DETER: Deterministic TCP Replay for Performance Diagnosis

Yuliang Li Rui Miao Mohammad Alizadeh
Harvard University Alibaba Group Massachusetts Institute of Technology
Minlan Yu

Harvard University

Abstract

TCP performance problems are notoriously difficult to di-
agnose because subtle differences in TCP parameters and
features may lead to completely different performance. The
gold standard for diagnosis is to collect packet traces and trace
TCP executions. However, it is not easy to use these tools in
large-scale data centers where many TCP connections interact
with each other. In this paper, we introduce DETER, a deter-
ministic TCP replay tool, which runs lightweight recording
all the time at all the hosts and then replays selected collec-
tions where operators can collect packet traces and trace TCP
executions for diagnosis. The key challenge for deterministic
TCP replay is the butterfly effect—a small timing variation
causes a chain reaction between TCP and the network that
drives the system to a completely different state in the replay.
To eliminate the butterfly effect, we propose to replay individ-
ual TCP connection separately and capture all the interactions
between a connection with the applications and the network.
We show that DETER has low recording overhead and can
help diagnose many TCP performance problems such as long
latency related to receive buffer shrinking, zero windows,
late fast retransmission, frequent retransmission timeout, and
problems related to the switch shared buffer.

1 Introduction

Modern data center applications increasingly rely on high
throughput and low latency TCP performance. Yet, these
applications often experience TCP performance problems
that are hard to diagnose. This is because the TCP stack
is a complex system that involves many heuristics to deal
with network conditions and application behaviors, and it has
many variations that optimize for different traffic scenarios
and application objectives.

As a result, there is simply no single best setting for all
scenarios. Researchers invent more than two TCP variations
every year and there are already tens of congestion control
algorithms to choose in Linux. TCP in Linux 4.4 has 63

parameters to configure, some of which are less known to
normal application developers, such as early retransmission
flag and TCP low latency flag which provides options for
optimizing specific traffic settings. Other parameters are hard
to configure even for TCP experts, as they have to run TCP
multiple times to fully understand the influences of different
parameter settings and the interactions of various TCP fea-
tures. For example, thin-dupACK dynamically changes the
threshold of the number of dupACK for fast retransmission
based on the size of the current transfer. TSO window divi-
sor affects the Nagle test for TSO, which decides how many
packets to wait in order to form a larger packet.

Moreover, TCP is under continuous, error-prone develop-
ment. There are 16 bugs identified in Linux TCP [25] in just
July and August of 2018. As an example, one bug is related
to DCTCP, where the DCTCP CC’s ACK generation conflicts
with the basic TCP framework’s ACK generation, resulting
in some packets never being acknowledged [19].

Many misconfigurations and bugs are hard to diagnose
because they are sporadic and intermittent. However, they are
still sufficient to degrade application performance, especially
in data centers where large scale distributed systems often
involve thousands of requests to fulfill a task [48, 39], because
a single long latency may delay the entire task [32, 42].

Although diagnosing TCP performance problems is notori-
ously hard, the gold standard tools are still the same as what
have been used for tens of years: capturing packet traces [18]
and tracing TCP executions [13, 1]. While these tools are
useful for diagnosing individual connections, using them in
large-scale data center environments is hard, because there
are millions of flows from hundreds of thousands of hosts
interfering with each other constantly. Collecting packets and
tracing TCP executions at all hosts and switches takes large
quantities of storage, computing, and bandwidth resources.
TCP counters [58, 28] are useful lightweight tools in pro-
duction, but they are not detailed enough to diagnose the
complex settings and interactions mentioned above (see more
examples of complex TCP performance problems in §5).

A common way to debug complex large-scale systems is

deterministic replay [52, 40, 33, 49, 27, 37]. Deterministic
replay is proven to be an effective tool for developers to
recreate performance problems, identify their root causes,
and uncover many long-standing bugs in popular software. It
would be ideal if we can deterministically replay TCP (i.e.,
deterministically re-execute the TCP code).

However, deterministically replaying a large network of
TCP connections is difficult because TCP is a tightly coupled
system with multiple interacting parties: applications, the
network, other TCP connections traversing through a common
switch, and the kernel at hosts.

In particular, the closed-loop nature of TCP creates a but-
terfly effect, where even small timing variations (e.g., clock
drifts) between the runtime and the replay can drive the sys-
tem to an entirely different state. Better time synchronization
cannot solve this problem: even a nanosecond of timing varia-
tion leads to completely different TCP behaviors (§2.2). This
is because small timing variations at hosts can cause differ-
ent packet arriving orders at switches and therefore different
packet drops. The differences in packet drops cause different
TCP behaviors (e.g., congestion control) in turn, leading to
different traffic rates from TCP senders and causing more
differences in switch behaviors such as packet drops. Such
butterfly effect propagates to many flows in the entire network
after many rounds.

To eliminate the butterfly effect, we propose DETER, a
DEterministic TCP Replay system, which breaks the closed
loop interactions by replaying each TCP connection sepa-
rately. We identify the minimal set of signals that capture all
the interactions between a TCP connection with the applica-
tion and the network, and record these signals at hosts in a
lightweight manner. Specifically, DETER captures applica-
tion socket calls and any impact on packets (e.g., if they are
dropped or marked ECN) in the runtime. In the replay, we
no longer need switches because all their actions to packets
have been recorded and can be simply replayed. Since all
the switch actions are deterministically replayed, we break
the butterfly effect. We also isolate the TCP connection with
other connections in the network because they only interact
through switch actions.

The next question is how to deterministically replay an
individual TCP connection. Although we already capture
the interactions with the application and the network, there
are still non-determinisms in the kernel at hosts. We design
a customized solution for TCP which captures TCP-kernel
interactions such as the kernel calling TCP handler functions,
TCP reading kernel variables, and locks in thread scheduling.
Note that we do not need to capture every packet, as the
sender and receiver can generate packets and ACK for each
other. The size of our total recording is just 2.1~3.1% of the
size of fully compressed packet traces.

Since the recording is lightweight, DETER can run at all
times for every connection on each host. Upon observing
a performance problem, we can use DETER to zoom into

any TCP connection, deterministically replay its exact same
execution, capture packet traces, and examine TCP state dur-
ing the execution—all after the fact. We can also iteratively
debug the same performance problem instance multiple times
to collect different levels of detail each time.

Once we have the packet traces for each connection using
DETER, we can also replay network queues in a physical net-
work, emulator, or simulator as long as the setup has the same
topology, routing, buffer size, and switch queuing algorithms
as the runtime. During the replay, we push all the outgoing
packets for all the senders into the network based on their
timestamps. We also introduce a heuristic that significantly
improves the accuracy of replaying packet drops.

We demonstrate the benefits of DETER by showing how we
diagnose TCP performance problems in a Spark application
with 6.2K connections, tail latency problems in an empirical
web search workload with incasts, and example performance
problems in a local testbed. With DETER, we can also di-
agnose a wide range of performance problems that require
tracing the TCP execution, such as long latency related to re-
ceive buffer shrinking, zero windows, late fast retransmission,
frequent retransmission timeout, and problems related to the
switch shared buffer. The main limitation of DETER is that
it requires recording at both the sender and the receiver of a
connection and therefore cannot work when we do not have
access to both ends.

2 Diagnosis Example and Challenges

We use a diagnosis example to demonstrate the benefits of
deterministic replay. We then use the example to show the key
challenge to enable the deterministic replay—the butterfly
effect. Even a nanosecond of sending timing variation leads
to completely different TCP behaviors.

2.1 A Diagnosis Example

We use an example to show how DETER helps diagnose TCP
performance problems. We run a network with two senders
(A and B) and one receiver, which are connected to a single
switch and 10 Gbps links between them. Each sender sends
two long flows of 20 MB each. 30 ms after the long flow
starts, sender A sends a short flow of 30 KB to the same
receiver. In one run, the short flow takes 49 ms to complete,
which is two orders of magnitude higher than its expected
completion time. In comparison, the RTO is just 16 ms.
Usually, people diagnose a problem by reproducing it.
However, this problem is very hard to reproduce (shown in
§2.2). If we cannot reproduce a problem, we have to rely on
the information captured online, such as the TCP counters
that data centers usually continuously monitor [58, 28]. Un-
fortunately, TCP counters are not enough for diagnosing this
problem. The counter for retransmission timeout is two, but
twice the RTO (2*16 ms) is still much less than 49 ms.

35000

seq ©

30000 Faek x B

25000 =
1st RTO: 16ms | 2nd RTO: 32ms &

I I o™
o
o

o

20000 ~

15000 -

Seq/Ack number

10000 -
5000

Uoooooooog —0—
XX XX X X X x X x

I} ! I !
1.0 16.94 48.93

o
o L
wn

Time (ms)

Figure 1: Receiver side Seq and Ack number of the short flow that
experiences 49 ms FCT.

With DETER, we can deterministically replay the connec-
tions using the lightweight data recorded in the runtime (Table
1). During the replay, we capture the packet trace at the re-
ceiver side for the short flow (Figure 1). The trace shows that
the second timeout is 32 ms. This is because the two timeouts
are consecutive and thus trigger exponential backoff. The
trace also shows the reason why the sender experiences the
second timeout: the receiver receives the first retransmitted
packet at 16.94 ms, but it does not send an ACK. Without the
ACK, the sender has to retransmit again at 48.93 ms.

Why does the receiver not send an ACK for the first retrans-
mitted packet? DETER allows us to replay multiple times, in
order to collect more data and iteratively diagnose the prob-
lem. We replay again and use Ftrace [1] to get the function
call graph on the processing of the first retransmitted packet.
It shows that TCP enters the delayed ACK function, which
means TCP decides to delay the ACK for the first retransmit-
ted packet. The delayed ACK timeout is 40ms (which is a
hardcoded value in the kernel and not configurable), which
is longer than 2*RTO, so the second retransmission triggers
first.

The root cause of this problem is that delayed ACK is
very risky in the presence of RTO, because after RTO the
sender can only send one packet. Ideally, the receiver needs
a way to identify retransmissions (e.g., the sender marks the
retransmitted packets), so it does not delay the ACK for them.
As a workaround today, reducing the delayed ACK timeout
can mitigate the problem.

2.2 Butterfly Effect

While deterministic TCP replay is a powerful tool for diag-
nosing TCP performance problems, it is not easy to ensure
determinism. For the above example, if we simply replay
with the same socket calls at the same times as the runtime,
we cannot reproduce the problem.! Figure 2 shows that when
we replay 100 times, the short flow always has way less
than 49 ms flow completion times (FCT). In the production

'We synchronize the clocks among the senders and receivers to 100s of
nanoseconds precision by PTP (Precision Time Protocol [2]).

0 10 20 30 40 50 60 70 80 90
Run #

Figure 2: FCT of the short flow across 100 attempts of replay with
socket calls. The blue dashed-line is 49 ms.

where there are more flows and more dynamic traffic than our
testbed, it is more difficult to reproduce the same problem.

The key challenge for the deterministic replay is the
butterfly effect. Packet sending times at hosts often have
microsecond-level variation between the replay and the run-
time. This is caused by the inherent host non-determinisms,
such as the clock drift, context switching, kernel scheduling,
and cache state [42].

The small variation gets amplified by the butterfly effect—
the closed loop interactions between switches and TCP. A
small packet sending time variation may change the order of
packets from different hosts at a switch, which causes switch
action variations—the switch may drop or mark ECN on a
different set of packets. This starts the butterfly effect in the
closed loop between switches and TCP: Switch action vari-
ations cause TCP behavior variations (e.g., TCP changing
congestion window size differently). TCP behavior variations
change its flow sending rates, which affect the queue lengths
at all the switches the flow traverses ever since and lead to
more switch action variations. Such a chain reaction between
switches and TCP affects more and more flows all over the
network in multiple rounds.

One may expect that reducing the sending time variation
(e.g., better clock synchronization, more deterministic packet
processing time) can improve the replay accuracy. However,
our experiment shows that even a nanosecond of variation
can lead to completely different packet-level behaviors.

We run an ns3 simulation [15] to control the sending time
variation. We use the same topology and traffic as in §2.1. For
the runtime, we set the host packet processing delay to 10 us,
the same as what we measure in the testbed. The short flow
incurs a long flow completion time because of the correlated
RTO and delayed ACK. We then replay the experiment with
the same socket calls and timings. To simulate different levels
of sending time variation, we simulate a normal distribution
of host packet processing delay with the same mean delay of
10 us but with a standard deviation ranging from 0 to 1000 ns.
For each level, we replay 100 times.

Figure 3 shows the percentage of replays that reproduce
the correlated RTO and ACK delay on the short flow. Once
the sending time variation exceeds zero, even just 1 ns, the
probability of reproducing the same problem suddenly drops.

This is because with a non-zero sending time variation,
there is always a chance that a switch takes different actions
on a packet between the runtime and the replay. Smaller
timing variation can only delay the appearance of different ac-

800
700

& 100 & 200 Ins =™ 100ns % 600
% 80 ¥ |5 rhn 10ns = =" 1000ns £ 500
< g I 2 400
P 60 =] , v, £ 300 L N
b Q 00 . f S,] - original sending time
3 40 [' VoGt L g 200 = gap-based sampling *
o 0 s S %]
o 20 2 i ‘/V\ l/NVi(f \’/'\/ J\;[100 rate-based sampling ,
c 6’, 50 " LT 0
o 0) 0 100 200 300 400 500
0 | | | | J
0 : 101001000 0 10 20 30 40 50 60 Packet number
Host Packet Delay Std-dev (ns) Time (ms)

Figure 3: The rate of reproducing the corre- Figure 4: The time series of queue length

lated RTO and ACK delay. difference.

tions, but cannot prevent it. Once the switch takes a different
action, the butterfly effect starts, causing a chain reaction of
changing sending rates and queue lengths. The chain reaction
persists regardless of the level of the sending time variation.

Figure 4 illustrates this. We show the time series of queue
length difference between runtime and replay experienced
by each packet. For each level of sending time variation, we
show a typical one of the 100 replays?. For 1 ns variations,
although the queue length difference starts later than with
higher variations, once the difference starts at 12 ms, it never
goes down to 0.

This result indicates that we cannot simply rely on reducing
the sending time variation. This motivates our DETER design,
which decouples the TCP and the network so that switch
action variations cannot affect TCP.

3 DETER Design

In this section, we discuss DETER design with four key ideas:
first, we break the butterfly effect by replaying individual
TCP connections separately and record TCP’s interactions
with the application and the network. Second, to determin-
istically replay each TCP connection, we record all the non-
determinisms that happen in the interactions between TCP
and the kernel. Third, we introduce a rate-based sampling
solution to reduce the overhead of recoding packet sending
times. Finally, with the packet traces of all the connections,
we show how to replay switch queuing behaviors.

3.1 Breaking the Butterfly Effect

We break the closed loop between TCP and the switches by
replaying individual connections separately. We identify the
minimal set of signals that capture all the interactions of a
TCP connection with the application and the network.

TCP interacts with applications through socket calls. DE-
TER captures all socket calls and its input arguments such as
the number of read/recv bytes and socket flags.

2 Although we cannot show all 100 replays here, we inspect each of them,
and they have similar trend.

Figure 5: Inference error of sampling ap-
proaches. (The lines indicate the inferred
sending time of each packet. The end points
of the lines are sampled sending times.)

TCP interacts with the network through packets. TCP
sends packets into the network and receives packets from the
network. We do not need to record most incoming packets
because we replay the sender and the receiver of a connection
together and they can automatically generate packets for each
other. We only need to record how the switches inside the
network change the packet stream such as dropping packets
or marking them with ECN bits. At the receiver, we detect
packet drops by checking if the IP_ID fields are continuous
and ECN by checking the ECN bits (see Section 4 for details)
and record them there.

Note that for a TCP connection, it does not matter which
switch drops or marks the packets. Only the final changes
to the packets matter. So in the replay, we no longer need
switches because their actions to packets have been recorded
and we can just replay them. Since the switch actions are
deterministically replayed, we break the butterfly effect.

A TCP connection interacts with other connections when
they share switch resources in the network and cause different
switch actions®. Since we recorded switch actions, we also
isolate the interactions among TCP connections.

In summary, in the runtime, we record socket calls and
switch changes to packets at all the hosts. Users can specify
which connections to replay. To replay a connection, we set up
a simple two-host testbed that runs as a sender and a receiver
for every single connection without involving any switches.
We run a socket call generator to generate socket calls at
the right time and run a packet corrector to inject actions on
packets before they arrive at the TCP sender and receiver.
We can easily parallelize the replay of multiple connections
because we replay each connection independently.

3.2 Handling Non-determinisms in the Kernel

The next question is how to deterministically replay a sin-
gle TCP connection. It is complex to replay a general sys-
tem [49, 27], which requires record and replay lots of non-
determinisms. We use the knowledge of TCP to design a
customized replay for TCP, which is lightweight. Specifically,
besides the interaction with the application and the network,

3We discussion TCP connections on the same host in the next subsection.

TCP also has three non-determinisms from interacting with
the kernel: the kernel may call TCP handler functions, the
TCP may read kernel variables, and there is thread scheduling.
(1) TCP handler function calls from kernel: The kernel
may call some TCP handler functions. For example, the OS
timer may call TCP timeout handler. The kernel may also call
resume transmission handler, which sends more packets in
the send buffer. We need to record them.

(2) Reading kernel variables: TCP reads a few variables
that are updated by other kernel programs (or hardware), such
as memory pressure indicator, the jiffies (a low-resolution
clock), the mstamp (a microsecond-resolution clock), and the
send queue byte count. We should record the return value of
each read.

(3) Thread scheduling: TCP works in a multi-threaded
environment. Different threads, such as applications, NIC
interrupts, and OS timers, access the shared socket variables
by calling TCP handler functions. For example, an application
thread calls a socket call handler to copy data into the socket
send buffer; a NIC interrupt may call the TCP receive packet
handler to frees up some space of the send buffer; OS timer
may call the timeout handler to send a pending packet in the
send buffer. It is important to ensure the order of different
threads accessing the same variable. Fortunately, TCP uses a
single socket lock to ensure that only one thread can access all
the shared variables at a time. Thus, we just record the order
of lock acquisition of different threads by giving a sequence
number for each lock acquisition.

In the replay, we run the same TCP stack with the same
TCP configuration as the runtime. In addition to the socket
call generator and the packet corrector, we also generate
handler calls from the kernel based on the recorded logs. We
feed in the recorded kernel variables when TCP reads them.
We also enforce the order of lock acquisition of different
threads (see §4 for more details).

3.3 Sampling Packet Sending Times

So far we have ensured the ordering of TCP behaviors (e.g.,
the sequence of packets, state updates, loss detections, time-
outs). One remaining question is how to replay packet send-
ing times accurately. Recording the sending times for all the
packets takes high storage overhead. To reduce the overhead,
we choose to sample packets, record the sending times for
sampled packets, and infer the times for the other packets.
The question is how to select the samples in real-time while
bounding the inference error within a given threshold A.
Strawman solution: gap-based sampling. TCP usually
sends packets in bursts. So intuitively for each burst, we
can keep the sending time of the first packet and the burst
length. Assuming all the packets in the same burst follow the
same sending rate, we can then infer the sending times of all
the unsampled packets. We can identify packets in the same
bursts if their interarrival time is below a threshold.

We perform a simple experiment to show that this approach
has an unbounded error. We send two flows from two senders
through a shared 10 Gbps link. The second flow starts 500us
after the first flow. Figure 5 shows the packet sending time
series of the first flow. All the packets from the 96-th to the
499-th are in the same burst (i.e., no gap of packet sending
time), but the rate changes. As a result, the inferred sending
time of the 323-th packet is 38 us later than the actual time.
Our solution: Rate-based sampling. Gap-based sampling
fails to sample packets when the packet rate changes. There-
fore, instead of recording the burst length, we propose to
record the packet rate. When the inferred sending time based
on the recorded packet rate is wrong (i.e., the difference with
the actual time is above the threshold t4), we sample a new
packet. We set ¢/ to 5 us by default.

Specifically, in the runtime, we follow Algorithm 1. s
is the previous sampled packet and p is the new packet.
Given the sending time of s (s.time) and a packet rate
r, we can infer the sending time of p (p.time). In re-
verse, to ensure that our inferred sending time of p falls
in the range of [p.time — th, p.time + th], we must ensure
our recorded packet rate r falls in the range of p_range =
| pindes sinder,pidesinder | (L ine 2). Thus, we compare
the recorded rate range rec_range and p_range. If they
overlap, it means we can find a rate, in the intersection of
rec_range and p_range, that can be used to infer a bounded
sending time for both p and all the previous packets between s
and p. Thus, we do not need to sample p (Line 4). Otherwise,
if the two ranges do not overlap, we sample p, record a rate
in rec_range, and reset rec_range (Line 6-7).

DETER can generate the full packet trace for each connec-
tion, by combining the recorded (inferred) sending times with
the packets generated by the replay of TCP execution.

Algorithm 1 DETER Sampling sending time. p.index is its index
within its 5-tuple flow, and p.time is its sending time.

procedure SAMPLE(p: a new packet)
__ 1 p.index—s.index p.index—s.index
p_range = [p4time+t/17s.time’ p.timefthfs.time]

1:

2

3 if p_rangeNrec_range # 0 then
4: rec_range = p_range N rec_range
5

6

7

else
record(s.index, s.time, rec_range.mid)
s = p; rec_range = [—oo, 0|

3.4 Replaying Switch Queues

Because we can get all the packets, their sizes, and sending
times for each connection in the network (§3.2 and §3.3),
we can use them to replay switch queues in simulators (e.g.,
ns3 [15]) by pushing all the packets at the right time into the
network. Replaying switch queues can help us understand
the interaction between different connections at the switches
(e.g., which flows contend for the queues).

The simulator needs the same topology and switch data
plane (e.g., forwarding tables, buffer sharing policies, switch-
ing delay, and link propagation delay) as the runtime. Today,
many vendors build high-fidelity simulators for their own
devices [5, 21, 11]. One can also choose to replay switch
queues in a physical network if available. Replaying switch
queues also requires that the hosts during the runtime have
microsecond-level synchronization, so that the relative packet
sending time error across hosts are small. Clock synchroniza-
tion in data centers is moving towards sub-microseconds level
[2, 22, 34].

Replaying the exact queueing behavior is both impractical
and unnecessary. It requires recording the exact order of
enqueue and dequeue, which is too heavy for the runtime. On
the other hand, it is often good enough to show the contending
flows and their occupancies with high accuracy.

Thus, we opt for a simple design that can achieve high
accuracy. We simply push all the packets into the network
at the right time. It can achieve high accuracy because the
switch queue occupancy is a continuous function with respect
to packet sending times. Since the difference in packet send-
ing times between the runtime and the replay is bounded,
the difference of switch queue occupancy is also bounded.
Specifically, suppose a packet’s arrival time at a port differs
by k packets transmission time, and the fan-in of that port is
f, the queue difference is at most (f — 1)k. k is small because
our sampling bounds the sending time error to 5 us, and there
are limited hops to amplify it. f is also small because the
destinations of flows traversing a switch are random®. Even if
f is large, such as during incast, the queue occupancy is also
large, so the difference is a small fraction of the queue.

However, one exception is packet drops. Because drop-
ping packets or not is a binary decision (not a continuous
function), even if a microsecond level difference can cause
different drops. Specifically, a runtime dropped packet may
get through, which we call a false-accept. It also occupies
some free space in the queue, leaving less space for later
packets that should be in the queue, so one of the later packets
may get mistakenly dropped, which we call a false-drop.

We propose to reduce the probability of false-accepts and
false-drops by letting the hosts tag should-be-dropped packets.
In this way, we ensure that the switches only drop packets
with tags (for eliminating false-accept) and always deliver
packets without tags (for eliminating false-drop).

The key challenge is how to know which switch to drop
the tagged packets. Since the switch queue occupancy is a
continuous function, it has bounded differences with respect
to the sending time difference. We propose to decide whether
to drop packets at a switch based on the switch’s queue oc-
cupancy upon packet arrivals. That is, when a should-be-
dropped packet arrives at a switch, and the queue occupancy
is above a threshold (e.g., > queue max length - 5 MTU), the

“4In theory, the fan-in is within 4 for 99.7% of the time for a 64-port switch
with random traffic.

Type Data recorded

Interaction w/ network losses, ECN, reordering

Interaction w/ applications | socket calls

Handler call from kernel Timeout handler, resume transmission han-
dler, packet receive handler

Infrequently updated variables, e.g., jiffies,
memory pressure indicator

Influence of frequently updated variables
e.g., RACK loss detection

sequence number of lock acquisitions for
diff. threads

Sampled packet sending time (time, index,
rate)

Kernel variables

Order of lock acquisitions

Timestamp samples

Table 1: Runtime recorded data.

switch drops the packet.

When a packet only experiences one congested switch on
its path, which is the most common case, our solution works
well. In the rare case when there are multiple congestion
spots on the path, DETER may drop the packet at a wrong
location. Our evaluation shows that this heuristic reduces the
error of dropping packets® from 58.3% to 2.87%.

4 Implementation

In this section, we discuss the implementation details of DE-
TER. We just need 139 extra lines of code in the Linux kernel.
Then we accomplish the record and replay with two kernel
modules and two userspace programs (3000 lines of C and
C++ code in total).

Runtime recording. For each connection, we first record
its configurations, and then record the data listed in Table 1
during its runtime. We note that the configurations of con-
nections on the same server are mostly the same, so we only
record the parameters that differ from the default values. Our
current prototype starts the recording after the connection is
successfully built®. We now discuss the runtime recording.
Interaction with the network: This includes packet drops,
ECN, and packet reordering. In our design, we use the IP_ID
field to detect packet drops: Linux sends packets of each
connection with consecutive IP_ID values, so the receiver
can check if there are gaps in the series of incoming packets
to detect drops (Similarly, the sender can detect drops in the
incoming ACKs)’. On other platforms that do not have the
consecutive IP_ID feature, we use LossRadar[44] to detect
drops, which only takes O(#loss) space. The host also checks
the ECN of the IP header of each incoming packet, and record

3Percentage of false-accept, false-drop, and drop at wrong location in all
drops.

Record and replay for connection setup is not very different. The only
difference is detecting the drop of the first packet (SYN and SYN-ACK).
This can be solved by recording the IP_ID of all SYN packets at both sender
and receiver, which just adds 8 bytes for each connection.

"This is different from TCP’s drop detection: TCP sender does not
distinguish drop of a data packet or its ACK. We must distinguish them
because both the sender and the receiver must replay accurately.

1 bit (CE) for it. Sometimes there may be packet reordering,
which we can detect also using the IP_ID field.

Recording the interactions with the network is lightweight.
In data centers, the packet drop rate is just 107> to 10~*
[51, 36]. For ECN we just need 1 bit per packet. Reordering
is rare, so it does not cost much. We instrument the TCP
receive packet handler to record them.

Socket calls from the application: We hook the TCP socket
call handler functions to record the #bytes and flag, so that
we do not need to change the application.

We can reduce the storage overhead of socket calls a lot.

We find that there are often identical socket calls. For exam-
ple, distributed files systems break large files into fixed-size
chunks, so most of the send and receive sizes are the same.
Thus, we store all the common patterns of socket calls (the
common #bytes and flag pairs) for different applications, and
only record the pattern numbers in the runtime. DETER asso-
ciates connections to applications via their TCP port numbers.
Other TCP handler calls from the kernel: ~We hook the
timeout handlers and the resume transmission handler, and
record them when they get called.
Kernel variables read by TCP: We record the memory pres-
sure indicator and jiffies with low overhead because their
values change infrequently. The memory pressure indicator is
very rarely set, and the jiffies increments by 1 every 4 ms. So
we just maintain the values of the last read and only record
the reads that return a new value.

The mstamp and the send queue byte count are updated
frequently. We reduce the overhead by recording their in-
fluences instead of their values. Specifically, the variables
influence the TCP executions by serving as the metrics of
if-conditions in TCP. For example, TCP uses the mstamp to
detect losses (RACK [16]). We just need to record the loss
detection result, rather than the actual value of the clock. We
identify and record all the if-conditions they affect (1 bit for
each), which relates to loss detection, cwnd reset, TCP seg-
mentation offload, and TCP small queue. Moreover, most of
the if-conditions have a dominant result (e.g., loss detection
mostly return false), so we reduce the overhead further by
only recording when they have the uncommon result.

We use a special reader function to record these values.
For example, in the TCP code, we replace a=jiffies with
a=reader (jiffies) to record the value of jiffies and re-
place if (mstamp>b) with if (reader(mstamp>b)) to
record the influence of mstamp. The reader function simply
records the value passed to it and returns this value.

Lock acquisition: We instrument TCP’s lock acquisition
function to record which thread calls this function, so we
know the order of lock acquisition by different threads. We
also optimize the overhead. Specifically, one thread may
acquire the lock many times consecutively. For example,
NIC interrupt acquires one lock for each incoming packet, so
there are often tens of lock acquisition by NIC interrupt in
a row. Therefore, we record the number of consecutive lock

Host 2
sl Socket call generator

Haﬁdler TCP

functions (—facauir fock

TCP hndler caller h
Sequencer
Packet corrector

NIC NIC

— Func call
—— Cable

DETER replay modules
- => R/W to DETER variables

Figure 6: Replay implementation in DETER

acquisitions, instead of recording them individually.
Sampled sending times: To get the most accurate timestamps,
we sample and record the sending times in the NIC driver,
just before TCP pushes packets into the NIC ring buffer.
Replay. We now discuss the replay.

Replay TCP stacks. Figure 6 shows the replay setup. We
implement the packet corrector with NetFilter [7]. It injects
drops and CE bits to the incoming packets®. We also enforce
the reordering here.

To replay the socket calls, we implement a socket call
generator in the user space to inject socket calls from the
applications according to the log.

We also implement a TCP handler caller, which is a kernel
thread that calls TCP handler functions according to the log.
The handler functions include the packet receive handler, the
timeout handler, and the resume transmission handler. When
calling the packet receive handler, it gets a packet from the
packet corrector as an argument to the handler.

To enforce the order of different threads acquiring the lock,
we implement a sequencer. It knows the order of different
threads acquiring the lock based on the log. We instrument
the lock acquisition function to check with the sequencer
before it actually acquires the lock. If the current thread is
not the next to acquire the lock, it waits for other threads until
itself is the next to acquire the lock.

We reuse the reader function that we introduced before to
feed the recorded kernel variables or their influences. During
the replay, the reader function reads the log and return the
corresponding value.

Replay sending and receiving timestamps. We only record
packet sending times for replay. We then infer receiving times
from sending times: for the received packet which triggers
a new packet to send, we can estimate its receiving time
as the sending time of the new packet minus the average
packet processing time, which is measured separately. For the
received packet that does not trigger a new packet, its gap with
the previous received packet is close to their sending time gap,

8We require no packet drops before packets entering the packet corrector,
so we must make sure no packets get unexpectedly dropped in the queues on
the hosts (e.g., NIC ring buffer, softirq queue, qdisc) during the replay. We
can set the sizes of these queues large enough to avoid unexpected drops.

because they experience similar network conditions. Note
that only the sending times affect the switch queue replay, but
not the receiving times.

Switch queue replay. We run Precision Time Protocol [2]
in our testbed. We implement the switch queue replay in
both testbed and simulation. For the testbed, we implement
a DPDK packet generator that reads the packet trace, tags
packets, and sends packets to the NIC at the right time. We
use a NetFPGA-based switch to implement the drop accuracy
improvement (§3.4). It is also implementable in P4 [23].
We also implement the replay in a packet-level simulation in
ns3 [15], with the same topology, link delay and bandwidth,
switch queueing algorithm, and routing state as the testbed.

5 Evaluation

In this section, we demonstrate the benefits of deterministic
replay in DETER by showing how we diagnose TCP perfor-
mance problems in a Spark application with 6.2K connections,
the tail latency problem in an empirical web search workload
with incasts, and example problems in a local testbed.

We also measure the CPU and storage overhead of DETER
recording and the accuracy of DETER replay. Our evaluation
shows that DETER only uses 2.1~3.1% compared to fully
compressed packet traces and requires 0.094%-1.49% of CPU
overhead. DETER also fully replays the sequences of packets
at hosts and replays switch queues with lower than 1 MTU
differences on average.

5.1 Diagnosis in Spark

Evaluation setting. We run a TeraSort job in Spark [24]
that sorts 200 GB data on 20 servers connected with 10Gbps
network in Amazon EC2 [20]. We use 4 executors (i.e., 4
cores) and 20GB memory on each server. The NIC MTU
is 1500B. We enable TCP segmentation offload, and disable
generic receive offload’. We run DETER on all servers to
record data for all connections during the runtime and also run
Tcpdump [18] to collect the packet traces as the groundtruth.
Replay accuracy. We use DETER to replay each connection
and run Tcpdump during the replay. We compare the packet
traces we collected during runtime and replay. The sequence
of packets are exactly the same (we have a one-to-one map-
ping of TCP headers). The sending time differences between
packets are lower than 5 us.

Diagnosis. We can use DETER to identify and diagnose
tail latency problem in Spark. We define each flow as all
the packets belonging to the same Spark message. Spark
usually sends one large message with multiple socket calls.
So if a socket call starts after all the previous packets are
acknowledged, we treat the socket call as a new message.
Otherwise, we treat it as part of the previous message.

9We have not implemented replay for it, but it is not hard (§7).

We find that the tail latency of flows from HDFS are mostly
caused by receiver limit, because their receive windows fre-
quently reach zero.

The 99.9 percentile latency for flows between Spark work-
ers experience a variety of problems as summarized in Table
2. For flows shorter than 1MB, their tail latency are mostly
caused by packet drops (RTO or fast retransmission (FR)). For
flows longer than 10MB, their tail latency are mostly caused
by receive window frequently reaching zero (Rwnd=0).

The flows in the range [100KB,1MB] are of particular
interests, because most of their tail latencies (18 out of 24)
are caused by multiple delayed ACKs. We show the sender
side packet trace for one of them in Figure 7; others have
similar patterns. The sender frequently gets blocked after
sending a burst of packets, until around 40 ms later when
the ACK comes back. Such burst-40ms-ACK pattern repeats
multiple times and causes excessive delay. This is out of our
expectation, because the receiver should acknowledge every
two data packets.

So we use DETER to replay again, and use TCP Probe
to print the variables that decide whether to delay the ACK.
We find that TCP explicitly delays the ACK because the free
space in the receive buffer is shrinking. This suggests that
the root cause is the application not reading the data in the
receive buffer in time. So we replay again and confirms that
the receiver application is slow in issuing receive socket calls.
Our guess is that the application is busy with processing data,
so the CPU is the bottleneck in this case.

DETER helps us to effectively diagnose the problems

caused by the network (e.g., RTO, fast retransmission). In
addition, it also helps us identify problems caused by applica-
tions. This is helpful because in data centers it is often unclear
where the performance bottleneck is, and blaming the net-
work is often the first reaction [28]. Unlike previous systems
that infer the bottleneck [58, 28], DETER helps us quantify
the duration of different bottlenecks without instrumenting
the applications.
Overhead. DETER records a total of 200.6 MB data in the
runtime. For comparison, Tcpdump uses 22.4 GB to record
only the IP and TCP headers and timestamps and 6.5 GB
after applying the state-of-the-art compression solution [38].
DETER storage is only 3.1% of compressed packet traces.

If we keep using DETER to monitor a data center that
continuously runs such Spark jobs, DETER storage overhead
translates to 2.8 GB/host/day. We can delete the data every
day if we do not see performance problems.

We also use Linux perf [8] to evaluate the CPU overhead
of DETER recording. DETER uses 0.094% of total CPU time.

5.2 Diagnosis in Data Center Workload

Evaluation setting. We now generate TCP tail latency prob-
lems using empirical workloads modeled after traffic patterns
that have been observed in production datacenters. We run

Table 2: Reasons for 99.9-th percentile latency
for flows of different sizes in Spark.

a client-server RPC call software [6] in the same 20-node
Amazon EC2 testbed. The clients set up a persistent TCP
connection to each server, and request flows according to
Poisson process from a random server. We set the flow sizes
following the distribution observed in a production data cen-
ter running web search applications [26]. We also add incast
traffic pattern, by having the client simultaneously request
10 random servers, so the 10 servers respond synchronously
causing incast. We set the average request rate to have an 80%
network load, and 20% of the load is incast traffic. We gener-
ate a total of 280K requests over 380 persistent connections.
All 20 nodes run both client and server.

Similar to the Spark program, we use Tcpdump to collect
traces at both the runtime and the replay and show that DETER
can provide deterministic replay for all the connections.
Diagnosing tail latency. In Table 3, we classifies the root
causes into five categories: congestion (i.e., low throughput),
the fast retransmission happens very late (late FR), ACK
drops (so the sender gets stuck), tail drops (so the packets at
the end of a flow get dropped), and RTO.

We analyze the short flows (100KB-1MB) with latency
above 99.9-th percentile as an example. At the 99.9-th per-
centile, flows experience 173.8 slow down of completion time
compared to the case of running the flow alone. We make the
following interesting observations:

RTO is not the main root cause of tail latency. A widely
discussed reason for tail latency is RTO [29, 54]. But actually
RTO is rare in this experiment. The reason is that when there
are multiple requests in the same connection, later requests
can help recover the packet losses of previous requests, so
TCP loss recovery is effective in this scenario.

Fast retransmission (FR) is delayed for 10s of milliseconds.
When these flows experience loss, the senders start FR after
10s of duplicate ACKs (dupACKs). This is unexpected be-
cause the normal threshold for FR is 3 dupACKs. And this
is bad because short flows usually do not have so many du-
PACK:s. In fact, most (22 out of 27) of these flows do not have
enough dupACKs on their own; their FR starts 10s of mil-
liseconds later when another request in the same connection
starts and triggers more dupACKs.

With DETER, we can replay repeatedly and gain more
insight into the problem. To understand why it requires so
many dupACKs for FR, we replay the connection of the flow
that experiences late FR with the highest slow down. We
use TCP Probe [13] to print out the threshold for dupACKs
(tp->reordering) on every ACK'’s arrival during the replay.

n 6 T
Flow size (MB) [<0.1[[0.1, 1]][1, 10][>10 3?2:86 Burst d0ms o000 Flow size (MB)[<0.1[0.L.1][[1.10][>10
RTO 8 3 4 0 4 3x10 i ‘ Congestion | 149 | 35 25 2
FR 74 0 0 0 % 2.5x] 02 . \ Late FR 29 | 27 0 0
Delayed ACK | 0 0 I8 [0 < lgx:gé ACK for the burst ACK drops | 0 2 0 |0
Rwnd=0 0] 0 T |1 S0 Seq - Tail drops | 4 | 1 0 |0
Slowstart._ | 0 | 0 I [0 500000 Ak v RTO 2 [1 2 [0

00 200 400 600 800

T
Figure 7: A flow WIIE: én;;llyed ACKs. for flows of different sizes in data center workload.

Table 3: Reasons for 99.9-th percentile latency

We find that this threshold starts at 3, but later increases (and
never decreases), so when the flow that experience late FR
arrive, the threshold is 45. We search in the TCP code, and
find the threshold only increases when TCP detects reordering.
So we replay again and print out the ACKs when the threshold
increases, and find that they do reflect reordering.

A quick fix is to set the upper bound of this threshold
(net.ipv4.tcp_max_reordering) lower, but it risks spurious
retransmission in the presence of reordering. A potential
optimization to TCP may be regularly reducing the threshold.
Overhead DETER records a total of 103.8 MB, which is
2.1% of compressed packet traces. (Tcpdump records 16.8
GB, or 4.9 GB with compression.)

The CPU overhead is 1.49%. The overhead is higher than
in Spark, because the client-server software only uses CPU
to send and receive data, without any data processing. In
fact, it spends 99.78% of its CPU time in the networking
stack (including DETER). So 1.49% is very close to the lower
bound of DETER CPU overhead.

5.3 Diagnosing RTO in a Testbed

RTO usually has a large impact on the latency. However,
there are many different causes of RTO, and often involves
different parameters. In §2.1 we have shown one case. Here
we show two other causes for RTO that we see in our testbed.
In all cases, TCP counters can only be the first step—knowing
that timeouts and packet losses happen. But it is very hard to
realize the relationship between the timeout and other events.
With DETER, we can replay the connection to get the packet
traces and trace the TCP execution to dig out the root cause.
Evaluation setting. We use 3 hosts connected through a
single switch via 10 Gbps links. We pick two of the hosts as
senders and the rest one as the receiver. Each of the senders
sends one long flow (10 MB) to the receiver. One of the
senders also sends a short flow (10 KB) to the receiver.

Root cause 1: Not enough dupACKs. In this case, the
short flow experiences RTO. We use DETER to replay the
connections and capture the packet trace. The trace shows
that the short flow sends 7 packets in the first round, and the
5-th packet gets dropped. Thus, although the 6-th and the
7-th packets trigger dupACKSs, the number of dupACKs is not
enough to trigger fast retransmission.

Root cause 2: Setting large TCP receive buffer size. The
receive buffer size is a frequently tuned parameter for net-
works with different bandwidth-delay products. For example,

an inter-data center connection with 100ms RTT and 1Gbps
bandwidth need 12.5MB buffer size. Unfortunately, a large
receive buffer can cause RTO issues. Here we show the diag-
nosis in an example with 10MB receive buffer.

We first replay and capture the packet trace. However, the
time series of data packets and ACK packets shows a very
different scenario. After a packet loss, there are more than
3 dupACKs, but the sender does not fast retransmits the lost
packet. This is unexpected because just 3 dupACKs should
trigger fast retransmission.

We first suspect that this may be the late FR case that
we show in §5.2, so we replay again and print out dupACK
threshold. But it shows that the threshold is 3.

To dig out the root cause, we replay again, and use Ftrace
to get the function call graph of handling each ACK. Surpris-
ingly, We find that TCP does not go to the dupACK branch.
This means TCP even does not treat them as dupACKs. With
the surprise in mind, we replay again and use TCP Probe to
print the variables that are used to classify ACKs as dupli-
cates. The flag variable reveals the reason: TCP does not
treat the ACKs as duplicate because the flag’s WIN_UPDATE
bit is set [9]. This means each of these ACKSs carries a differ-
ent window size. We confirm this in the packet trace: each
ACK carries a larger window size.

The direct cause for this problem is that the receive buffer
size is very large. The receive window starts with a small
size, and increases two MSS per received data packet until
reaching configured receive buffer size. Thus, the window
size keeps growing throughout the lifetime of this connection.
However, this also suggests a potential optimization to TCP
that it should have a smarter classification for dupACKs.

5.4 Evaluating Switch Queue Replay

Now we evaluate the accuracy of replaying switch queues
in our testbed and simulation. We first run traffic in our
testbed, and replay the queue to evaluate the accuracy. Then
to understand how the switch queue replay works under more
switches and more congestions, we run empirical traffic in a
large scale simulation, and replay the queues.

5.4.1 Evaluation with Testbed

Evaluation setting: The testbed comprises 3 hosts. To get
the groundtruth of the queue content, we use a NetFPGA
switch and program it to send out the queue content through
the unused port. The switch has a total of 393 KB buffer
shared across 3 ports'?. The MTU is 1500 B. The host clocks
are synchronized with 100s of nanoseconds precision by Pre-
cision Time Protocol [2].

Because congestion is the most challenging scenario to
replay, we set traffic to have severe congestion. We use 2
hosts as senders and the rest one as a receiver. Each of the
two senders generates 2 long flows (10 MB each) to the

10%We use the commonly used dynamic threshold [31] with o = 4.

receiver simultaneously. Each sender also generates 4 short
flows (10 KB each) to the receiver, one every 5 ms. So there
are a total of 4 long flows and 8 short flows.

During the runtime, we use DETER to collect data, and

also collect the content of the congested queue. Then we first
replay each connection to get the packet trace, and replay the
queue. We replay the queue in both the original testbed, and
in a simulation. The simulation has the same topology, and
simulates the same link throughput, latency, and buffer setting
as the NetFPGA switch.
Accuracy: The metric we use is queue content difference:
the difference between the runtime queue g, and the re-
play queue g,., that each packet sees. Formally, we define
qdiff = ¥ reqnnlarep | I -5i2€run — f-5izerep|, Where f.sizenn
means the bytes of flow f in the queue during the runtime
and f.sizey,) is for the replay.

On average the queue content difference is 0.57 MTU in
the testbed, and 1.0 MTU in the simulation. On the 99-th
percentile, the difference is 4.83 MTU in the testbed, and
3.85 MTU in the simulation, both of which are very low com-
pared to the buffer size. Replay in the testbed has a slightly
higher tail difference because timing variations (e.g., thread
scheduling) exist in the testbed, but not in the simulation.

5.4.2 Evaluation in Large Scale Simulation

Our testbed evaluation shows that the replay is effective for
one switch. In production, there are more hosts, multiple
layers of switches, and more congestions across the switches.
So we use simulation to evaluate a larger scale network.
Evaluation setting: We run the simulation in ns3 [15], with
320 switches and 1024 hosts connected through a K=16 Fat-
Tree with 10 Gbps links. Each switch has 2 MB buffer, shared
by all its 16 ports'!. To simulate the clock synchronization
error, we add a delta to each host’s clock, with a uniform
distribution between 0 and 5 us'?.

The traffic includes both empirical background traffic that
follows the flow size distribution of a web search workload
[26], and incast traffic. The source and the destination of each
background flow are chosen uniformly random. The flow
arrival rate follows a Poisson process, and we vary the flow
arrival rate to achieve different levels of traffic load, from
10% to 80%. We also generate the incast traffic by having
the client simultaneously requests 40 servers, each of which
sends back 250 KB response (10 MB total response size). We
generate 2400 incast per-second.

To understand how the sampling affects the accuracy, we
sample the sending times with different threshold of error: 2
us, 5 us, and 10 us. We then replay the queues.

Accuracy: Figure 8 shows the queue content difference of
all queues in the network. The difference increases mildly

For the buffer sharing policy, we use the commonly used dynamic
threshold [31] with @ = 4.

I2PTP in LAN can achieve sub-microsecond accuracy, and under 3.2 us in
WAN most of the time [12]. More advanced clock synchronizations [41, 34]
guarantee sub-microsecond accuracy. We choose 5 us to be conservative.

25
10us avg —+—

10us 99pct = + -
Sus avg ——

Sus 99pct = X% -
2us avg

2us 99pct

20 |-

- -
-
-

Queue Content Diff (MTU)

Traffic Load (%)

Figure 8: The queue content differences of replay in simulation.

with higher load, both on average and at the 99-th percentile.
For example, with 5 us threshold of error, at 30% load, the
maximum load of most data centers in practice [50, 14], the
differences are 0.78 MTU on average and 5.7 MTU at 99 per-
centile. At 80% load, an extremely high load, the differences
are 1.7 MTU on average and 9.7 MTU at the tail. It also
shows that a 5 us threshold achieves relatively good accuracy:
it only increases less than 0.3 MTU (on average) and less than
1.8 MTU (at tail) difference compared to 2 us.

We also compare the packet drop error with and with-

out the drop accuracy improvement. The drop error is

#false_accept+#false_drop+#drop_wrong_location .
#packets_dropped_in_either_runtime_or_):eplqy Our evaluation

shows that the drop error reduces significantly. For example,

for 5 us sampling threshold at 30% load, the error reduces
from 58.3% to 2.87%.

The drop error is low under various loads, from 2.52% at
the 10% load, to 3.81% at the 80% load. There is no false-
drop, as the simulation can avoid this (§3.4). Most errors
are false-accepts. Only less than 0.37% of the drops show
up at wrong locations, which means we can trust the drops
in the replay with high confidence, because only 0.37% of
them give wrong locations. Since 80% load is extremely high
and we also added incast traffic, we believe most data centers
would not stress the network at this level, so we believe the
drop error rate is low in general.

5.4.3 Diagnosing RTO Using Queue Information
Sometimes RTO can be caused by the queuing mechanisms
of switches. We run the traffic in a 4 host (A, B, C, D)
testbed. B and C respectively send 5 long flows (500MB
each) to A. In the middle of the long flow transmission, A,
C and D respectively send 5 short flows (100KB each) to B
simultaneously. Two of the long flows from C to A experience
RTO. Using DETER to replay them, we find that they both
drop a whole window of packets, at the same time. But this
time we cannot find any problem in the TCP stack. So we
use the packet traces for all the connections to replay switch
queues in an ns3 simulator.

During the replay, we collect all the enqueue and drop
events at the switch. The packets are dropped at queue 0 of
the switch. Figure 9 shows the length and the cumulative drop
count of queue 0. At around 10 ms, there is a sudden increase

350 180

o
= 300 160 g
¥4 250 140 S
z + 120 g
5 200 100 ©
2 150 so 2
5
2 100 60 &
a queue 0 len 40 g
50 queue 0 drop — 20 =
queue 1 i ©

0 2 4 6 8 10 12 14

Time (ms)

Figure 9: The lengths of two queues that share the buffer.

in drops. Unexpectedly, the queue length is decreasing at
the same time. We suspect that the switch buffer sharing
[31] causes this problem, because the threshold of a queue
decreases when the total buffer utilization of the switch grows.
So we replay again and monitor other queues of the switch.
We find that a burst of packets builds up queue 1 at the time
of queue 0 drops packets. This confirms our hypothesis.
This problem could also happen in data centers because
most data center switches use shared memory across dif-
ferent queues. The threshold of any queue is proportional
to the total free buffer size. If the switch buffer utilization
suddenly increases, the threshold shrinks, which causes tem-
porary blackhole at the almost-full queues (e.g., queue 0 in
Figure 9). The sudden increase in switch buffer utilization can
happen because of incast, which is common in data centers.

6 Related Work

Replay systems. There are many replay systems for kernel,
multicore applications and distributed systems [52, 40, 33,
49, 27, 37, 17]. They record the input and interaction of
the target of replay (a subset of components of the entire
system) with the rest of the system to isolate the target, and
then make sure the target itself replays accurately. There
are two ways to directly adopt such replay techniques for
TCP: (1) Replay each host’s TCP stack separately. This
means we should record every packet as they are the input
to the stack, which is a significant overhead. (2) Replay
the whole network altogether, including all connections and
switches, which is very expensive and hard to get right as
shown in §2.2. DETER customizes replay techniques for
TCP: we replay each connection (a pair of TCP stacks), and
only record the mutations to the packet stream in between
(drop/ECN) to reduce the overhead of recording every packet,
while avoiding replay the whole network together. We also
introduce customized solutions to reduce the overhead of
recording non-deterministic variables inside the TCP stack.

Monitoring tools in data centers. Per-packet monitoring
tools [18, 10, 38] and TCP execution tracing tools [13] pro-
vide detailed information for diagnosis, but running them
continuously is too expensive. To reduce overhead, people

collect coarser-grained information such as TCP counters
[58, 28] or per-flow stats on the host [53] or switches [4, 43].
There are also query systems (e.g., Everflow [59], Trumpet
[46], Marple [47]) that allow operators to specify the packets
and events to capture in a network. DETER is complementary
to these works in that it enables deterministic replay for de-
bugging the same performance problem iteratively. DETER
requires low recording overhead at runtime and allow opera-
tors to use all kinds of monitoring tools during the replay.
Other network-related replay. OFRewind [57] replays
the switch control plane, while DETER replays TCP and the
switch data plane. Monkey [30] and Swing [55] are tools that
synthesize testing traffic based on the runtime recorded traffic
pattern, while DETER focus on replay for diagnosis.

7 Discussion

Extension to other network transport features: Here are
a few examples of transport features that may affect the replay.
Generic receive offload (GRO): If GRO [3] is enabled, we
also need to record the way it merges packets. It just requires
recording the number of packets being merged into one seg-
ment, which is available in the skb metadata and just costs 6
bits per merge. Usually each merging contains 10s of packets,
so the overhead is low. During the replay, the packet corrector
should also merge the incoming packets as recorded.
Delay-based congestion control (CC): Our current prototype
is based on loss-based CC. To extend our solution to delayed-
based CC, we need to record the timestamps that used for
updating CC states. We can compress them a lot, because
consecutive timestamps differ by a few microseconds most of
the time, so we just need a few bits to record the delta.
RED in switch: RED randomly drop packets. Replaying
the queues and drops may have a large error in this case, but
replaying TCP connections is not affected. This shows the
benefit of our design decision: decoupling the replay of each
individual connection, so that it does not depend on switches.
Use cases of DETER. DETER is designed for ease of use.
The only requirement is that the user turns on DETER on
both endpoints of the connection, which is often the case for
network operators and cloud tenants. Internet application
developers can also use DETER for performance testing. Data
center network operators may also benefit from replaying the
switch queues, because they may have the network topology
and switch data plane simulators.
Host stack changes. If the host stack changes, DETER may
need to change accordingly, but it is not hard. First, Linux
already abstracts CC out of basic TCP framework, so changes
to CC does not need to recode DETER in the basic framework,
which contains most of the recording. Besides, we have
principles for what to record and replay (Table 1 and §4), so
it would be easy to identify the required changes to DETER.
We expect the recording overhead would not change much
with stack changes, because most of the overhead comes

from socket calls and lock acquisitions, both of which are
not sensitive to stack changes: socket call is determined by
the applications, and most lock acquisitions are for receiving
packets whose amount is determined by traffic volumes. The
overhead associated with kernel variables is very small with
our technique of recording their updates or influences, and
we believe this benefit remains in the future.

Generality to other transport protocols. ~ We believe the
replay technique is general across different protocols. Basi-
cally, what other transport protocols do are not very different
from TCP: reads from/writes to applications, sends/receives
packets, and possibly controls sending rate based on packet
measurement. Similar to TCP, we just need to record the
interaction with the application and the network, and then
make sure we handle the concurrency inside the protocol.
Network failures. Network failures (e.g., routing fluctuations
or blackholes) do not affect DETER replaying the connections,
but do affect DETER replaying the switch queues which as-
sumes that the routing states are stable. However, network
failures are themselves bigger problems than the problems
related to switch queueing, and there are many other works fo-
cus on addressing such issues [59, 36, 45, 56, 43]. DETER is
complementary to these works, because it helps to understand
how TCP reacts to such conditions.

Storage overhead of socket calls. Usually the number of
socket calls is much smaller than the number of packets. Pro-
duction data center survey [26, 35] shows that most network
bytes are from large flows (>1 MB), which usually mean large
send/receive sizes. Moreover, even if an application has many
short messages, the developers tend to batch them into a large
one to reduce the CPU overhead. If some network does only
have applications that generate small socket calls, recording
every socket calls may be high overhead.

8 Conclusion

DETER enables deterministic TCP replay, which can repro-
duce performance problems, provide packet traces and sup-
port tracing of TCP executions. DETER eliminates the butter-
fly effect by replaying individual TCP connections separately
and capture all the interactions between a TCP connection
with the application and the network in a lightweight fash-
ion. We demonstrate that DETER is effective in diagnosing a
variety of TCP performance problems.

9 Acknowledgement

We thank our shepherd Alex C. Snoeren and NSDI reviewers
for their helpful feedback. We thank Wei Bai for providing
diagnosis cases. We also thank Danyang Zhuo, Yurong Jiang,
Sivaramakrishnan Ramanathan and Bradley McDanel for pro-
viding feedback. This paper is supported by the NSF grants
CNS-1834263.

References

[1] ftrace, 2008. https://www.kernel.org/doc/
Documentation/trace/ftrace.txt.

[2] IEEE Standard 1588-2008, 2008. http://ieeexplore.ieee.
org/document/4579760/.

[3] Generic receive offload, 2009. https://Iwn.net/Articles/
358910/.

[4] NetFlow, 2009. http://www.cisco.com/go/netflow/.

[5] Broadcom moves from simulation to
emulation with Mentor, 2014. https:
/Iwww.electronicsweekly.com/uncategorised/

[20] Amazon EC2, 2018. https://aws.amazon.com/ec2/.

[21] Boson NetSim, 2018. http://www.boson.com/
netsim-cisco-network-simulator.

[22] Time Split to the Nanosecond Is Precisely What Wall
Street Wants, 2018. https://www.nytimes.com/2018/
06/29/technology/computer-networks-speed-nasdagq.
html.

[23] P4 language, 2018. https://p4.org/.

[24] Spark TeraSort, 2018.
spark-terasort.

https://github.com/ehiggs/

[25] Linux TCP Github, 2019. https://github.com/torvalds/

broadcom-moves-from-simulation-to-emulation-with-mentor- 201404 /tree/master/net/ipv4.

[6] Empirical Traffic Generator, 2014. https://github.com/
datacenter/empirical-traffic-gen.

[7] NetFilter, 2014. http://www.netfilter.org/.

[8] Linux perf, 2015. https://perf.wiki.kernel.org/index.php/
Main_Page.

[9] TCP window updates combined with dup acks sent in
response to packet loss, 2015. https://www.ietf.org/
mail-archive/web/tcpm/current/msg09480.html.

[10] In-band Network Telemetry, 2016. http://p4.org/p4/
inband-network-telemetry.

[11] Cisco Packet Tracer, 2016. https://learningnetwork.
cisco.com/docs/DOC-29644.

[12] IEEE 1588 PTP clock synchronization over a
WAN backbone, 2016. https://www.endace.com/
ptp-timing-whitepaper.pdf.

[13] TCP Probe, 2016. https://wiki.linuxfoundation.org/
networking/tcpprobe.

[14] Microsoft Keynote at SIGCOMM 2017, 2017.
http://conferences.sigcomm.org/sigcomm/2017/files/
program-kbnets/keynote-2.pdf.

[15] Network Simulator 3, 2017. https://www.nsnam.org/.

[16] RACK: a time-based fast loss detection algo-
rithm for TCP, 2017. https://tools.ietf.org/html/
draft-ietf-tcpm-rack-02.

[17] Mozilla RR, 2017. https://tr-project.org/.

[18] Tcpdump, 2017. http://www.tcpdump.org/tcpdump_
man.html.

[19] DCTCP Bug, 2018.
github.com/torvalds/linux/commit/
27cde44a259¢380a3c09066fc4b42de7dde9blad.

https://

[26] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In SIGCOMM, 2010.

[27] Gautam Altekar and Ion Stoica. Odr: Output-
deterministic replay for multicore debugging. In Pro-
ceedings of the ACM SIGOPS 22Nd Symposium on Op-
erating Systems Principles, 2009.

[28] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf
Schuster, and Geoff Outhred. Taking the blame game
out of data centers operations with netpoirot. In Proceed-
ings of the 2016 ACM SIGCOMM Conference, 2016.

[29] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz,
and Anthony D. Joseph. Understanding tcp incast
throughput collapse in datacenter networks. In Pro-
ceedings of the 1st ACM Workshop on Research on
Enterprise Networking, 2009.

[30] Yu-Chung Cheng, Urs Holzle, Neal Cardwell, Stefan
Savage, and Geoffrey M. Voelker. Monkey see, monkey

do: A tool for tcp tracing and replaying. In Usenix,
2004.

[31] Abhijit K. Choudhury and Ellen L. Hahne. Dynamic
queue length thresholds for shared-memory packet
switches. IEEE/ACM Trans. Netw., 1998.

[32] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communication of the ACM, 2013.

[33] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion
Stoica. Replay debugging for distributed applications.
In Proceedings of the Annual Conference on USENIX
"06 Annual Technical Conference, 2006.

[34] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Bal-
aji Prabhakar, Mendel Rosenblum, and Amin Vahdat.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Exploiting a natural network effect for scalable, fine-
grained clock synchronization. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), 2018.

Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Labhiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
VI12: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, 2009.

Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center network
latency measurement and analysis. In Proceedings of
the 2015 ACM SIGCOMM Conference, 2015.

Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei
Xu, Ming Wu, M. Frans Kaashoek, and Zheng Zhang.
R2: An application-level kernel for record and replay.
In Proceedings of the 8th USENIX Conference on Oper-
ating Systems Design and Implementation, 2008.

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, David Mazieres, and Nick McKeown. 1 know
what your packet did last hop: Using packet histories to
troubleshoot networks. In NSDI, 2014.

Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai
Menache, Mikhail Rybalkin, and Chenyu Yan. Speed-
ing up distributed request-response workflows. In Pro-
ceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, 2013.

Samuel T. King, George W. Dunlap, and Peter M. Chen.
Debugging operating systems with time-traveling virtual
machines. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, 2005.

Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim
Weatherspoon. Globally synchronized time via dat-
acenter networks. In Proceedings of the 2016 ACM
SIGCOMM Conference, 2016.

Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and
Steven D. Gribble. Tales of the tail: Hardware, os, and
application-level sources of tail latency. In Proceedings
of the ACM Symposium on Cloud Computing, 2014.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Flowradar: A better netflow for data centers. In NSDI,
2016.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Lossradar: Fast detection of lost packets in data center
networks. In Proceedings of the 12th International on

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

Conference on Emerging Networking EXperiments and
Technologies, 2016.

Honggiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin
Cao, Sri Tallapragada, Nuno P. Lopes, Andrey Ry-
balchenko, Guohan Lu, and Lihua Yuan. Crystalnet:
Faithfully emulating large production networks. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, 2017.

Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers
in data centers. In Proceedings of the 2016 ACM SIG-
COMM Conference, 2016.

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
directed hardware design for network performance mon-
itoring. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, 2017.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at facebook. In Presented as part of the
10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), 2013.

Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning
Yin, Rini Kaushik, Kyu H. Lee, and Shan Lu. Pres:
Probabilistic replay with execution sketching on multi-
processors. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, 2009.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the social network’s (data-
center) network. In SIGCOMM, 2015.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim
Wanderer, Urs Holzle, Stephen Stuart, and Amin Vah-
dat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. In
Proceedings of the 2015 ACM SIGCOMM Conference,
2015.

Sudarshan M. Srinivasan, Srikanth Kandula, Christo-
pher R. Andrews, and Yuanyuan Zhou. Flashback: A
lightweight extension for rollback and deterministic re-
play for software debugging. In USENIX Annual Tech-
nical Conference, General Track, 2004.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Simplifying datacenter network debugging with path-
dump. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation,

2016.

Vijay Vasudevan, Amar Phanishayee, Hiral Shah,
Elie Krevat, David G. Andersen, Gregory R. Ganger,
Garth A. Gibson, and Brian Mueller. Safe and effective
fine-grained tcp retransmissions for datacenter commu-
nication. In Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, 2009.

Kashi Venkatesh Vishwanath and Amin Vahdat. Re-
alistic and responsive network traffic generation. In
Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communications, 2006.

Xin Wu, Daniel Turner, George Chen, Dave Maltz, Xi-
aowei Yang, Lihua Yuan, and Ming Zhang. Netpilot:
Automating datacenter network failure mitigation. In
Proceedings of the 2012 ACM SIGCOMM Conference,
2012.

Andreas Wundsam, Dan Levin, Srini Seetharaman, and
Anja Feldmann. Ofrewind: Enabling record and replay
troubleshooting for networks. In Proceedings of the
2011 USENIX Conference on USENIX Annual Technical
Conference, 2011.

Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rex-
ford, Lihua Yuan, Srikanth Kandula, and Changhoon
Kim. Profiling network performance for multi-tier data
center applications. In NSDI, 2011.

Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y. Zhao, and Haitao Zheng. Packet-
level telemetry in large datacenter networks. In SIG-
COMM, 2015.

