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ABSTRACT
In software-defined networking, the controller installs flow-based
rules at switches either proactively or reactively. The reactive ap-
proach allows controller applications to make dynamic decisions
about incoming traffic, but performs worse than the proactive one
due to the controller involvement. To support dynamic applications
with better performance, we propose FAST (Flow-level State Tran-
sitions) as a new switch primitive for software-defined networks.
With FAST, the controller simply preinstalls a state machine and
switches can automatically record flow state transitions by match-
ing incoming packets to installed filters. FAST can support a vari-
ety of dynamic applications, and can be readily implemented with
today’s commodity switch components and software switches.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]; C.2.1 [Network
Architecture and Design]; C.2.4 [Distributed Systems]: Net-
work operating systems

Keywords
Software-defined Network; State Machine

1. INTRODUCTION
Software-defined networking has changed networking by sep-

arating the control plane from the data plane. While there have
been many innovations on controller applications for different net-
work management needs, most of these applications still rely on
flow-based rules in the data plane. These flow-based rules often
match on multiple packet header fields (e.g., source/destination IP
addresses), take predefined actions on matching packets (e.g., drop-
ping the packet, forwarding it to an outgoing port), or maintain
counters (e.g., the number of packets or bytes).

The controller saves flow-based rules to switches in two modes:
proactive and reactive. In the proactive approach, the controller
populates rules in switches ahead of time for all the flows coming
to the switch. However, the proactive approach requires a priori
knowledge of events at switches, and how to handle these events.
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The reactive approach supports more dynamic applications, but
has poor performance. In the reactive approach, switches often
send events (e.g. the first packet of each flow) to the controller, and
the controller installs flow-based rules based on these events. How-
ever, this introduces significant overhead (CPU, memory, etc.) at
the switch, high performance overhead (i.e., delay and throughput),
and scalability problems due to the limited communication channel
between the controller and switches [13]. For example, consider a
stateful firewall that denies unsolicited inbound traffic if it cannot
find a corresponding outbound flow in the Established state. The
controller becomes aware of the state of outbound flows by receiv-
ing the TCP signals (e.g., SYN, FIN) from the switch and denies
the unsolicited inbound flows and installs forwarding rules for oth-
ers upon receiving their first packet. This means that switches have
to send multiple packets of the same flow to the controller, and the
controller has to reactively change the flow-level rules based on
these incoming packets.

To reduce the controller involvement in dynamic applications,
many works recognize the limitations of flow-based rules and have
proposed specific optimizations in the data plane. DevoFlow [13]
reduces the controller overhead by introducing rule cloning and
measurement triggers. OpenFlow 1.3 supports rate limiting by al-
lowing switches to track flow rates and tag/drop excess traffic with-
out the controller involvement. Open vSwitch [3] adopts the learn
action for software switches that can install new rules when traffic
matches an old rule.

Instead of proposing yet another specific optimization, we aim
at identifying a new generic data plane abstraction to replace flow-
based rules. We observe that many networking tasks can be ex-
pressed as local state machines over a flow or an aggregate of flows.
For example, to implement the stateful firewall, the controller may
install a state machine on the switch to keep track of TCP states.
The associated action on each state can allow/deny inbound traffic
based on the TCP state.

We propose FAST (Flow-level State Transitions) as a new switch
abstraction. FAST allows the controller to proactively program
state transitions, and allows switches to run dynamic actions based
on local information. FAST supports a wide range of dynamic ap-
plications and can be easily implemented with today’s commodity
switch components.

FAST includes three parts: (1) an abstraction that allows op-
erators to program their state machines for a variety of applica-
tions; (2) a FAST controller that translates state machines to the
data plane API and manages the interaction of local state machines
with network-wide policies; (3) a FAST data plane that includes a
pipeline of tables to support state machines with commodity switch
components.



2. MOTIVATING EXAMPLES
Many networking tasks can be expressed as switch-local state

machines defined over a flow or an aggregate of flows. The proac-
tive approach cannot express such tasks as their rules change over
time; such tasks can be realized using a reactive approach (at the
expense of performance) or using FAST (Table 1).

Intrinsic state machines: There are many state machine descrip-
tions whose state definitions are based upon protocol states (e.g.,
TCP states); we call these intrinsic state machines. For example,
stateful firewalls allow all outgoing traffic from a protected ma-
chine, but only allow incoming packets if they are part of the re-
sponse to an outgoing traffic. To only permit those incoming traffic
for active TCP connections, a switch acting as a stateful firewall
would need to keep track of the TCP states: from the start of a new
connection (i.e., receiving the SYN packet), getting SYN-ACK, to
the Established state (i.e., receiving the ACK). If the connection is
Established, the switch can then forward all the incoming packets.
Similarly, the switch should also track the connection state transit-
ing from Established to Closed, in order to remove future incoming
packets. In the reactive approach, we must send the TCP signals to
the controller to let it track TCP states and install/uninstall corre-
sponding rules. FAST tracks TCP states at the switch and applies
the appropriate routing actions to the legitimate connections with-
out involving the controller. Other examples include FTP moni-
toring, connection affinity in load balancing, QoS in multimedia
streaming and link failure recovery (Table 1).

Extrinsic state machines: More complex state machines de-
fine states based on additional dynamically-generated information
(stored in, for example, counters or bitmaps): we call these ex-
trinsic state machines. Examples of tasks that require extrinsic
state machines include heavy hitter detection, super-spreader de-
tection, sampling based on flow size and application-aware load
balancing (Table 1). For the heavy hitter detection in the reac-
tive approach, the controller must install counting rules at switches
and periodically fetch their statistics to detect heavy hitters. The
unnecessary communication with the controller wastes bandwidth
and switch CPU. Instead, FAST tracks the size of flows and only
reports them to the controller when their size reaches a threshold
(See Section 4.2 for details of comparison against a threshold.)

As another example, consider a detector for an optimistic ACK
attack. To initiate an optimistic ACK attack [29], an attacker at the
TCP receiver end often sends sequence numbers for the packets it
has not received yet. In this way, the attacker can fool the sender to
send data faster. To detect such attack, we can maintain a bitmap
to keep track of the sequence numbers of packets that have been
sent through the switch. Each time the switch receives an ACK at
the reverse direction, we can compare it with the bitmap to identify
those ACKs that do not match previous sequence numbers. With-
out FAST, the switch would need to forward all packets to the con-
troller, and the controller is responsible of maintaining the bitmap
and installing a deny rule for detected attacks. Or, we have to rely
on an intrusion detection middlebox to maintain such hash table.
More complex scenarios that may use multiple variables in each
state are also possible for example to detect the application based
on the features of the first N packets of a flow [26].

Note that although some of the above examples can be imple-
mented with middleboxes, middleboxes are expensive, lack a gen-
eral programming interface and usually only support a specific pur-
pose. Instead, we aim at a general flexible solution that can be
implemented in commodity switches.

FAST motivation: To support the above examples with com-
modity switch components, we propose FAST, a new switch prim-

1) Task:=(StateMachine,InstanceMapping)
2) StateMachine:=({State},{Transition},{Action},Filter)
3) State:=(name,{Variable})
4) Variable:=(name,#bits)
5) Transition:=(StartState,Condition,TargetState,F)
6) Condition:=f1(StartState.Variables,Packet)→True|False
7) F:=f2(State.Variables,Packet)→TargetState.Variables
8) Action:=(State,Condition,Instruction,Priority)
9) Filter:=f3(Packet)→True|False
10) InstanceMapping:=f4(Packet)→Index

Table 2: FAST abstraction

itive based on state machines. FAST allows switches to auto-
matically decide the actions based on the local states. Therefore,
FAST achieves better performance for many tasks, and improves
the scalability of the SDN system by offloading some work from the
controller to switches. Besides performance gains, FAST abstrac-
tion allows applying verification tools [12] on the network policies
to make sure they match the operator intent. FAST rethinks the
boundary between the control and data planes in SDN with the goal
of improving performance and scalability with minimal changes to
today’s switches.

3. FAST ABSTRACTION
FAST provides a state machine processing abstraction over pack-

ets in the network. Table 2 describes how a task is defined in
FAST using state machines. The parentheses represent a tuple,
curly brackets show a set, and right arrows define the output of a
function. Each task involves a state machine definition and a map-
ping for its instances. We now highlight the important aspects of
the task definition.

State: Extrinsic state machines require storing counters that rep-
resent many states over the variable values. Depending on how
the transitions update the variables and the conditions match on
them, they can be used as counters, bitmaps or timestamps. Adding
the variable to the definition of states instead of making individ-
ual states for each value makes the state machine definition much
simpler. Later, the controller can map the state names and their
variables to a bit string representing actual states.

Transition: A transition from the current state to a target state
occurs only if its guard condition (f1 in Table 2) is true. When the
guard is true, the variables in the target state will be set using a
function (f2) over packet fields and the current state variables.

Action: An action executes an instruction on the packet when
its guard condition is true. Instruction is defined the same as Open-
Flow 1.3. This design allows state machines to accommodate context-
specific actions: for example, in a stateful firewall, both inbound
and outbound flows match a state in the state machine, but their
output port is different, so the associated action may be different.

In FAST, to simplify the semantics of state machines and their
implementation, we do not permit a given packet to be processed
more than once by a state machine. That is because adding this
facility can add unbounded delay to packet processing. Finally, an
instruction for a set of flows can be shared across many states, and
a compiler can optimize their resource usage based on the switch
capabilities (See Section 4).

Filter: The programmer can also filter the traffic going through a
set of state machines. For example, it is not necessary to pass UDP
traffic through a state machine that tracks TCP states.

Instance mapping: There can be many instances of a state ma-
chine in a switch, each in a different state. Thus, the task definition
must specify a mapping of each packet to an instance to find its cur-
rent state. Separating the state machine definition and its instances
vs. defining it over all instances simplifies the task definition. Each



Example Description Reactive overhead FAST state machine
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s Stateful firewall Filter unsolicited inbound TCP connections

without any outbound flow
Delay of sending TCP signals for each flow to
the controller and installing rules

TCP state machine with actions that drop
uninitiated flows

FTP monitoring Only allow inbound FTP data channels set up by
FTP control channel

Overhead of sending control traffic to the con-
troller to (un)install rules for data channel

Track the states of control channel & allow
data channel traffic

Connection affinity
in load balancing

Avoid disrupting ongoing TCP connections dur-
ing the transition of load between servers

BW overhead of sending old connections to
the controller to route to old servers

TCP state machine to distinguish ongoing
connections from new ones

QoS in multimedia
streaming

Track states in RTSP or SIP to manage
BW/queue reservations

Delay of sending protocol signals to the con-
troller to map connections to queues Control channel state machine

Link failure recov-
ery

Use failure-carrying data packets coming back-
ward to use backup routes for forward path [11]

Packet loses while sending failure-carrying
packets to controller & installing new routes State machine over link status
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Heavy hitter detec-
tion & rate limiting

Send info of heavy hitters to the controller or
drop their excess traffic for rate limiting BW overhead of periodic query of counters Keep a counter per flow and compare it

against a threshold
Super-spreader de-
tection

Count open TCP flows from a source to detect
super-spreaders (too many connections) [24] Send all SYN and FIN signals to the controller Increase a counter on SYNs and decrease it on

FINs. Compare the counter to a threshold.

Sampling based on
flow-size

Update the packet sampling rate of a flow based
on its estimated size [23]

BW overhead as the controller must periodi-
cally fetch counters for each flow and change
its sampling rate

Keep a counter for a flow size and select sam-
pling rate based on the counter value

Accurate flow size
distribution

Collect flow sizes to calculate flow-size distri-
bution

Accuracy loss and BW overhead of sam-
pling [22]

Use counters to keep flow sizes and send to
the controller upon receiving the FIN signal

Application-aware
load balancing

Track a notion of load for each server based on
weights per application request & balance load

Send requests and replies to the controller to
track loads

Increase a counter for servers based on the
weight of requests and decrease on answers

Selective packet
dropping

Drop differentially-encoded B frames in an
MPEG encoded stream if the dependency (pre-
ceding I frame) was dropped

BW overhead of sending all packets to the
controller

Use a bitmap in states to keep track if the few
recent I frames that have been received

Detect an optimistic
ACK attack

Prevent an attacker at TCP receiver to get data
faster by sending optimistic ACKs [29] Send every packet to the controller Keep a bitmap showing sequence number of

packets sent and filter unsolicited ACKs
Application detec-
tion

Detect application type based on features (e.g.,
size) of the first N packets [26]

BW overhead of sending the first N packets of
each connection to the controller

A state machine at the switch looks at features
of the first N packets

Table 1: Motivating examples describe the overhead of reactive approach and the state machines in FAST

Figure 1: FAST architecture
(Dashed arrows are compile time. Solid arrows are runtime.)

instance will be identified by an index, and a function over packets
(f4) will find it. For example, for tracking the TCP states, we must
map two unidirectional flows into an instance. Here, the function
can simply be a hash based on the summation of source and desti-
nation IP.

4. DESIGN
Given the state machine abstractions defined by operators (Ta-

ble 2), FAST proactively installs them at switches and thus avoids
the controller involvement. FAST includes two key designs: the
control plane that automatically translates the high-level abstrac-
tions into state machines at individual switches, and the data plane
that can be readily implemented with today’s commodity switch
components.

4.1 Control Plane
FAST control plane involves two components (Figure 1): (1)

The FAST compiler that compiles state machines into switch agents.
(2) The switch agents that manage the local state machines at indi-
vidual switches. The FAST compiler is an offline component while
the switch agents work in runtime.

FAST Compiler: The FAST compiler translates the state ma-
chine definitions that an operator specifies to the actual code (switch
agents) that can run state machines at individual switches. It uses
the information about topology and switch constraints to make switch
agents specific to the switch capabilities and configures them to in-
stall the state machines only on a subset of switches (e.g., ingress) [33].

Switch agents: Each switch agent preinstalls the state machines
at a switch1 and can communicate with it during the state machine
execution. A switch agent has three responsibilities. First, it knows
the switch features and how the switch supports the FAST abstrac-
tion in data plane. It uses this to convert the state machine to the
switch API to perform the state machine functionality. We describe
a data plane implementation using a hash table and tables of flow-
based rules in Section 4.2.

Secondly, it may perform part of the state machine implemen-
tation for the switches with limited capabilities such as features or
memory. This means that the switch agent can fall back to the
reactive approach and receive packet-ins from switches or fetch
statistics periodically. For example, it is easy for software switches
to flexibly perform arithmetic computations for the conditions of
state transitions while hardware switches may only support wild-
card matching. If the switch cannot compute the average flow
rate using a counter, the switch agent must periodically fetch the
counter to compute the flow rate and apply the rate limiting policy.
Moreover, the switch agent can save the state machine partially at
the switch to address its limited memory. Because states have dif-
ferent rates of usage (e.g., exception handling states are rare), the
switch agent may merge multiple rare states to create a phantom
state; whenever, a flow enters such a state, the switch forwards the
packet to the controller and the switch agent handles it.

Finally, the switch agent reports local events to the global tasks
running at the controller. For example, in Hedera-like traffic en-
gineering [5], the traffic congestion at one link can trigger routing
changes at another switch, thus it cannot be specified as a local
task. However, the switch can still detect heavy hitters, and the
switch agent can configure the switch to send those events to it.
Then the switch agent acts like a proxy for the events in the net-
work by passing the events to the global tasks at the controller.

1We discuss the reactive installation of state machines in Section 6



Figure 2: Implementing TCP state machine in FAST data plane

4.2 Data Plane
Figure 2 describes FAST data plane on top of the current flow-

based multi-table architecture. While this is not the only architec-
ture to support state machines, especially, in software switches, we
believe it is a transition step from the flow-based rules to a state ma-
chine based data plane. We use the TCP state machine as a running
example to illustrate the components of state machines, which can
be implemented with hardware currently available on commodity
switches.

The design contains four tables. The state machine filter table is
shared among multiple types of state machines, but the other three
are specific to each state machine definition. The state table keeps
track of state machine instances and is implemented as a hash-table.
We decouple actions from state transitions for two reasons. First, it
can be more compact: a single entry in action table can cover the
actions in multiple states. For example, regardless of whether the
state machine is in the Established or Init1 state, one can specify the
same action (e.g., forward to port 1). More important, however, is
that we need this decoupling for our problem domain. While there
is one instance of a TCP state machine, the action corresponding to
a flow being in a specific state may depend on the flow itself (e.g.
output port).

The switch agent installs a state machine on this data plane by
adding a rule in the filter table, specifying the hash fields and the
initial state for the state table, and installing state transition rules
and action rules in the corresponding tables. We now describe the
details of each table:

State machine filter: An entry in the state machine filter table
corresponds to the Filter part of the FAST abstraction (Table 2)
which selects the traffic for a type of state machines.2 This table is
identical to conventional OpenFlow tables with actions that point
to a state table; it can thus be implemented using TCAMs.

State table: Although all the flows matching a filter rule belong to
the same type of state machine, each individual flow corresponds to
an instance that may be in a different state. The state table records
the current state of each flow and corresponds to the InstanceMap-
ping in FAST abstraction. We first pick the packet fields that define

2We can match a flow to multiple state machines by chaining them (Section 6).

Approach Mean 5th 95th

Proactive 1.85 1.45 3.68
Reactive 84.8 57.84 109.7
FAST 3.02 1.34 5.93

Table 3: Comparing flow completion delay (ms) for 100 experiments

the flow (e.g., source IP, destination IP, or even fields in the pay-
load), hash the packet fields, and then track the current flow state
in the corresponding entry. The variables inside a state will also be
stored in this table. Concretely, the state and the variables map to
a number. A few high bits of the number represent the state and
others show the current value of the variables.

The state table is basically a hash table that can be easily im-
plemented with SRAM and hash modules. Hash-tables are already
used in switches for NetFlow counters [1]. An alternative design
is to use regular tables and update the state by inserting rules [6].
However, hash tables allow us to avoid inserting a rule into TCAM
which has unpredictable high delay [18]. After finding the entry,
the state and the variables can be saved in the packet metadata for
next tables. Note that the state in the state table may depend on
different flows. For example, for the TCP connection, the state
depends on the bidirectional flows. Therefore, we choose to hash
on source and destination IPs as two parameters independent of
their order, so that bidirectional flows are hashed into the same en-
try. Different state machines may pick flows based on different
packet fields. For example, in super-spreader detection, we only
pick source IP to define the state.

State transition table: Each entry in this table represents a tran-
sition and contains three distinct entities: the matching on current
state, the condition on state variables and packet fields, and the next
state. When the packet matches the current state and the conditions,
the state will be updated in the state table based on the next state,
while the packet will go to the action table carrying the new state
as its metadata.

To implement the state transition table, we can install state tran-
sition rules in TCAM to match on the current state and packet
fields. We can also match on the state variables already carried in
the packet metadata. For example, to compare a counter against a
threshold, we can translate a transition condition to at most n wild-
card matching rules, where n is the number of bits specified for the
counter (Table 2)

Action table: The action table matches the new state and packet
header fields to a specific action (e.g., forward the packet to a port,
or drop the flow). More precisely, each entry in the action table
has three components: the new state, flow rules defined on packet
header fields, and an action. When a flow matches the state and an
incoming packet matches the flow rules, the specified action will
be performed. Action tables can also be implemented easily with
TCAMs.

5. FAST PROTOTYPE AND EVALUATION
Prototype: We have implemented a stateful firewall in FAST
prototype with POX and Open vSwitch [3]. At the controller side,
a switch agent proactively installs state machines using OpenFlow
protocol. We use Nicira extensions that supports the learn action
and hashing, and we added the matching on TCP signals. We have
instantiated the state machines and changed their states leveraging
the Open vSwitch learn action.

Evaluation setting: We run a FAST controller, a FAST switch,
a sender, and a receiver in Mininet [16]. We use the TCP state ma-
chine as an example. The state machine transits on SYN, SYNACK,
ACK, FIN, and FINACK flags and the switch drops any packet
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Figure 3: Flow completion for concurrent small flows for 10 experiments

from the receiver if the sender does not expect it as defined in a
stateful firewall. We compare FAST with two approaches: (1) the
proactive approach where the controller just pre-installs two rout-
ing rules. This cannot track the states and is used as a baseline
for comparison. (2) the reactive approach where the controller re-
ceives the signals using the following trick: It only installs the rout-
ing rules after the connection went to the TCP Established state. It
also installs an additional rule along with routing rules to send FIN
signals to the controller.

FAST can change states with low delay. To stress FAST under
many state changes per flow, we generate a small flow with one data
packet and compute the delay of its transitions through the TCP
state machine (flow initiation until termination). FAST has much
smaller delay comparing to the reactive approach because there is
no need to send the signals to the controller (Table 3). However,
due to the overhead of calculating the hashes for looking up the
current state and updating the state table, its delay is larger than the
basic proactive approach.

FAST state-lookup has low overhead. To quantify only the
overhead of state lookup, we compare the throughput of FAST vs.
proactive approach for a long connection using iperf. The iperf
connection remains in the Established state for many packets, so
this comparison quantifies only the overhead of hashing and check-
ing the current state. The throughput of FAST is very close to the
proactive approach (7.8 Gbps vs 8.2 Gbps, respectively with stan-
dard deviation of 0.2Gbps over 30 tries).

FAST is scalable. Finally, we track the flow completion times for
many concurrent flows in FAST in order to evaluate FAST data
plane scalability. Figure 3 shows that the delay of small flows re-
mains small even for thousands of concurrent flows.

In conclusion, FAST overhead is negligible for many concurrent
connections while it is more expressive compared to the proactive
approach and has much less delay compared to the reactive ap-
proach.

6. CHALLENGES AND FUTURE WORK
Reactive install: The state machine definition can be installed
reactively. The switch agent can wait for a switch to find no state
machine to handle a packet and send it to the controller. Then it
installs a new definition.

Installing consistent state machines: There are two consistency
concerns in installing state machines: The consistency concern in
installing state machines on multiple switches requires further re-
search to make sure a packet/flow is handled by the same policy
scattered among multiple switches (same as flow-based rules [28]).
Secondly, locally at a switch, we must define how changing a state
machine can reuse the information of its old version. For example,
we may create new instances of the new state machine out of the
old ones and reuse state variables (e.g., flow size counters).

Verifying state machines: A motivation for choosing state ma-
chine abstraction is its prevalence of verification tools in the pro-
gramming stage [12]. The tools allow comparing the state machine
definition against the policy the user expects and making sure it
does not have bugs such as overlapping transition conditions or un-
used transitions. Providing such services using the available tools
before compiling the state machines is in our future work. More-
over, to debug the networking tasks online, the controller can dump
the current state of the state machine instances to build a complete
network view. It can also tune the visibility of events by making
switches to send a copy of the packets causing state transitions to
the controller.

Composing multiple state machines: With FAST, operators
can specify different state machines for different tasks (e.g., one
for load balancing and another for stateful firewall). However, a
single flow may need to traverse both the load balancer (with the
state machine to ensure connection affinity) and the stateful fire-
wall (with the TCP state machine). If matching against multiple
rules in the state machine filter table [36] is not possible, a com-
piler at the controller needs to generate a combined state machine
for these tasks. For example, it can either combine their states and
transitions or chain state machines by resubmitting the packets to
the second state machine from the action table of the first. More
generally, the FAST compiler may also explore opportunities of
resource sharing across state machines. For example, both the state
machine to ensure connection affinity and the TCP state machine
for a stateful firewall check the first SYN packet of TCP connec-
tions, but perform different actions. The compiler may also verify
these state machines to avoid conflicts by using the techniques in
recent SDN verification tools (e.g., VeriFlow [20]).

Features at switches: Matching on a richer set of packet fields in
switches enables FAST to push more responsibilities to switches
in order to support more usecases efficiently: OpenFlow compliant
switches can already support limited packet header fields. How-
ever, future commodity switches will be able to flexibly parse packet
headers [9, 8] and extract the protocol dependent fields such as
video frame types or FTP data connection port from the control
flow. Indeed, software switches can perform protocol analysis be-
yond layer 4 and thus enable data-conditional state machines (e.g.,
by reusing the protocol analyzers in Bro [25] in a flexible API such
as Intel DPDK [2]).

Using switch resources efficiently: The switch agents can do sev-
eral optimizations to fit state machines into the data plane with lim-
ited memory. If the matching field of rows in a state transition table
with the same next state value are the same (all input links to each
state are the same), we can compact a state transition table onto a
TCAM table efficiently [10]. We can also use approximate con-
current state machines (ACSM) [7] when reaching a “don’t know”
state occasionally is acceptable. Besides, the hardware switch it-
self can offload non-frequent states to CPU-DRAM. For software
switches, combining state machines [35] can improve the latency
of matching.

7. RELATED WORK
Dynamic actions at switches: DevoFlow [13] proposed rule cloning
and trigger based measurement reports at switches to reduce the
overhead of reactive approach. OpenFlow 1.3 introduces the meter
table that allows using counters for rate-limiting pre-configured by
the controller. FAST proposes a more general abstraction that cov-
ers the above scenarios. Open vSwitch [3] supports the learn action
that allows adding a rule as an action of an OpenFlow rule. In con-



trast, FAST abstraction is more general and FAST data plane de-
sign using the hash table also works in hardware switches. Active
network [32] and Tiny packets [19] let switches run a small pro-
gram. FAST limits the program to state machines and only allows
the trusted controller to program switches. P4 [8] and RMT [9]
introduce flexible header parsing at switches. FAST can leverage
these parsers in the data plane.

State machine abstraction: State machines have been identi-
fied as an important abstraction for many networking tasks [7, 30].
Even if we do not know the state machine for a network protocol,
there are proposals to infer it from traces [34]. Moreover, PyReso-
nance [4] implements a programming language to define state ma-
chines at the controller. However, it later translates them to flow-
based rules and uses the reactive approach to run the networking
tasks. FAST is complementary to above researches by enabling
switches to run state machines locally to improve performance. As
in FAST, OpenState [6] also proposed a state machine abstraction
at the data plane. Although this parallel work is similar in abstrac-
tion, its data plane design is different. While OpenState has a state
table and an XFSM table (state transition + action table), FAST
separates these tables to shrink their size. OpenState also inserts
rules in the state table for updating the current state, but FAST uses
a hash-table for the state table to avoid the long unpredictable delay
of rule insertion. Additionally, in this paper, we looked at more ap-
plications (Table 1), discussed the controller design and challenges,
and provided preliminary evaluation results.

Middlebox management in SDN: A strand of research tries to
redesign middleboxes to let a controller manage them [15, 31].
Another category manages middleboxes with the current imple-
mentation [27, 14]. In contrast, FAST pushes the limit of current
switches to efficiently implement more network functions than sim-
ple forwarding.

Local Controller Logic: Several works at the controller side ([17,
21, 33]) recognized the ability of separating a control policy to local
and network-wide logics. We also use this argument to motivate not
centralizing the logic at the controller. However, instead of local
controllers [17], we believe the state machine abstraction is simple
enough to be implemented at fast data planes and general enough
to cover many usecases.

8. CONCLUSION
We observe that many networking functions require changing the

actions within the same flow based on the current flow state. Thus
we propose flow-level state transitions (FAST) as a new primitive
for SDN. Compared to the primitive of flow-based rules, FAST
supports more flexible networking tasks, improves the performance
and scalability of the SDN controller, and can be easily imple-
mented with commodity switch components.
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