smartnic performance isolation with fairnic: Programmable network-
ing for the cloud. In Proceedings of ACM SIGCOMM, pages 681–693,
2020.

[48] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In Proceedings of USENIX Security, pages 995–972, 2018.

[49] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and Flexible
Data Center Network. In Proceedings of ACM SIGCOMM, pages 51–62,
2009.

[50] Roberto Guanciale, Musard Balliu, and Mads Dam. InSpectre: Break-
ing and Fixing Microarchitectural Vulnerabilities by Formal Analysis.
In Proceedings of ACM CCS, pages 1853–1869, 2020.

[51] Shay Gueron. A Memory Encryption Engine Suitable for General
Purpose Processors, February 25, 2016. Cryptology ePrint Archive:
Version 20160225:211316. https://eprint.iacr.org/2016/204.pdf.

[52] Pankaj Gupta, Steven Lin, and Nick McKeown. Routing Lookups in
Hardware atMemoryAccess Speeds. In Proceedings of IEEE INFOCOM,
pages 1240–1247, 1998.

[53] Michio Honda, Felipe Huici, Giuseppe Lettieri, and Luigi Rizzo.
mSwitch: a Highly-Scalable, Modular Software Switch. In Proceed-
ings of ACM SIGCOMM Symposium on Software Defined Networking
Research, pages 1–13, 2015.

[54] Jinho Hwang, K K_ Ramakrishnan, and Timothy Wood. NetVM:
High Performance and Flexible Networking Using Virtualization on
Commodity Platforms. IEEE Transactions on Network and Service
Management, 12(1):34–47, 2015.

[55] IETF. RFC 7348: Virtual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Networks over Layer
3 Networks. https://tools.ietf.org/html/rfc7348, 2014.

[56] Intel. PCI-SIG SR-IOV Primer: An Introduction to SR-IOV Technology
(Intel LAN Access Division). https://www.intel.com/content/da
m/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-
paper.pdf, 2011.

[57] Intel. Improving Real-Time Performance by Utilizing Cache Alloca-
tion Technology. https://www.intel.com/content/dam/www/publ
ic/us/en/documents/white-papers/cache-allocation-technology-
white-paper.pdf, 2015.

[58] Intel. Resources and Response to Side Channel L1 Terminal Fault.
https://www.intel.com/content/www/us/en/architecture-and-
technology/l1tf.html, 2018.

[59] Intel. Intel Xeon Processor E5-2680 v3 (30M Cache, 2.50 GHz) Product
Specifications. https://ark.intel.com/content/www/us/en/ark/pr

oducts/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-
ghz.html?q=E5-2680v3, 2020.

[60] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. Con-
sensus in a Box: Inexpensive Coordination in Hardware. In Proceed-
ings of USENIX NSDI, pages 425–438, 2016.

[61] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. State-
less Network Functions: Breaking the Tight Coupling of State and
Processing. In Proceedings of USENIX NSDI, pages 97–112, 2017.

[62] Georgios P Katsikas, Tom Barbette, Dejan Kostic, Rebecca Steinert,
and Gerald Q Maguire Jr. Metron: NFV Service Chains at the True
Speed of the Underlying Hardware. In Proceedings of USENIX NSDI,
pages 171–186, 2018.

[63] Johannes Krude, Jaco Hofmann, Matthias Eichholz, Klaus Wehrle,
Andreas Koch, and Mira Mezini. Online Reprogrammable Multi-
Tenant Switches. In Proceedings of Workshop on Emerging in-Network
Computing Paradigms, pages 1–8, 2019.

[64] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, and
Zhi Liu. Embark: Securely Outsourcing Middleboxes to the Cloud.
In Proceedings of USENIX NSDI, pages 255–273, 2016.

[65] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin Wang, Aditya
Akella, Michael M Swift, and TV Lakshman. UNO: Unifying Host
and Smart NIC Offload for Flexible Packet Processing. In Proceedings
of ACM SoCC, pages 506–519, 2017.

[66] Ruby B Lee, Peter CS Kwan, John P McGregor, Jeffrey Dwoskin, and
Zhenghong Wang. Architecture for Protecting Critical Secrets in
Microprocessors. In Proceedings of IEEE International Symposium on
Computer Architecture, pages 2–13, 2005.

[67] Michael Lescisin and Qusay Mahmoud. Tools for Active and Passive
Network Side-Channel Detection for Web Applications. In Proceed-
ings of USENIX Workshop on Offensive Technologies, 2018.

[68] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte,
Sriram Govindan, Dan RK Ports, Irene Zhang, Ricardo Bianchini,
Haryadi S Gunawi, and Anirudh Badam. LeapIO: Efficient and
Portable Virtual NVMe Storage on ARM SoCs. In Proceedings of
ACM ASPLOS, pages 591–605, 2020.

[69] Jialin Li, Ellis Michael, and Dan RK Ports. Eris: Coordination-Free
Consistent Transactions Using In-Network Concurrency Control. In
Proceedings of ACM SOSP, pages 104–120, 2017.

[70] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and
Dan RK Ports. Just Say NO to Paxos Overhead: Replacing Consensus
with Network Ordering. In Proceedings of USENIX OSDI, pages 467–
483, 2016.

[71] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M
Tullsen, and Norman P Jouppi. McPAT: an Integrated Power, Area,
and Timing Modeling Framework for Multicore and Manycore Archi-
tectures. In Proceedings of IEEE/ACM MICRO, pages 469–480, 2009.

[72] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln,
Dan Boneh, John Mitchell, and Mark Horowitz. Architectural Sup-
port for Copy and Tamper Resistant Software. Acm Sigplan Notices,
35(11):168–177, 2000.

[73] Jiaxin Lin, Kiran Patel, Brent E Stephens, Anirudh Sivaraman, and
Aditya Akella. PANIC: A High-Performance Programmable NIC
for Multi-tenant Networks. In Proceedings of USENIX OSDI, pages
243–259, 2020.

[74] Linaro Limited. Open Portable Trusted Execution Environment. https:
//www.op-tee.org/, 2020.

[75] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. ARMaged-
don: Cache Attacks on Mobile Devices. In Proceedings of USENIX
Security, pages 549–564, 2016.

[76] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon
Peter, and Karan Gupta. Offloading Distributed Applications onto
SmartNICs Using iPipe. In Proceedings of ACM SIGCOMM, pages
318–333, 2019.

https://www.globenewswire.com/news-release/2020/03/31/2009195/0/en/Broadcom-Stingray-SmartNIC-Accelerates-Baidu-Cloud-Services.html
https://www.globenewswire.com/news-release/2020/03/31/2009195/0/en/Broadcom-Stingray-SmartNIC-Accelerates-Baidu-Cloud-Services.html
https://www.globenewswire.com/news-release/2020/03/31/2009195/0/en/Broadcom-Stingray-SmartNIC-Accelerates-Baidu-Cloud-Services.html
https://www.globenewswire.com/news-release/2020/03/31/2009195/0/en/Broadcom-Stingray-SmartNIC-Accelerates-Baidu-Cloud-Services.html
https://eprint.iacr.org/2016/204.pdf
https://tools.ietf.org/html/rfc7348
https://www.intel.com/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
https://www.intel.com/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
https://www.intel.com/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html?q=E5-2680v3
https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html?q=E5-2680v3
https://ark.intel.com/content/www/us/en/ark/products/81908/intel-xeon-processor-e5-2680-v3-30m-cache-2-50-ghz.html?q=E5-2680v3
https://www.op-tee.org/
https://www.op-tee.org/

EuroSys ’24, April 22–25, 2024, Athens, Greece Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu

[77] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy,
and Kishore Atreya. IncBricks: Toward In-Network Computation
with an In-Network Cache. In Proceedings of ACM ASPLOS, pages
795–809, 2017.

[78] Ming Liu, Simon Peter, Arvind Krishnamurthy, and
Phitchaya Mangpo Phothilimthana. E3: Energy-Efficient Mi-
croservices on SmartNIC-Accelerated Servers. In Proceedings of
USENIX ATC, pages 363–378, 2019.

[79] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon. In Proceedings of ACM
SIGCOMM, pages 101–114, 2016.

[80] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici. ClickOS and the
Art of Network Function Virtualization. In Proceedings of USENIX
NSDI, pages 459–473, 2014.

[81] Marvell. Marvell/Cavium LiquidIO Smart NICs. https://www.marvel
l.com/ethernet-adapters-and-controllers/liquidio-smart-nics/, 2020.

[82] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. In-
novative Instructions and Software Model for Isolated Execution. In
Proceedings of International Workshop on Hardware and Architectural
Support for Security and Privacy, 2013.

[83] J. Mickens, E. B. Nightingale, J. Elson, D. Gehring, B. Fan, A. Kadav,
V. Chidambaram, and O. Khan. Blizzard: Fast, Cloud-scale Block
Storage for Cloud-oblivious Applications. In Proceedings of USENIX
NSDI, pages 257–273, 2014.

[84] Saeid Mofrad, Fengwei Zhang, Shiyong Lu, and Weidong Shi. A
Comparison Study of Intel SGX and AMD Memory Encryption Tech-
nology. In Proceedings of International Workshop on Hardware and
Architectural Support for Security and Privacy, pages 1–8, 2018.

[85] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat. PortLand: A Scalable
Fault-Tolerant Layer 2 Data Center Network Fabric. In Proceedings of
ACM SIGCOMM, pages 39–50, 2009.

[86] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D.R.
López, K. Papagiannaki, R. Rodriguez, and P. Steenkiste. Multi-
Context TLS (mcTLS): Enabling Secure In-Network Functionality
in TLS. In Proceedings of ACM SIGCOMM, pages 199–212, 2015.

[87] Netronome. Netronome Agilio LX Smart NICs. https://www.netron
ome.com/products/agilio-lx/, 2020.

[88] Palo Alto Networks. Global Cybersecurity Leader - Palo Alto Net-
works. https://www.paloaltonetworks.com/, 2020.

[89] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and
Sarah Martin. Trustzone Explained: Architectural Features and Use
Cases. In Proceedings of IEEE International Conference on Collaboration
and Internet Computing, pages 445–451, 2016.

[90] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and Y. Suzue.
Flat Datacenter Storage. In Proceedings of USENIX OSDI, pages 1–15,
2012.

[91] Oleskii Oleksenko, Bodhan Trach, Robert Krahn, Andre Martin,
Christof Fetzer, and Mark Silberstein. Varys: Protecting SGX En-
claves from Practical Side-channel Attacks. In Proceedings of USENIX
ATC, pages 227–239, 2018.

[92] Emmanuel Owusu, Jorge Guajardo, Jonathan McCune, Jim Newsome,
Adrian Perrig, and Amit Vasudevan. OASIS: On Achieving a Sanctu-
ary for Integrity and Secrecy on Untrusted Platforms. In Proceedings
of ACM SIGSAC conference on Computer & communications security,
pages 13–24, 2013.

[93] D. Page. Partitioned Cache Architecture as a Side-Channel Defence
Mechanism, August 22, 2005. Cryptology ePrint Archive: Version
20050825:073958. http://eprint.iacr.org/2005/280.pdf.

[94] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. NetBricks: Taking the V out of NFV. In
Proceedings of USENIX OSDI, pages 203–216, 2016.

[95] B. Parno, J.M. McCune, and A. Perrig. Bootstrapping Trust in Modern
Computers, 2011. https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/BootstrappingTrustBook.pdf.

[96] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
et al. The Design and Implementation of Open vSwitch. In Proceedings
of USENIX NSDI, pages 117–130, 2015.

[97] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann,
Simon Peter, Rastislav Bodik, and Thomas Anderson. Floem: a Pro-
gramming System for NIC-Accelerated Network Applications. In
Proceedings of USENIX OSDI, pages 663–679, 2018.

[98] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
SafeBricks: Shielding Network Functions in the Cloud. In Proceedings
of USENIX NSDI, pages 201–216, 2018.

[99] Moinuddin K Qureshi and Yale N Patt. Utility-Based Cache Partition-
ing: A Low-Overhead, High-Performance, Runtime Mechanism to
Partition Shared Caches. In Proceedings of IEEE/ACM MICRO, pages
423–432, 2006.

[100] Kaushik Kumar Ram, Alan L Cox, Mehul Chadha, and Scott Rixner.
Hyper-switch: A Scalable Software Virtual Switching Architecture.
In Proceedings of USENIX ATC, pages 13–24, 2013.

[101] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
Return-Oriented Programming: Systems, Languages, and Applica-
tions. ACM Transactions on Information and System Security, 15(1):1–
34, 2012.

[102] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and
Guangyu Shi. Design and Implementation of a Consolidated Mid-
dlebox Architecture. In Proceedings of USENIX NSDI, pages 323–336,
2012.

[103] Ali Shafiee, Akhila Gundu, Manjunath Shevgoor, Rajeev Balasubra-
monian, and Mohit Tiwari. Avoiding Information Leakage in the
Memory Controller with Fixed Service Policies. In Proceedings of
IEEE/ACM MICRO, pages 89–101, 2015.

[104] D. Shen. Exploiting Trustzone on Android. In Black Hat, August
2015. https://www.blackhat.com/docs/us-15/materials/us-15-Shen-
Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-
wp.pdf.

[105] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
Blindbox: Deep Packet Inspection over Encrypted Traffic. In Proceed-
ings of ACM SIGCOMM, pages 213–226, 2015.

[106] Ming-Wei Shih, Sangho Lee, Taesoo Kim, andMarcus Peinado. T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Programs.
In Proceedings of NDSS, 2017.

[107] Vishal Shrivastav. Fast, Scalable, and Programmable Packet Scheduler
in Hardware. In Proceedings of ACM SIGCOMM, pages 367–379, 2019.

[108] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F Wenisch,
Monica Wong-Chan, Sean Clark, Milo MK Martin, Moray McLaren,
Prashant Chandra, Rob Cauble, et al. 1RMA: Re-envisioning Remote
Memory Access for Multi-tenant Datacenters. In Proceedings of ACM
SIGCOMM, pages 708–721, 2020.

[109] Site Selection Group. Power in the Data Center and its Cost Across
the U.S. https://info.siteselectiongroup.com/blog/power-in-the-data-
center-and-its-costs-across-the-united-states, 2017.

[110] Brent Stephens, Aditya Akella, and Michael Swift. Loom: Flexible
and Efficient NIC Packet Scheduling. In Proceedings of USENIX NSDI,
pages 33–46, 2019.

[111] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk,
and Srinivas Devadas. AEGIS: Architecture for Tamper-Evident and
Tamper-Resistant Processing. In Proceedings of ACM International
Conference on Supercomputing, pages 357–368, 2014.

[112] Jakub Szefer and Ruby B Lee. Architectural Support for Hypervisor-
Secure Virtualization. ACM SIGPLAN Notices, 47(4):437–450, 2012.

[113] The UCSB iCTF. Network Traces Collected During the 2010 iCTF.
https://ictf.cs.ucsb.edu/archive/ictf_2010.html, 2010.

https://www.marvell.com/ethernet-adapters-and-controllers/liquidio-smart-nics/
https://www.marvell.com/ethernet-adapters-and-controllers/liquidio-smart-nics/
https://www.netronome.com/products/agilio-lx/
https://www.netronome.com/products/agilio-lx/
https://www.paloaltonetworks.com/
http://eprint.iacr.org/2005/280.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BootstrappingTrustBook.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BootstrappingTrustBook.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://info.siteselectiongroup.com/blog/power-in-the-data-center-and-its-costs-across-the-united-states
https://info.siteselectiongroup.com/blog/power-in-the-data-center-and-its-costs-across-the-united-states
https://ictf.cs.ucsb.edu/archive/ictf_2010.html

SmartNIC Security Isolation in the Cloud with S-NIC EuroSys ’24, April 22–25, 2024, Athens, Greece

[114] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. CheckMate:
Automated Synthesis of Hardware Exploits and Security Litmus Tests.
In Proceedings of IEEE/ACM MICRO, pages 947–960, 2018.

[115] Trusted Computing Group. TCG Infrastructure Working Group Ar-
chitecture Part II: Integrity Management, 2006. Specification Version
1.0, Revision 1.0.

[116] Trusted Computing Group. TCG Attestation PTS Protocol: Binding
to TNC IF-M, 2011. Specification Version 1.0, Revision 28.

[117] VMware. Network Functions Virtualization (NFV) - vCloud NFV.
https://www.vmware.com/products/network-functions-virtualizati
on.html, 2020.

[118] WenhaoWang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky
Cauldron on the Dark Land: Understanding Memory Side-Channel
Jazards in SGX. In Proceedings of ACM CCS, pages 2421–2434, 2017.

[119] Yao Wang, Andrew Ferraiuolo, and G Edward Suh. Timing Channel
Protection For a Shared Memory Controller. In Proceedings of IEEE
International Symposium on High Performance Computer Architecture,
pages 225–236, 2014.

[120] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers,
and G Edward Suh. SecDCP: Secure Dynamic Cache Partitioning
for Efficient Timing Channel Protection. In Proceedings of Design
Automation Conference, pages 1–6, 2016.

[121] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Op-
erating Systems. In Proceedings of IEEE Symposium on Security and

Privacy, pages 640–656, 2015.
[122] Yao Wang. Open Source for Temporal Partitioning Bus Arbitration.

https://github.com/xiaoyaozi5566/GEM5_DRAMSim2, 2014.
[123] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y Thomas

Hou. TruSpy: Cache Side-Channel Information Leakage from the
Secure World on ARM Devices, October 10, 2016. Cryptology ePrint
Archive: Version 20161015:190703. https://eprint.iacr.org/2016/980.p
df.

[124] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato,
Gregoire Todeschi, KK Ramakrishnan, and Timothy Wood. Open-
NetVM: a Platform for High Performance Network Service Chains.
In Proceedings of Workshop on Hot topics in Middleboxes and Network
Function Virtualization, pages 26–31, 2016.

[125] Ziqiao Zhou, Yizhou Shan, Weidong Cui, Xinyang Ge, Marcus
Peinado, and Andrew Baumann. Core Slicing: Closing the Gap Be-
tween Leaky Confidential VMs and Bare-metal Cloud. In Proceedings
of USENIX OSDI, pages 247–267, 2023.

[126] Noa Zilberman, Yury Audzevich, Georgina Kalogeridou, Neelakandan
Manihatty-Bojan, Jingyun Zhang, and Andrew Moore. NetFPGA:
Rapid Prototyping of Networking Devices in Open Source. ACM
SIGCOMM Computer Communication Review, 45(4):363–364, 2015.

[127] Zscaler. Zscaler Cloud Security - Secure Your Digital Transformation.
https://www.zscaler.com/, 2020.

https://www.vmware.com/products/network-functions-virtualization.html
https://www.vmware.com/products/network-functions-virtualization.html
https://github.com/xiaoyaozi5566/GEM5_DRAMSim2
https://eprint.iacr.org/2016/980.pdf
https://eprint.iacr.org/2016/980.pdf
https://www.zscaler.com/

EuroSys ’24, April 22–25, 2024, Athens, Greece Yang Zhou, Mark Wilkening, James Mickens, and Minlan Yu

APPENDIX
A S-NIC’s Attestation Protocol
Attestation [3, 95, 115, 116] enables a machine to prove to
a remote party that the machine is running a specific piece
of software. Attestation requires the trusted hardware to
sign statements about the software that has been loaded. At
manufacturing time, an S-NIC receives an asymmetric key
pair. This key pair, called the endorsement key pair (𝐸𝐾), is
burned into the NIC hardware, along with a certificate for
the public half of the 𝐸𝐾 . The NIC never reveals the private
half to external parties; the certificate for the public part is
signed by the NIC vendor. After a reboot, the NIC generates
a random asymmetric key pair known as the attestation key
pair (𝐴𝐾). The NIC stores the private half in a private on-NIC
register, and signs the public half with the 𝐸𝐾 .
Suppose that a remote party wishes to verify that a NIC

is running function 𝐹 . The remote party (i.e., the verifier)
and 𝐹 engage in the following attestation protocol, which is
based on the classic Diffie-Hellman exchange:
• The verifier sends a hellomessage to the NIC. Themessage
contains a verifier-choosen nonce 𝑛.

• 𝐹 generates a random value 𝑥 , and calculates 𝑔𝑥 mod 𝑝 ,
where 𝑔 and 𝑝 are the public Diffie-Hellman parameters.
𝐹 then invokes the nf_attest instruction, passing a pointer
to a memory buffer that contains 𝑔, 𝑝 , 𝑛, and 𝑔𝑥 mod 𝑝 .
The nf_attest instruction uses 𝐴𝐾𝑝𝑟𝑖𝑣 to sign the hash of
𝐹 ’s inital state concatenated with 𝑔, 𝑝 , 𝑛, and 𝑔𝑥 mod 𝑝 .

• 𝐹 sends a four-part message to the verifier. The first part
contains𝑔, 𝑝 ,𝑛,𝑔𝑥 mod 𝑝 , and the hash of 𝐹 ’s initial state.
The second part contains the hardware-generated signa-
ture over that state. The third part contains the 𝐴𝐾𝑝𝑢𝑏
signed by 𝐸𝐾𝑝𝑟𝑖𝑣 . The final part contains the certificate
for 𝐸𝐾𝑝𝑢𝑏 ; remember that this certificate is signed by the
NIC vendor.

• The verifier receives the response, and checks whether the
hash corresponds to 𝐹 ’s hash, and whether the signature
was generated by a certified S-NIC. The verifier also en-
sures that the signature covers the appropriate nonce; this
prevents replay attacks. If all of the checks succeed, the
verifier picks a random number 𝑦, calculates 𝑔𝑦 mod 𝑝 ,
and sends the latter value to 𝐹 .

• Both sides can then compute the shared symmetric key
𝑔𝑥𝑦 mod 𝑝 .

B Memory Profiling Results
We define the memory utilization ratio (MUR) as the ratio
between the memory size allocated by S-NIC and the actual
memory usage by the NF. Table 6 shows the memory usage
profiles for six NFs. For the Monitor function, we recorded
the maximum memory usage when measuring every five-
minute CAIDA trace (as in the UnivMon paper [79]). The
memory usages of the other functions are bounded, regard-
less of the number of flows. For the specific parameter set-
tings (e.g., number of rules, number of cached flows) of each

NF, please refer to §5.1. Table 7 shows the memory usage
profiles for three hardware accelerators.

(Maximum) memory usage (MB) Estimated # of TLB entries
MUR

Text Data Code Heap&stack Total Equal Flex-low Flex-high
FW 0.87 0.08 2.50 13.75 17.20 11 34 11 100.0%
DPI 1.34 0.56 2.59 46.65 51.14 28 51 13 100.0%
NAT 0.86 0.05 2.49 40.48 43.88 25 37 10 72.3%
LB 0.86 0.05 2.49 10.40 13.80 10 22 10 30.2%
LPM 0.86 0.06 2.51 64.90 68.33 37 23 7 100.0%
Mon. 0.85 0.05 2.48 357.15 360.54 183 46 12 68.3%

Table 6. Memory usage profiles for six NFs. We calculate the num-
ber of TLB entries based on three page-size settings: the Equal
setting which only has 2MB pages; the Flex-low setting with 128KB,
2MB, and 64MB pages; and the Flex-high setting with 2MB, 32MB
and 128MB pages. When allocating pages for a function’s code,
static data, heap, and stack regions, we try to minimize the amount
of wasted memory.

Memory usage (Bytes) Est. # of
TLB entriesIQ PktDB PktB ResB ParaB OutB SGP Graph Dict Total

DPI 256K 128K 2M 2M 256K N/A N/A 97.28M N/A 101.90M 54
ZIP 64K 128K 2M 24K N/A 2M 128M N/A 32K 132.24M 70
RAID 4M 128K 2M N/A N/A 2M N/A N/A N/A 8.13M 5

Table 7. Memory usage profiles for three hardware accelerators.
IQ = instruction queue, PktDB = packet descriptor buffers, PktB
= packet buffers, ResB = result buffers, ParaB = parameter buffers,
OutB = output buffers, SGP = scatter-gather-pointer buffers, Graph
= the state machine graph for rules in DPI, Dict = the dictionary
used in the ZIP data compressor.

C Micro Benchmarks
We conducted several micro-benchmark experiments using
a 10G Marvell NIC with 16 1.2GHz MIPS cores.

Instruction execution latency: To simulate the latency of
nf_launch, nf_attest, and nf_destroy, we wrote code for the
Marvell NIC to simulate each instruction’s activities.We used
the NIC’s security co-processor to accelerate cryptographic
operations. Figure 6 shows the results.

FW DPI NAT LB LPM Mon.
0

200

400

600

800

L
at

en
cy

(m
s)

nf launch

TLB setup &config. reading

Denylisting

SHA-256 digesting

FW DPI NAT LB LPM Mon.
0

20

40

L
at

en
cy

(m
s)

nf destroy

Allowlisting

Memory scrubing

Figure 6. Instruction execution latency. For all functions, TLB
setup and configuration reading in nf_launch takes almost the same
amount of time: 0.0196𝑚𝑠 on average across NF types. Denylisting
and allowlisting costs are also similar: 0.0044𝑚𝑠 and 0.0038𝑚𝑠 .

SmartNIC Security Isolation in the Cloud with S-NIC EuroSys ’24, April 22–25, 2024, Athens, Greece

0.0 30.0 60.0 90.0 120.0 150.0
Time (s)

0

100

200

300

M
em

or
y

us
ag

e
(M

B
)

The minimum size of
preallocated memory

The size of memory
actually used by the NF

Figure 7. Time series of the
memory usage of Monitor.

16 32 48
of hardware threads

0.0

0.5

1.0

T
hr

ou
gh

pu
t

(M
pp

s)

64B

512B

1.5KB

9KB

Figure 8. DPI performance vs.
cluster size and frame size.

FW DPI NAT LB LPM Mon.
Mem. prealloc. (MB) 17.20 51.14 43.88 13.80 68.33 360.54
Mem. used (MB) 17.20 51.14 31.72 4.16 68.33 246.31

MURs 100.0% 100.0% 72.3% 30.2% 100.0% 68.3%

Table 8. Memory utilization ratios (MURs).

nf_attest took roughly 5.6𝑚𝑠 and was independent of a
function’s size. For the other instructions, the latency was
dominated by memory-related operations, and thus was
sensitive to function size. For example, for nf_launch, the
SHA digesting of function memory took 29.62𝑚𝑠 for LB,
and 763.52𝑚𝑠 for Monitor. nf_attest spends 5.596𝑚𝑠 on RSA
signing and 0.004𝑚𝑠 on SHA digesting. nf_destroy took 2.11–
54.23𝑚𝑠; memory scrubbing takes 99.99% of the time.

The cost of fixed memory size. S-NIC only allocates a
fixed amount of memory at the launch time of an NF, but
does not have an OS that can dynamically allocate memory
during the lifetime of the NF. This means that we may waste
some memory due to the preallocation. For example, Fig-
ure 7 shows a time series of the memory usage of Monitor
(using a five-minute CAIDA trace). There are several spikes
of the memory usage which are caused by DPDK hugepage

initialization and multiple HashMap resizings. Hugepage ini-
tialization is expensive because DPDK allocates a temporary
normal memory block for storing the hugepage data, and
then writes all that data into the hugepage memory. In total,
S-NIC has to allocate 360.54MB at a minimum, but a dynamic
allocation strategy would only need 246.31MB to handle the
steady-state memory consumption of the NF.
Table 8 shows the memory utilization ratios for six NFs.

For Firewall, DPI, and LPM, preallocation in S-NIC does
not waste any memory. For NAT and Monitor, preallocation
wastes around a third of the memory due to HashMap re-
sizing. For LB, nearly two-thirds of the allocated memory
is wasted because of a large amount of temporary memory
allocated during the DPDK initialization and a relatively
small amount of steady-state memory required by the packet
processing in LB. Overall, these results suggest the mem-
ory savings that would arise from NF-optimized versions of
DPDK and Rust’s standard-library data structures.

DPI thread clustering. S-NIC groups an accelerator’s hard-
ware threads into allocatable clusters with different sizes. We
now study how to properly partition and allocate these clus-
ters to NFs. Figure 8 shows how DPI performance changes
for differently-sized input packets and thread clusters. We
show results for cluster sizes of 16, 32, and 48 because cur-
rent NICs only support clustering threads at a granularity
of 16 threads. To stress-test the DPI accelerator, we use it to
process large packets which are randomly generated on 16
programmable cores without IPSec. Note that 1.5KB is the
maximum size of a standard Ethernet frame, while 9KB is the
maximum size of a jumbo frame. The high-level takeaway
from Figure 8 is that, as packet sizes grow, the per-packet
processing costs increase and a function benefits from access
to more hardware threads.

	Abstract
	1 Introduction
	2 Threat Model
	3 Background
	3.1 Building Blocks
	3.2 Representative Smart NIC Architectures
	3.3 Concrete Attacks

	4 Design
	4.1 Launching a Function
	4.2 Single-owner RAM Semantics
	4.3 Virtualizing Hardware Accelerators
	4.4 Virtualizing Packet IO
	4.5 Bus Arbitration
	4.6 Function Execution and Teardown
	4.7 Attestation and Secure Constellations
	4.8 Discussion

	5 Evaluation
	5.1 Workloads
	5.2 Die Area and Power Consumption
	5.3 Performance Costs of Strong Isolation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A S-NIC's Attestation Protocol
	B Memory Profiling Results
	C Micro Benchmarks

