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ABSTRACT
With the advancement of multicore servers, there is a new
trend of moving network functions to software servers. Mea-
surement is critical to most network functions as it not only
helps the operators understand the network usage and de-
tect anomalies, but also produces feedback to the control
loop in management tasks such as load balancing and traffic
engineering. Traditional researches on measurement algo-
rithms mainly focus on reducing the memory usage leverag-
ing the fact that measurement can sustain bounded inaccu-
racy. In this study, we re-evaluate these algorithms on soft-
ware servers in order to understand their tradeoffs of accu-
racy and performance. We observe that simple hash tables
work better than more advanced measurement algorithms for
a variety of measurement scenarios. This is because with
better cache design in modern servers and the skewness in
the access patterns of measurement tasks, the memory us-
age of measurement tasks is largely irrelevant to the packet
processing performance.

Categories and Subject Descriptors
C.4 [Computer System Organization]: Performance of
Systems; C.2.3 [Network Operations]: Network Monitor-
ing

General Terms
Measurement, Performance

1. INTRODUCTION
With growing concerns of the cost and management diffi-

culty of hardware network devices (switches, middleboxes),
there is a new trend of moving some network functions to
software. For example, data centers today often run load
balancing and firewalls in software [44, 40]; AT&T starts to
deploy virtualized network functions (VNFs) to replace their
hardware boxes [5].

Measurement is a key component in most network func-
tions. For anomaly detection, accounting, and network pro-
filing, we need to add measurement modules (e.g., heavy hit-
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ter and super-spreader detection) in the NFV chain to mea-
sure the traffic characteristics of individual applications and
tenants. Other network functions (e.g., deep packet inspec-
tion) collect different statistics of the traffic by looking into
each packet. Even those control-related network functions
such as load balancing and traffic engineering also rely on
accurate counting of flows before making control decisions.
Finally, to understand the performance of individual network
functions and identify the bottlenecks in NFV chains, we
need to maintain traffic counters for each NFV function.

Recent works on improving the performance of NFVs in
software [17, 16] often pick measurement tasks as key ex-
amples (e.g., NetFlow, IDS) and show that memory manage-
ment is critical for packet processing performance and pro-
pose new state management designs in NFVs. If we improve
the performance of measurement tasks, we can significantly
improve most NFV pipelines.

Measurement is often known as a memory intensive task
for keeping a large number of counters for many flows. As a
result, there have been many algorithms on reducing mem-
ory usage of measurement tasks while maintaining the mea-
surement accuracy. For example, to count heavy hitters,
there have been sketch-based, heap-based, and sampling-
based solutions [36, 12, 20]. While many works compared
memory-accuracy tradeoffs across these approaches [38],
there are a few works that show the difference of these solu-
tions in performance (i.e., delay and throughput).

In this paper, we re-evaluate the accuracy and performance
of these measurement algorithms in software and observe
that simple hash tables work better than more advanced so-
lutions. This is because: (a) Modern multicore servers have
significantly increased their cache size and cache efficiency;
(b) A large variety of measurement tasks do not require a
large working set of items in cache especially with data ac-
cess skew. As a result, the memory usage of measurement
tasks is mostly irrelevant to the packet processing perfor-
mance in software. Trading off memory for CPU and ac-
cessing many memory entries to compress the data structure
are harmful to packet processing performance. Our prelim-
inary evaluation shows that simple hash tables work better
than more advanced measurement algorithms. For exam-
ple, for heavy hitter detection, the throughput of a simple
hash table is 28% and 120% better than sketches and heap
based alternatives, respectively while achieving comparable
accuracy. To handle those cases where the packet process-
ing pipeline becomes bottleneck even with the hash tables,
we propose ways to dynamically tune the pipeline for mea-



surement functions or redesign measurement solutions to fit
better with the software architecture.

2. BACKGROUND
We investigate previous works on a variety of measure-

ment tasks such as heavy hitter detection, detecting traf-
fic changes and computing flow size distribution (Table 1).
These measurement tasks are widely used for many net-
working functions such as traffic engineering, security, and
anomaly detection. We find that these tasks are often imple-
mented with three types of algorithms. Here, we describe
each type and briefly discuss how they implement the heavy
hitter detection task. We define a heavy hitter as a source-
destination IP address pair that sends traffic volume more
than a pre-specified threshold. As an example, such mea-
surements can be used for collocating chatty VMs in data
centers to save network bandwidth.

Sketch: Sketches are compact data structures used in
streaming algorithms to store summary information about
the state of packets. For example, a Count-Min sketch [12]
keeps a two dimensional array of integer counters with d
rows and w columns. It computes d hash functions per
packet, and updates the corresponding d positions in each
row. To find the counter for a given IP address, the mini-
mum counter in the d locations is returned. If the minimum
counter is above the threshold, we add the IP address to a
set. Later at the report time, we can report the IPs in the set
as heavy hitters.

Heap based solutions: Instead of hashing, many measure-
ment solutions leverage data structures like heap to keep a
small summary of traffic and reduce the total memory us-
age. For example, SpaceSaving algorithm [36] finds heavy
hitters as follows: It tracks the volume of traffic from IP pairs
in a small hash table, but whenever the hash table becomes
full, it finds the entry with minimum volume, say vmin, and
replaces it with the new entry with the sum of the original
counter, vmin, and the size of new packet. To find the mini-
mum entry, we need to keep a heap data structure [36]. Thus
for each entry in the hash table, there is a corresponding en-
try in the heap, and for each packet, the heap must be up-
dated to maintain its property.

In addition to heaps, there are algorithms that leverage
counters on the IP prefix tree to detect heavy hitters and big
changes [27, 49, 38]. These algorithms dynamically zoom-
in and zoom-out in the tree based on the monitored traffic
counters to reduce the number of monitored prefixes.

Sampling: To reduce the packet processing and memory
overhead, we can use a variety of sampling solutions [10,
20, 24]. In the simplest form, we can use packet sampling
to find heavy hitters. Then we keep a hash table for IP pairs
(similar to flexible NetFlow) and update counters for sam-
pled packets, estimate the actual traffic from the counters,
and identify the heavy hitters. As packet sampling may not
have good accuracy for some measurement tasks [20, 18, 30,

24], other sampling methods such as flow sampling [24], and
sample and hold [20] are introduced in the literature, too.

What is the best measurement algorithm for software?
Most previous works on measurement algorithms [20, 43,
48, 27, 31, 18, 49] focus on reducing the memory us-
age of measurement tasks while bounding measurement er-
rors. This is mainly because many works focus on hard-
ware switches with limited memory. It is unclear whether
these works also apply for software with a memory hier-
archy. Other works [9, 19, 12, 45] are theoretical with no
detailed argument on why the total memory usage is con-
strained in practice. However, in software, it is not the total
memory that matters, but the working set (i.e., the amount
of data that commonly accessed and stored in cache) that
dominates the packet processing delay and throughput, and
because of the skew in network traffic [7, 6], the working set
is usually much smaller than the total memory usage. Thus,
reducing the memory usage by using more CPU and access-
ing many memory entries (i.e., larger working set) lowers
packet processing performance.

Some previous works have evaluated measurement algo-
rithms in software [13, 42, 23, 45, 37]. They mostly claim
the delay is good in their own solutions (e.g., sketch [42,
13], heap [23, 37]) without comparing with other solutions
that are not limited by memory. The only papers [11, 36]
that compare hierarchical Count-Min sketch and heap-based
solutions show that heap-based solutions can achieve better
performance and accuracy.

Instead, in this paper, we focus on a systematic compari-
son of both the performance and accuracy of different types
of measurement algorithms and conclude that simple hash
tables work best for many scenarios in software. The sim-
ple hash table maintains per packet or per flow entries where
each entry can keep simple traffic counters or more complex
traffic information such as packet headers and timestamps.
Knowing the exact size of traffic from each flow in the hash
table, we can easily implement the tasks in Table 1.

3. RE-EVALUATING MEASUREMENT
ALGORITHMS IN SOFTWARE

In this section, we re-evaluate the measurement solutions
on software servers and identify the right data structures that
optimize the performance and accuracy. We first take heavy
hitter detection as an example, compare three types of mea-
surement algorithms, and conclude that simple hash tables
work best in software. We then build a model to understand
the performance of simple hash tables and show that simple
hash tables work for a variety of measurement tasks in mod-
ern servers. Finally, we discuss potential problems of using
simple hash tables and possible solutions.

3.1 Simple hash tables work better
We evaluated the heavy hitter detection on a Xeon E5-

2650 processor with 10 cores, 256 KB L2 cache per core,
25 MB shared L3 cache, and 32 GB memory. We send traffic



Function Meaning Sketch Heap/tree based Sampling
Heavy hitter A traffic aggregate identified by a packet header field

that exceeds a specified volume
NSDI’13[48]
[12]

[36, 37],
ANCS’11 [27]

SIGCOMM’02[20]

Super spreader A source IP that communicates with a more than a
threshold number of distinct destination IP/port pairs
(Defined for destinations in a similar way.)

NSDI’13[48]
[13]

[45]

Flow size distri-
bution

The distribution of sizes of flows distinguished by a
set of packet header fields

[30] SIGCOMM’03 [18]

Change detection A drastic change of volume/# packets from a traffic
aggregate compared to a prediction model

IMC’04 [42] [9] [49] IMC’10 [43]

Entropy estima-
tion

Entropy (A measure of randomness/diversity) of vol-
ume/# packets from different flows

[33] SIGMETRICS’06 [31],
IMC’10 [43]

Quantiles Dividing an ordered set of flows (e.g., based on source
IP) into equal-weight subsets

[47] SIGMOD’01 [23],
SIG-
MOD’99 [34],[12]

[19]

Table 1: A survey of proposed measurement solutions
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Figure 1: Performance comparison of algorithms with different sizes of data structure (skew parameter Z = 1)

with a 10 G network interface card by using a modified ver-
sion of Click modular router [28] with DPDK 1.8.0 [4]. We
used a one-minute trace from CAIDA [3] containing 40 mil-
lion packets. The CAIDA traffic has a skew Z = 1 (which
means that most frequent entry has 10 times more packets
than the 10th most frequent one [29, 14].) We define heavy
hitters as 0.2% of the traffic in a 1M packet epoch 1.

We implemented three algorithms: a simple hash table,
a Count-Min sketch [12], and a heap-based solution [36].
The simple hash table maintains one counter at each entry,
and increments the counter based on the hash value of each
packet. The counters may be inaccurate when multiple flows
are hashed in the same bin. The Count-Min sketch is similar
to the simple hash table but uses multiple hash functions for
each packet. Count-Min sketch and heap-based solution are
based on the description in Section 2.

We first compare the throughput and delay of the three
algorithms with different sizes of their data structures. Fig-
ure 1(a) shows that the throughput for the simple hash func-
tion is on average 28% higher than the Count-Min sketch and
120% higher than the heap-based approach. This is consis-
tent to the average latency comparison in Figure 1(b). Sketch
has worse performance than Hash because it computes 3
hash functions per packet and accesses 3 random memory
locations. Similarly, Heap has the worst performance than
the other two because it takes multiple memory accesses to
navigate and maintain the heap data structure. Note that our
result is different with previous work [11, 36], which shows
heap is better than hierarchical sketches. This is because
we use a simpler one-layer sketch together with a short list,
which requires fewer hash computation and fewer memory

1Our evaluation with different threshold numbers resulted in the
same conclusion.

accesses than hierarchical sketches, and thus a better choice
for software.

With Hash and Sketch, there is a large interval where in-
creasing the size does not affect the average latency (up un-
til 20 MB) (Figure 1(b)). This interval happens because L2
and L3 memory cache the flow counters very effectively and
most of the popular counters are served by these two caches.
In contrast, Heap has decreasing latency with larger sizes.
This is because with larger sizes, the heavy hitters all fall in
the leaves in the min-heap. Therefore, we do not need to
re-arrange the heap much as packets pass by.

Figure 1(b) also shows the 95 percentile latency for the
three approaches. Tail latency is critical for the stability of
packet processing performance. This is because with large
latency variance, the NIC may maintain longer queues at
times leading to higher chances of packet losses. The tail
latency in Figure 1(b) has a jump between the 10 MB to
30 MB, which overlaps with the size of L3. Heap has in-
creasing tail latency with larger sizes. In fact, the tail latency
grows proportionally with the depth of the heap. This is be-
cause at the tail the packets often require reorganizing the
heap, which takes longer time with larger heaps.

Finally, we compare the accuracy across these measure-
ment algorithms. We consider two metrics: precision (the
fraction of detected true heavy hitters over all detected ones)
and recall (the fraction of true heavy hitters that are re-
trieved). When the size is above 200 KB, Heap achieves
higher accuracy than the simple hash table but only by 4%.
Most applications are willing to sacrifice the accuracy for
better performance. Only for those applications (e.g., se-
curity related) that need very high accuracy, they may use
larger hash table. For example, in our experiments, we can
use hash tables as large as 5MB without affecting through-



put, as visible in Figure 1(a).

3.2 Generality to more measurement tasks
To understand the performance of the simple hash table,

we provide a simple model for the relation between the hash
table size and the delay/throughput performance for a variety
of measurement tasks. We consider a simple hash table with
X entries and Y bytes per entry.

When a packet enters a software server, it first is buffered
in one of the queues of the NIC. Many software-based
packet-processing systems [35, 25] use libraries such as
DPDK [4] to poll the packets from the NIC, bypass the ker-
nel, and process the packets in the user space in order to
reduce the packet processing latency. Thus, the throughput
of software servers depends on how fast we can processes
the packets in the user space.

Therefore, to ensure sustainable throughput, the average
packet processing time should be less than the packet inter-
arrival time. For example, for a 10 Gbps NIC that can re-
ceive packets at 14.8 Mpps (with 64 Byte packets), the av-
erage packet processing time, Tpacket, should be less than
1/14.8M = 67ns.

We model the packet processing time by considering the
CPU processing time and the data access time separately.
The CPU processing time, Tprocess, is the time spent on ac-
cessing packet header information, accessing the data in L2
cache, and hashing (e.g., for sketches) or other algorithmic
calculations (e.g., navigating the heaps or prefix tree). (We
consider L1 and L2 cache accesses inside Tprocess because
they have smaller impact on the latency than L3 and mem-
ory). For simple data-structures like count-array and Count-
Min sketch, Tprocess is proportional to the number of hash
functions that are calculated over a single packet. The mea-
surement data can be in either L3 cache or memory. To cal-
culate L3 access time, TL3, we assume the measurement data
is accessed by one core and postpone the multicore discus-
sion to Section 3.4. If the measurement data is not in cache,
it needs to be fetched from memory with delay Tmem. We
define p as the hit probability of L3 cache, and model the
per-packet delay Tpacket as follows:

Tpacket = Tprocess + p× TL3 + (1− p)× Tmem (1)

In order to keep the average packet delay, Tpacket, below a
bound (and thus to ensure line speed throughput), we should
ensure the portion of L3 hits, p, to be above a threshold. For
example, if B = 67ns and Tprocess = 25ns2, TL3 = 16ns,
Tmem = 100ns [1], p should be above 70%.

The hit probability of L3 cache for each packet, p, depends
on the size of data (the number of entries in the hash table
(X) and the number of bytes per entry (Y )) versus the L3
cache size. More importantly, p also depends on the traffic
skew (Z) because processors often keep popular entries in
cache. If we sort entries in the descending order based on
2We get Tprocess from running a hash-based heavy hitter detection
in Xeon processor
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Figure 2: #bytes and entries that can be handled if different per-
centiles of accesses are handled by 2MB L3 Cache (Legend numbers
represent skew parameter, 0 is uniform).

Example # bytes
Simple hash table 4
5 tuple + 1 counter 17
Simple hash table + distinct counter 20
Source IP + list of destination IPs (4 in avg) 20
NetFlow v5 44

Table 2: Example number of bytes

Example 10Gbps 40Gbps 100Gbps
Packets 14.8M 60M 148M
5-tuple flows 1.25M 5M 125M

Table 3: Example number of entries in 1 second (avg flow size 1kB)

the number of packets hitting them, to ensure p is above a
threshold, we need up to pth percentile of entries to fit in the
L3 cache 3.

How effective is a simple hash table? Given the packet
processing model, we show how a simple hash table works
for most measurement tasks, and we do not need more com-
plex measurement algorithms discussed in Section 2.

Figure 2(a) shows the number of entries and the number
of bytes per entry to support line rate packet processing of
a 10 Gbps NIC on our Xeon processor. This means that we
need 70th percentile of entries to fit into a 2 MB cache (the
average L3 cache size a core can use) with different skew
parameters. With a skewed traffic with a conservative pa-
rameter (Z = 1), we can easily fit 5.5 million entries with
44 bytes (NetFlow) or 20 million entries with 17 bytes (5
tuples + one counter).

Table 2 and Table 3 show the number of entries and bytes
per entry for typical measurement tasks. A measurement
task keeps either per flow information or per packet infor-
mation. Table 3 shows the number of packets and 5-tuple
flows we need to keep for 10 Gbps and 40 Gbps links if
the measurement interval is 1 second. Counting the num-
ber of requests for a key-value store is an example of per
packet measurement task, and finding heavy hitter flows for
traffic engineering is an example of flow-based tasks. Note
that there can be different variations of such measurement
tasks but we expect them to have comparable number of
entries. For example, the median cluster size in Google is
10k servers with 9 tasks (similar to VM) or less for 50% of
them [46]. Even if we assume, tasks in a rack contact every

3Note that this is a simplified model where entries do not contend
for cache lines. This is a reasonable assumption because the entries
are randomly accessed based on the hash function.



other task, the total number of entries for counting traffic for
source-destination IP addresses pairs for a rack of size 48
will be 48 ∗ 9 ∗ 10000 ∗ 9 = 39M .

We may need different number of bytes per entry for
different measurement tasks (Table 2). Simply keeping a
counter (4 bytes) is already useful as a sketch for find-
ing heavy hitters similar to Count-Min sketch and estimat-
ing flow size distribution [30] and entropy. To find quan-
tiles, we can keep tuples information and a counter for vol-
ume. In order to find super-spreaders, we can keep a distinct
counter [21] in the simple hash table or explicitly keep the
list of destination IPs for each source IP [45]. Finally, in the
extreme case, NetFlow v5 keeps many counters per flow in-
cluding volume, # packets, TCP flags, and the arrival time of
the first and last packets of a flow.

Cache growth in the future: Recently, L4 with low latency
and large capacity (128MB) is introduced for Intel Haswell
and IBM Power7. This can be a trend in the future as it uses
eDRAM technology that avoids power and area usage limi-
tations of SRAM in L3 [15]. Since L4 cache is large enough
to store most measurement data structures, we replace the
Lmem with LL4 in Equation 1, where LL4 = 60ns [2].
Therefore, p in Equation 1 reduces to 42%. This allows more
than 500M entries even with skew parameter Z = 1 and
64 bytes per entry. Comparing Figure 2(a) and Figure 2(b)
shows that for skew Z = 0.75, the number of entries for 44
bytes per entry increases from 0.16 million to 1.2 million.
Also note that the graphs in Figure 2 are for 2 MB cache
(the average L3 cache size per core), but L3 cache is usually
larger and shared among cores (e.g., 20 MB shared among
10 cores). Measurement has one of the largest memory/L3
references among NFV components [17, 22] and thus may
get more than 2 MB of L3 cache, which means that simple
hash tables can handle more entries than shown in Figure 2.

3.3 Impact of skew
Traffic with higher skews can serve a higher fraction of

packets from the cache, which leads to higher throughput
and lower latency. To generate traces with different skews,
we select flow sizes such that they follow a Zipf distribution
and then keep the original source and destination IPs from
the CAIDA trace.

We start by comparing different algorithms for different
skews for data-structure of size 32 MB; this size ensures
that the data cannot fit in the L3 cache. The simple hash
table still works the best compared to the sketch and heap.
The throughput of all algorithms increases as the skew in-
creases from 0.5 to 2 (Figure 3(a)). For Hash and Count-Min
sketch, higher skews lead to more packets being handled by
the entries in the cache. The Heap throughput increases more
than the simple hash table and Count-Min sketch with higher
skews. This is because in the min-heap, heavy-hitter entries
are often in the leaves of the Heap. With higher skews, there
are more counter updates at the leaves of the Heap and fewer
heapify operations that reorganize the counters in the heap.

To understand the impact of skews with different table
sizes, we pick three table sizes: 0.125 MB, 2MB, and 32
MB, which fits in L2 cache, L3 cache, and memory re-
spectively. Figure 3(b) shows that with all table sizes, the
throughput for the hash table increases with higher skews
because more packets are handled by a faster cache. When
the skew increases over 1.5 for the 32 MB table size, even
the 95% of accesses could be handled in the L3 cache.

We also use our model to understand the impact of skews
on other measurement tasks. Remember that for the ex-
ample in Section 3.2, to reach 14.8 Mpps, 70th percentile of
entries must fit into the cache. Figure 2(a) shows that for the
skew of 1 and 44 bytes per entry, cache handles 70th per-
centile of 5.5 million entries. When the skew increases to
1.05, cache handles 70th percentile of 100 million entries,
which means that we can support all the measurement tasks
in Table 2 and 3 up to 40 Gbps on a core.

3.4 Across multiple cores
Measurement tasks are never standalone programs. With

a pipeline of network functions, it becomes hard for a single
core to sustain line rate processing. We can split the traffic
on multiple cores where each core executes the pipeline for
part of traffic [17]. This means that we may have separate
measurement functions run on separate cores but synchro-
nize the states across cores. For example, to detect heavy
hitters, there are two options: (a) multiple cores access the
shared data structure. Using locks for consistency has huge
overhead [8]. An advantage of the simple hash table is that
it is easy to implement hash tables in a lockless fashion. For
example, we can use compare-and-swap to update a counter
in an atomic way. In contrast, it is harder to implement lock-
less access for more complex data structures such as a heap.
(b) each core maintains a separate data structures and merge
them when reporting 4.

We compared these two options on two cores: (a) a shared
hash table based on compare-and-swap and (b) two separate
hash tables. Figure 4 shows that over different sizes, the per
packet delay of separate hash tables is lower than a shared
hash table in average and at the tail. For example, when
the hash table size is 32 KB, the average (95%) delay of the
shared hash table is 2x (2.7x) of the separate one. This is be-
cause even with lockless data structures, sharing data among
cores can increase the delay of accessing data in L3 from
16 ns to 30 ns [32]. It is not useful to save memory with the
shared data structure, because it is the working set (affected
by traffic skew and access pattern) that matters instead of the
total memory usage.

The delay for the separated case increases slightly with
larger sizes. In contrast, the delay of the shared case de-
creases with larger data structure. This is because it is less
likely for two cores to access the same entry when there are
more entries in a large hash table.

4Note that the report frequency is usually low (e.g., once per sec-
ond) and does not cause performance issue.
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Figure 3: Performance comparison of simple hash table for different traffic skews (Leg-
end denotes data structure sizes in MB)
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Figure 4: Average and 95% latency of shared and
separated counters on multiple cores

In summary, we do not need to use shared data structure
among the measurement components on different cores. In-
stead, we just implement the simple hash table on each core
and merge them in the report time.

4. OPTIMIZE MEASUREMENT FUNC-
TION IN SOFTWARE

Even with the simple hash table, there are still cases where
the system performance has bottleneck because of traffic
changes or other resource-intensive functions in the pipeline.
In this section, we discuss new directions for optimizing
measurement functions in software: dynamically tuning the
packet-processing pipeline for measurement functions; or
redesigning measurement solutions to fit better with soft-
ware architecture.

Dynamic pipeline tuning. The performance of a packet-
processing pipeline (either the measurement function or
other network functions in the same pipeline) may change
with traffic properties (e.g., skews) [39]. To ensure sta-
ble performance, we propose a dynamic pipeline tuning sys-
tem with two key insights of measurement functions: (a)
We can trade-off measurement accuracy for performance.
For example, when traffic is less skewed, we may change
the data structure size to ensure stable throughput and lower
per packet delay. In Figure 3(b), when the skew changes to
0.5, we can tune the hash table size to 2 MB to maintain
the throughput above 10 Mpps. (b) We can move measure-
ment functions to another core to reduce the delay of critical
path of packet-processing pipeline or reduce L2 cache con-
tention. We replace the measurement function in the pipeline
with a “tee” component that copies sampled packets to a ring
buffer. We then run the measurement function on a separate
core that reads packets from the ring. Figure 5 shows the
performance of a pipeline with a tee component with dif-
ferent sampling rates in finding heavy hitters for traffic with
skew 0.5. Because of the low skew, the throughput of the
simple hash table (“Not-Tee”) with large data structure is
low, which causes packet loss. With the tee approach, for
a hash table with size 2 MB, the tee component that sam-
ples 15% of packets can sustain 13 Mpps and reach 75%
precision while without tee, the throughput is 9.4 Mpps and
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Figure 5: Benefit of “tee” (Legend numbers are sampling rate (10%,
15%, and 20%))

precision is 97%. We leave it to future work on how to dy-
namically adapt both size and sampling rate to reach the best
throughput and accuracy.

Customize measurement programs to fit software archi-
tecture. We can also customize measurement solutions
to leverage key features in the software architecture such as
prefetching and Single Instruction, Multiple Data (SIMD).
For example, we can use SIMD instructions to calculate the
hash of four packets together, and then, similar to [26], use
prefetching to ensure that the relevant data for measurement
are available in the cache.

5. CONCLUSION
In conclusion, this paper re-evaluates the measurement al-

gorithms used for reducing memory usage in the new con-
text of software servers. Our experiments and analysis show
that a simple hash table actually works fine for a variety of
measurement scenarios. To handle those scenarios that a
simple hash table does not work (e.g., near uniform traffic),
we discuss ways to dynamically tune the packet processing
pipeline for measurement functions or redesigning measure-
ment solutions to fit better in software. We hope this paper
can shed light on future efforts on managing states for NFVs
and designing measurement algorithms.
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