
Decoupling Algorithms and Optimizations in Network
Functions

Omid Alipourfard
Yale University

omid.alipourfard@yale.edu

Minlan Yu
Harvard University

minlanyu@seas.harvard.edu

ABSTRACT
Network function virtualization promises a path to rapid in-
novation in networks. However, due to the complexity of
developing these functions, innovations have been slow. De-
signing a network function is a daunting task that requires
combining packet processing optimizations with the network
function logic. It is not possible to ignore packet processing
optimizations either: an optimized pipeline can have three
times better performance than an unoptimized pipeline in our
experiments. In this paper, we introduce NFMorph, a frame-
work wherein the algorithms (i.e., the network function logic)
are decoupled from the packet processing optimizations. De-
velopers would specify the packet processing algorithms in
a high-level language. The runtime then identifies the best
set of optimizations on the algorithms. This is done based on
the domain knowledge that operators provide as input to NF-
Morph as well as optimization templates we have developed
for common NF primitives. NFMorph can also just-in-time
reoptimize based on workloads and environment constraints.

1 INTRODUCTION
Middleboxes are network appliances that run packet process-
ing functions such as firewalling, caching, and load balancing.
In the past, dedicated hardware boxes performed most of
these functions, but hardware boxes lack the agility to keep
up with the rapid change and growth of the network.

To get around this limitation, industry proposed the use of
commodity servers to run the network functions (NFs) [3, 4].
The spearheads of this effort promised rapid innovation (since
changing the software on commodity servers is easy) and
reduced CAPEX cost (as commodity servers are cheap and
repurposing them for new functionalities comes at the cost of
changing the software).

The benefits of network functions only happen when we
fully optimize their performance (e.g., throughput, latency)
and achieve a better performance-cost tradeoff than hardware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVII, November 15–16, 2018, Redmond, WA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6120-0/18/11. . . $15.00
https://doi.org/10.1145/3286062.3286073

boxes. However, fully optimizing the performance is not easy,
because there is a large set of optimizations depending on the
environment that runs the NF pipeline and the input work-
loads.

Optimizations based on environment constraints: NF
pipelines often have different environment constraints such
as cache size, memory size, and the types of cores in the plat-
form. The environmental constraints also change when NFs
share resources with other applications. These environment
constraints impact the choice of optimizations. For example,
when the memory size for an NF is constrained, we may
use Cuckoo hash tables that achieve high utilization as op-
posed to a large linear hash table [8]. When an NF shares
cache with another cache aggressive application, we should
prefetch instructions to improve its performance. However,
when the NF runs on multiple cores, it may be better not to
prefetch because software prefetchers may get overloaded
which adversely impacts performance

Optimizations based on workloads: The choice of opti-
mizations also depends on workloads (§2). For example, for
NFs that deal with skewed traffic patterns, we can build a fast
path by partially computing values for a set of high-volume
flows, which drastically improves performance. However, un-
der heavy-tailed traffic patterns, the same fast path lowers
throughput because it increases the code size and reduces
cache locality (§2.2). As another example, Trumpet [19] ex-
ploits the fact that applications often generate a burst of pack-
ets on the same flow and thus decides to cache and reuse hash
function computations.

Whenever environments or workloads change, we need a
major code refactoring to adjust optimizations. For example,
we may need to unroll loops, identify the right data structures,
or change data layouts (§2.2). Furthermore, one optimization
may change the effect of other optimizations. For example,
an optimization that increases cache locality but uses more
instructions may reduce the instruction cache hit rate and
negatively impact other optimizations.

Today, developers often take an iterative process when per-
forming optimizations: they have to run the NF pipeline, find
the bottlenecks, change the code based on their experiences,
and repeat. This process is largely manual because commodity
servers and compilers were not designed for packet process-
ing pipelines in NFs and thus cannot automatically identify
the right set of optimizations. Most optimizations require the
domain knowledge of the specific network functions such as
their performance requirements, environment constraints, and
workloads [10, 11, 19].

https://doi.org/10.1145/3286062.3286073

Thus it often takes many expert engineers a large amount
of effort to develop highly optimized monolithic NF software
(e.g., VPP [7] and OpenVSwitch [22]). It is hard for an aver-
age engineer to add a new feature to these NFs and optimize
the performance because it requires a full understanding of
the code. Such a tedious process significantly hinders inno-
vations in network functions and increases the CAPEX and
OPEX costs to develop and maintain these functions.

We observe that the fundamental obstacle for optimization
here is the tight coupling between algorithms and the opti-
mizations in network functions. Developers must understand
network function algorithms and the large space of packet pro-
cessing optimizations in detail to efficiently optimize network
functions for a new environment or workload.

To fundamentally address the complexity of optimizations
and facilitate innovation, we propose to decouple packet pro-
cessing algorithms from optimizations in NFs. Developers
should simply focus on developing the packet processing al-
gorithms in NFs. We will then design a runtime that automat-
ically makes optimization choices based on the environment
and workloads.

Although automatic optimization of a general program
is challenging, it is possible to optimize NFs automatically
because of three reasons: First, rather than rather than fo-
cusing on low-level metrics such as cache locality used in
general code optimization, we only need to optimize for the
performance metrics for NFs such as throughput and latency.
Second, code optimizations are often challenging because
there are complex dependencies between instructions. Fortu-
nately, most NFs have only packet-based dependencies (i.e.,
packets are the only units that flow across NFs and instruction
modules within an NF). Third, NFs often have a common
set of primitives such as hash tables, longest-prefix match-
ing. If we can optimize these primitives, we can improve the
performance for a large part of NF code.

Using the above domain knowledge of NFs, we introduce
NFMorph that automatically optimizes NF pipelines based
on environments and workloads. NFMorph includes an NF
language that allows developers to expresses the logic of NFs
(i.e., the algorithm) together with the packet dependencies
and common primitives that helps the optimization. NFMorph
also provides a set of optimization templates that can enable
different tradeoffs of instruction locality, cache locality, and
pipelining. NFMorph’s runtime periodically selects the best
set of optimizations from the templates based on code profil-
ing on the current workloads and automatically swaps in the
selected optimizations using just-in-time compilations.

Our prototype of NFMorph on an example pipeline shows
that we have the potential of improving the throughput by
322% compared to statically optimized counterparts (§2.2).
NFMorph also makes it easy to migrate codes to new envi-
ronments while still ensuring high performance.

2 BACKGROUND AND MOTIVATION
To illustrate the impact of optimizations for packet processing,
consider a simple NF pipeline with three modules: (1) a rout-
ing module that forwards packets using a radix trie (similar
to that of click [17]) and contains 1614 rules from one of the
Stanford routing tables [16], (2) a measurement module that
uses a count-array sketch to count traffic of each flow [8], and
(3) a packet checksum module that calculates the TCP check-
sum of every packet. We synthetically create a heavy-tailed
traffic pattern with a Zipfian packet distribution (α “ 0.5)
across 10 million unique flows where the top 1% of the flows
have 10% of the total traffic. We chose a synthetic traffic be-
cause we can control the parameters of the traffic distribution
and show the impact of each optimization technique.

To implement the NF pipeline, we develop our own frame-
work on top of DPDK [5], a data plane library for fast packet
processing. We opted not to use well-known frameworks that
already use DPDK, e.g., VPP [7]. These frameworks typically
have a rigid structure and enforce specific ways of process-
ing packets, making it difficult to show the effect of each
optimization. For example, VPP is optimized to work with
batches of 256 packets. Our framework is modular and we can
specify any pipeline as a graph of interconnected modules.

For the baseline, we implement each module’s algorithm in
the simplest form. We do not include packet specific optimiza-
tions outside those provided by DPDK. Our measurement
module looks as follows1.

count(pkt, table, table_size):
value = hash(pkt.src_ip, pkt.dst_ip,

pkt.src_port, pkt.dst_port)
table[value & (array_size - 1)]++

Here, table is an array of 32 bit integers and hash refers
to Murmur32 hash. Although this code is easy to understand
and maintain, it only achieves a throughput of 4.4 Mpps.

 0

 2

 4

 6

 8

 10

 12

 14

Naive Batching Data
Pref

Packet
Pref

Batch
Tuning

LinkOpt. Merging

T
h
ro

u
g
h
p
u
t

(M
p
p
s)

Optimizations

Figure 1: Impact of different optimizations on the NF through-
put. Each bar contains all the optimizations described in the
bars to its left and under it. Error bars show the standard devi-
ation of throughput across 5 runs.

1Due to lack of space, we do not show the code for checksum and the routing
module, but their code follows a similar trend.

2.1 Optimization knobs
We take commodity x86 servers as an example to show a
variety of optimization knobs we can choose and their impact
on throughput.

Batching packets: A common optimization in packet pro-
cessing pipelines is batching incoming packets and processing
them together. Batching helps by amortizing the static com-
putation costs over the batch size. For example, instead of
calling a function many times with one packet, we can call
the function once with many packets. By passing packets in a
batch of 32 (a commonly used batch size), we can improve
the performance of the previous pipeline to 6.2 Mpps.

Since NFs operate on packets, there are many opportunities
to perform batching—we can pass a batch of packets to every
NF or break down an NF into multiple stages and process
each stage using a batch of packets. The key question is how
to find the right set of stages for batching while ensuring
that there is no data-dependency between two consecutive
stages. Another challenge is to decide the optimal batch size
for trading-off throughput and latency.

Prefetching data: In packet processing pipelines most
memory accesses are triggered by an incoming packet. There
is a latency gap of up to 100 ns between CPU and memory. It
is possible to hide this access latency by prefetching packets,
that is, we can break down the computation into stages and
process other packets while we are waiting for the prefetchers
to pull the data from memory.

A developer could identify memory bottlenecks by us-
ing profiling tools. For example, using Precise Event-Based
Sampling (PEBS) counters [6], we find that the table cell
increment operation in the measurement module uses more
than 68% of the sampled cycles and incurs 43% of the cache
misses. By prefetching the table cell’s data, we can improve
the throughput to 8.2 Mpps (1.36 IPC). We can further im-
prove the throughput to 9.5 Mpps (1.62 IPC) by prefetching
the packet headers. The code at this stage looks as follows:

count(pkts, table, table_size):
for pkt in pkts:

prefetch pkt.tcpip_header
index tmp[len(pkts)];
index idx = 0;
for pkt in pkts:

...
prefetch tmp[idx]

idx = 0;
for _ in pkts:

table[tmp[idx++]]++

Variations on loop iteration pattern: Different loop iter-
ation patterns, when processing batches of packets, result in
different localities of instruction and data cache. The current
iteration pattern processes all the packets in the same batch
together. Instead, we can improve the data cache locality and
reduce the number of jumps by unrolling loops and grouping
packets in smaller batches to ensure that the packet data does

not get evicted from the lower level caches. Following this,
we can reimplement the measurement module as follows:
count(pkts, table, table_size):

for pkt in pkts:
prefetch pkt.tcpip_header

for pkt_grp_of_4 in pkts[4..]:
for pkt in pkt_grp_of_4:

/* Hash and prefetch cur grp */
for pkt in prev_grp:

/* Set the value for prev grp*/
prev_grp = pkt_grp_of_4

This implementation has a throughput of 10.2 Mpps and
has lower latency than when the batch size is smaller than 32
(e.g., because the latency of packet processing cannot exceed
a certain threshold)2.

Other variations of loop patterns are also possible. For
example, we can tune the group size, change iteration patterns
within each group, or use constructs such as Duff’s device to
reduce the number of branches.

Amalgamation of the modules: Rather than optimizing
individual NFs, we can optimize a pipeline of NFs. Since NFs
pass packets around, we merge the NFs’ code and perform
whole-program optimizations that improve the performance.

However, we cannot simply rely on generic compiler op-
timizations (e.g., link time optimizations such as -flto for
GCC and Clang/LLVM). In our experiments, such optimiza-
tions can only improve the throughput from 9.5 Mpps to 9.8
Mpps. The reason is that compilers cannot fully utilize the
packet processing context. For example, they do not merge or
split packet batches to increase the instruction or data cache
locality and improve throughput.

By re-optimizing the whole-pipeline, we can increase the
throughput to 13.2 Mpps. This final representation of the
code has a throughput that is 3 times faster than our original
strawman implementation. However, it is much harder to
modify the code as we have mingled the algorithm with the
optimizations. What used to be 19 lines of code across three
modules is now 102 lines of code in a single module due to
the optimizations—an overhead of 430%.

The interface of each network function is well defined for
network functions: each module accepts a packet and can out-
put many packets. The interface makes it easy to combine the
functions and redo the optimizations for the whole pipeline.
Even then, optimizing NF pipelines is difficult as there are
many such pipelines. Each operator uses a unique combi-
nation of functions. Here is the source code after applying
optimizations across our three modules (checksum, routing,
and measurement):
pipeline(pkts, table, table_size):

for pkt_grp_of_4 in pkts[4..]:
for pkt in pkt_grp_of_4:

prefetch pkt.tcpip_header
for pkt in prev_grp:

2Since all the packets in the same batch are processed together, larger batch
sizes translate to higher packet processing latency.

/* Hash and prefetch prev grp and
perform routing and checksum
calculations */

for pkt in prev_prev_grp:
/* update the measurement tbl.*/

prev_prev_grp = prev_grp
prev_grp = pkt_grp_of_4

2.2 Workload based optimizations
The workload affects the choice of optimizations. Continuing
with the above NF pipeline example, we consider a new work-
load of skewed traffic pattern with 100k unique flows where
the top 1% of the flows represent 99% of the traffic. Under
this traffic pattern, we can apply two additional optimizations
to improve the code’s throughput.

A small number of flows: Knowing that the number of
unique flows is low, we can reduce the data-structure footprint,
remove prefetching instructions (as most of the data stays in
the cache), increase the batch size (because the number of
unique flows in each batch is low), and use a different loop
iteration pattern.

To illustrate the impact of these optimizations, consider
the NF pipeline before the amalgamation. The throughput of
the pipeline for the skewed traffic is 11.3 Mpps (10.8 Mpps
for the heavy-tailed traffic). By reducing the table size and
removing the prefetching instructions in the measurement
module, we can improve the throughput to 11.7 Mpps, but
this lowers the throughput for the heavy-tailed traffic pattern
to 10.4 Mpps. Further, we can tune the batch size and modify
the iteration pattern and reach 12.7 Mpps, but this lowers the
throughput of heavy-tailed traffic to 10.3 Mpps.

A small number of heavy-hitters: Because we have a
small number of heavy-hitter flows, we can improve the
pipeline throughput by breaking the pipeline into a common
case for the high volume flows and a rare case for all other
flows. More concretely, we can cache the routing computa-
tions for the most popular flows and keep separate counters for
them. Through this optimization, we can improve the through-
put to 13.2Mpps; but this further lowers the throughput of
the heavy-tailed traffic to 9.8Mpps. The lower throughput is
because popular flows’ share of traffic in the heavy-tailed case
does not justify the cost of branching and additional tables
whereas for the skewed traffic case the common case happens
often enough to make it worthwhile.

With these optimizations, we improve the throughput of
the pipeline for the skewed traffic by 17% but lower the
throughput of the heavy-tailed traffic by 10%. The result
touches two types of problems: (1) Optimizations do not
work well across all workloads. When we optimize the code
for one workload, the code may have a worse performance
under other types of workloads). (2) When building systems
without assumptions on the workloads, developers have to
consider many types of workloads during the optimization
process [19], making the optimization a time-consuming and
challenging task.

Finally, by amalgamating the code, we can easily achieve
line rate packet processing on a single core for the skewed
traffic pattern for our pipeline of routing, measurement, and
checksum modules.

2.3 Environment based optimizations
All the above optimizations and the performance improve-
ment was based on the x86 server we use. If environments
such as cache sizes, memory sizes, and processor types
change, we may make different optimization tradeoffs. If
we have SmartNICs [13], we have another set of optimiza-
tions such as offloading the checksum verification modules to
the SmartNIC.

Decoupling NF algorithms from their optimizations makes
it easier to identify the best optimizations for the current
environment and allow NFs to run across environments.

3 NFMORPH DESIGN

NF Pipeline

Traffic In

Traffic Out

Template Selection
and CompilerNF Program Runtime

Profiler

Sampled
Packets

Code & Flow Tracing Data

Runtime

Templates
Throughput & Latency

Requirements

Pick
BestApp.

Binary

Language

Figure 2: NFMorph Design.

We now outline the design of NFMorph. NFMorph consists
of a language and a runtime (Figure 2). Developers write an
NF program in NFMorph’s domain specific language (DSL).
The goal of the DSL is to make it easy to capture packet
dependencies. It also comes with primitives matching packet
processing pipelines.

The runtime is responsible for optimizing the NF program
to match the operator specified throughput and latency re-
quirements. The runtime’s approach to optimization is similar
to that of profile-guided optimizers: the runtime iteratively
applies a set of program transformations (in the form of tem-
plates) on the NF program, profiles the performance of the
NF using representative traffic, and optimizes the program
based on the profile. Once it finds a good realization of the
NF program, it swaps the current NF pipeline with the new
realization.

3.1 Domain specific language
The goal of NFMorph’s language is to allow developers to
express transformations on individual packets, e.g., how to
modify the headers or the payload of each packet. Packets are
first-class types in NFMorph, which makes it easier to per-
form dependency analysis on NF programs. This dependency
is crucial for selecting optimizations. For example, the com-
piler can use such dependency information to change the loop
iteration pattern or to reorder NFs in the pipeline. NFMorph’s
language also allows developers to specify compiler-hints

that allow the runtime to make aggressive optimization deci-
sions. For example, a hint specifying that a function is pure
allows the runtime to precompute and cache the value of that
function for some of the heavy-hitter flows.

NFMorph’s language contains packet processing primitives
that map to current hardware. For example, the language con-
tains a hashing primitive. Such primitives allow us to offload
the computation to a programmable device if it has matching
offloading capabilities. We leave the detailed specifications
of NFMorph domain specific language for future work.

Finally, NFMorph’s NF language provides constructs for
a modular block-based NF pipeline design, similar to Click
[17]. Such a design allows NFMorph’s optimizer to perform
whole program dependency extraction, which paves the way
for interleaving or dividing modules.

3.2 NF Runtime
NFMorph’s runtime is responsible for finding the realization
of the NF pipeline that achieves near-optimal performance
based on the NF code, the workloads, and the constraints
of the execution environment. It can also leverage different
platforms, e.g., SmartNICs, if available. Our runtime starts
with a preliminary pipeline (a pipeline compilation with no
assumption about the workload or the architecture) and over-
time applies optimizations by profiling the NF’s performance.

Traffic sampling: NFMorph uses a traffic trace to peri-
odically optimize the pipeline, e.g., by modifying the data
structures or building fast-paths. This traffic trace should be
representative of the incoming traffic for the optimizations
to be useful. To build this traffic trace, we could redirect all
the traffic to a secondary core/machine, but that is expensive
and unnecessary. Instead, we use lightweight traffic sampling
and preserve the traffic properties that affect the pipeline’s
throughput: first, we need to ensure that the relative portion
of traffic to each branch remains intact. Even though the sam-
pling may miss some rarely used branches, it does not affect
the choice of optimizations because throughput bottlenecks
often come from commonly used branches. Second, we need
to mimic the access pattern on both memory and the CPU
cache. To do so, we can upsample the sampled traffic such
that the resulting trace has the same number of unique flows
as that of the original traffic. The goal of such upsampling
would be to ensure that the size of the data pulled into the
cache and the eviction pattern of data from the cache is not
drastically altered.

Flow tracing and code profiling: The flow tracer collects
statistics about the percentage of flows (and their volumes)
that go through different code paths in the program. Using
this information, we can find hot code paths and optimize
them. For example, the profiler can identify a hash function
as the main bottleneck, and the tracer can attribute 90% of the
computations of this hash function to a particular flow. Thus,
we can then cache and reuse hash computations for this flow
and save cycles.

We can control the overhead of tracing and profiling by
dynamically changing the sampling rate at the expense of

optimization accuracy. Our results show that the throughput
overhead of using a PEBS counter [6] and a sampling fre-
quency of 100Hz is only 0.05% at 14Mpps and when running
on a single core. The 100Hz sampling rate was sufficient for
identifying the code bottlenecks.

To reduce the overhead of tracing flows, we can leverage
static code analysis to remember branching points for differ-
ent traffic classes only. For example, if HTTP flows always
take the true branch of an if-condition, we would be able to
maintain all necessary information by just tracking the flow
ID, meaning that we do not need to remember that branching
point.

Template selection: The optimizer contains a repository
of transformations and rewriting rules, i.e., templates, that
change the abstract syntax tree (AST) of the NF’s packet
processing algorithm. As discussed in Section 2, the trans-
formation includes four classes: (1) Batching templates, (2)
Prefetching templates, (3) Partial computation caching, and
(4) Data structure tuning.

We can associate a set of transformations to each type of
the bottleneck so that the template selection engine knows
when each optimization is useful. For example, if the code
profiler detects a memory access bottleneck, we can use any
one of the transformations that inject prefetching instructions
to hide the memory latency.

The optimizer’s job is to search for a close-to-optimal set
of transformations to build the final NF pipeline. Different op-
timizations impact each other. Therefore, greedy approaches
such as gradient descent may get stuck in local optima. We
can instead use evolutionary algorithms that do not make any
assumption about the optimization space.

Evolutionary algorithms run in generations. In each gen-
eration, we first select a set of candidates based on a fitness
criterion—throughput, latency, or a combination of both. We
next build the next generation using mutation and crossover
operations. Mutations choose a set of (semi) randomly se-
lected transformations to apply on a selected group of can-
didates from the previous generation. Crossovers combine
transformations from two candidates from the previous gen-
eration in order to create new ones. Such algorithms have
been successfully used to optimize the performance of image
processing pipelines [9, 23, 24].

One advantage of evolution algorithms is that the tracing
and profiling components need not be accurate and can tol-
erate a degree of noise. This is because the fitness criteria
already incorporate some randomness (as a source of noise).
In fact, this noise is crucial to avoid local optima when using
evolutionary algorithms.

Code swapping: Once we find a good candidate pipeline,
we have to swap the old pipeline with the new candidate.
The code-swapper is responsible for changing the pipeline
code while ensuring per-packet consistency and preserving
processing states between the two pipelines.

Since we read packets in batches from the NIC, we can
seamlessly change the code by swapping the pipeline on the

arrival of a new batch. To do so, we have to ensure that no
packets are queued in the previous pipeline. We also have to
transfer states from one pipeline to the next. For example, to
remove a fast path from an old pipeline, we need to have all
its data-structures merged before swapping. In order to ensure
that no packets are queued, we can perform bookkeeping on
every packet to detect packets that are not released by the
pipeline (even dropped packets need to release their memory
eventually or the NIC ring gets full). In order to ensure that
we properly transfer the state from one pipeline to the next,
we need to make sure that the memory pointers to the stateful
components remain consistent. We can achieve this easily by
reusing pointers from previous generations of the pipeline.
For example, if a pipeline uses a hash table, we can reuse
the hash table pointer in the next generation of the pipeline,
safely, assuming that the hash table is untouched between the
two pipelines. In addition, we need to ensure that if we break
a stateful element into multiple elements, these elements are
merged back before swapping the pipelines. This breakdown
is hard, and we leave it to future work.

4 RELATED WORK
Network function frameworks: There is a large body of
frameworks [2, 7, 14, 21] for building network functions.
These frameworks expect the developers to use optimizations
when writing NF code. The runtime of these frameworks are
static, rely on general purpose compilers for optimizations,
and do not optimize the user code based on the workload nor
the environment that runs the code.

Software switches: OpenVSwitch [22] and VFP [12] are
software-based switches that use table-based programming
with a controller pushing rules into the tables that specify
the policy of the network. It is possible to implement simple
NFs on top of these tables, e.g., routing, NAT, or Firewalls,
but more sophisticated NFs such as IDS, require dedicated
binaries. It is also possible to use these switches to pass the
packets between more sophisticated NFs, but there is usually
a large overhead associated with passing packets around in
this fashion. NFMorph, on the other hand, aims to provide a
holistic NF framework.

Berkeley packet filters: Berkeley Packet Filters (BPF)
[18] can inject packet processing algorithm into the network-
ing stack in most Unix-like systems. The extended BPF, which
comes with Linux, has an additional set of predefined data-
structure, e.g., histograms, to collect statistics. Most imple-
mentations of BPF come with a JIT-optimizer that translates
the BPF instructions into machine code. Even then, the goal
of BPF and eBPF is to run within the kernel and safety of BPF
programs played a big factor during their design process-they
run on a virtual CPU with limited capabilities to ensure that
they finish in finite time and do not block other kernel tasks.
NFMorph, on the other hand, is a generic framework for writ-
ing packet processing algorithm. NFMorph uses trace-based
JIT optimization and allows the developers to use arbitrary
libraries for packet processing.

Network function isolation: It is important to ensure that
in a pipeline running network functions from multiple ven-
dors, the network functions remain isolated from each other
[20, 21, 25]. Even then, for memory isolation, we can reuse
previously used isolation techniques such as using contain-
ers [15] or relying on programming languages with memory
safety guarantees [21]. For performance isolation, we can
either rely on NF schedulers [20] or in case the NFs are on
the same machine use CPU features such as CAT. [25].

JIT optimizations: Prior work has successfully applied
JIT optimization in other domains [1, 23]. JVM [1] optimizes
hot-code during the execution of the program. Halide [23]
builds an optimized version of user code for image processing
pipelines considering the executing platform. NFMorph lever-
ages both types of optimizations and works on a different
domain.

5 CONCLUSION
Given the complexity of writing optimized NF code and the
stagnation in innovation caused by this complexity, we pro-
pose that we should decouple the NF logic from packet pro-
cessing optimization. We discuss how an optimizer combines
NF logic with packet processing optimizations through evo-
lution algorithms and transformations on the NF program’s
abstract syntax tree. We further discuss the benefits of on-
line optimizations and show how to build realizations of the
pipeline based on the workload and environment at runtime.

6 ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their helpful feedback.
We thank our shepherd, Manya Ghobadi, for her thoughtful
interaction. This work is supported in part by the grants CNS-
1829349, CNS-1834263, and CNS-1413978, and Facebook
Graduate Fellowship award.

REFERENCES
[1] Java Virtual Machine. URL https://java.com.
[2] Network Function Framework for GO. URL https://github.com/

intel-go/nff-go.
[3] Network Function Virtualization, 2012. URL https://portal.etsi.org/

NFV/NFV_White_Paper.pdf.
[4] AT&T Domain 2.0 Vision White Paper, 2013.
[5] Dpdk: Data plane development kit, 2018. URL https://www.dpdk.org/.
[6] Hardware Event-based Sampling Collection,

2018. URL https://software.intel.com/en-us/
vtune-amplifier-help-hardware-event-based-sampling-collection.

[7] Vector Packet Processing. https://fd.io/technology/, 2018.
[8] Omid Alipourfard, Masoud Moshref, Yang Zhou, Tong Yang, and Min-

lan Yu. A Comparison of Performance and Accuracy of Measurement
Algorithms in Software. SOSR, 2018.

[9] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman Amarasinghe. PetaBricks: a language and
compiler for algorithmic choice. PLDI, 2009.

[10] Gilberto Bertin. XDP in practice: integrating XDP into our DDoS
mitigation pipeline. Technical Conference on Linux Networking, 2017.

[11] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-
tao Shang, and Jinnah Dylan Hosein. Maglev: A Fast and Reliable
Software Network Load Balancer. NSDI, 2016.

[12] Daniel Firestone. VFP: A Virtual Switch Platform for Host Sdn in the
Public Cloud. NSDI, 2017.

https://java.com
https://github.com/intel-go/nff-go
https://github.com/intel-go/nff-go
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.dpdk.org/
https://software.intel.com/en-us/vtune-amplifier-help-hardware-event-based-sampling-collection
https://software.intel.com/en-us/vtune-amplifier-help-hardware-event-based-sampling-collection
https://fd.io/technology/

[13] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, et al. Azure Accelerated Networking:
SmartNICs in the Public Cloud. NSDI, 2018.

[14] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han,
and Sylvia Ratnasamy. SoftNIC: A software NIC to augment hardware.
UCB/EECS-2015-155, 2015.

[15] Jinho Hwang, K K_ Ramakrishnan, and Timothy Wood. NetVM: high
performance and flexible networking using virtualization on commodity
platforms. IEEE TNSM, 2015.

[16] Peyman Kazemian, George Varghese, and Nick McKeown. Header
Space Analysis: Static Checking for Networks. 2012, NSDI.

[17] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans
Kaashoek. The Click modular router. TOCS, 2000.

[18] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New
Architecture for User-level Packet Capture. USENIX, 1993.

[19] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.
Trumpet: Timely and precise triggers in data centers. SIGCOMM,
2016.

[20] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. E2: a framework
for NFV applications. SOSP, 2015.

[21] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. NetBricks: Taking the V out of NFV.
OSDI, 2016.

[22] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
et al. The Design and Implementation of Open vSwitch. NSDI, 2015.

[23] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. PLDI, 2013.

[24] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. Inside the Social Network’s (Datacenter) Network. In SIG-
COMM, 2015.

[25] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Katerina
Argyraki, Sylvia Ratnasamy, and Scott Shenker. ResQ: Enabling SLOs
in Network Function Virtualization. NSDI, 2018.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Optimization knobs
	2.2 Workload based optimizations
	2.3 Environment based optimizations

	3 Design
	3.1 Domain specific language
	3.2 NF Runtime

	4 Related work
	5 Conclusion
	6 Acknowledgements
	References

