
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Electrode: Accelerating Distributed
Protocols with eBPF

Yang Zhou, Harvard University; Zezhou Wang, Peking University;
Sowmya Dharanipragada, Cornell University; Minlan Yu, Harvard University

https://www.usenix.org/conference/nsdi23/presentation/zhou

Electrode: Accelerating Distributed Protocols with eBPF

Yang Zhou∗

Harvard University
Zezhou Wang∗

Peking University
Sowmya Dharanipragada

Cornell University
Minlan Yu

Harvard University

Abstract
Implementing distributed protocols under a standard Linux
kernel networking stack enjoys the benefits of load-aware
CPU scaling, high compatibility, and robust security and iso-
lation. However, it suffers from low performance because of
excessive user-kernel crossings and kernel networking stack
traversing. We present Electrode with a set of eBPF-based
performance optimizations designed for distributed protocols.
These optimizations get executed in the kernel before the
networking stack but achieve similar functionalities as were
implemented in user space (e.g., message broadcasting, col-
lecting quorum of acknowledgments), thus avoiding the over-
heads incurred by user-kernel crossings and kernel network-
ing stack traversing. We show that when applied to a classic
Multi-Paxos state machine replication protocol, Electrode im-
proves its throughput by up to 128.4% and latency by up to
41.7%.

1 Introduction
Distributed protocols such as Paxos [37] for state machine
replication are important building blocks for highly-available
distributed applications. For example, Google’s Chubby [6]
uses a variant of classic Paxos [37] and Multi-Paxos [36] to
implement a highly-available lock service, powering their
business-critical GFS [16] and Bigdata [7] applications.
Google’s globally-distributed database Spanner [8] and Mi-
crosoft’s data center management tool Autopilot [22] also run
Paxos protocols to maintain their high availability.

Existing high-performance implementation of distributed
protocols tends to be radical and not readily-deployable.
DPDK-based kernel-bypass approaches [27, 79] allow direct
access to the underlying NIC hardware, but require appli-
cation developers to build their own networking stack and
maintain compatibility with the evolving kernel networking
stack [75]. DPDK also dedicates CPU cores to busily poll
the network interface for I/O competition, sacrificing CPU
resources and wasting energy during low I/O loads. This
is especially a problem for embedded devices [51, 60, 70]
where CPU resources are rare. Other approaches co-design
specialized distributed systems with niche network hardware
including RDMA [11, 28, 76], FPGA [23], SmartNICs [66],
and programmable switches [25]. These advanced hardware
devices are not widely available in today’s cloud environ-
ments, and systems built on top of them tend to be difficult to
design, implement, and deploy [27].

∗Equal contribution

Instead, we would prefer the widely-deployed and well-
maintained standard kernel networking stack that also pro-
vides load-aware CPU scaling and strong security and iso-
lation among different applications [5, 59]. However, imple-
menting distributed protocols under the standard kernel net-
working stack often gives poor performance. The root causes
are the high packet processing overhead in the kernel network-
ing stack and heavy communications in distributed protocols.
Our measurement shows that over half of CPU time is spent
on the kernel networking stack in a typical Paxos deploy-
ment (§2); such overhead is mainly caused by user-kernel
crossings (and associated context switches) and traversing
the kernel networking stack. Moreover, when using a clas-
sic leader-based Multi-Paxos protocol [43, 54] to implement
state machine replication, e.g., with five replicas, processing
a single request would require the leader node to send/receive
fourteen messages in total (see Figure 1a), suffering from the
kernel stack overhead fourteen times1.

In this paper, we focus on accelerating Paxos protocols in-
side data centers by offloading protocol operations to the ker-
nel via eBPF (i.e., extended Berkeley Packet Filter) [46, 49].
eBPF allows safely executing customized yet constrained
functions inside the kernel at various locations. Similar to ker-
nel bypass, the offloaded operations get executed immediately
after the NIC driver receives the packet, without user-kernel
crossing and kernel networking stack traversing. Unlike ker-
nel bypass, eBPF is an OS-native mechanism such that eBPF-
offloaded operations do not sacrifice security and isolation
properties while amenable to load-aware CPU scaling without
busy-polling.

The key challenge is, given the constrained programming
model of eBPF, which parts of Paxos protocols to offload that
can greatly reduce kernel stack overhead while being imple-
mentable and efficient in eBPF. Note that the eBPF subsystem
requires every offloaded function to be statically verified to
guarantee kernel security, which only allows limited instruc-
tions, bounded loops, static memory allocation, etc.

Our insight is that common operations of Paxos protocols,
e.g., message broadcasting and waiting on quorums, incur
large kernel stack overhead, but are naturally offloadable by
existing eBPF programming capacity. For example, Paxos pro-
tocols require a leader node to broadcast preparation messages
to follower nodes; if implemented using multiple sendto()
syscalls conventionally, it would incur multiple user-kernel

1Linux io_uring [1] can reduce user-kernel crossings, but cannot reduce
kernel stack traversing (see §8 for details).

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1391

Client

Leader

Follower 1

Execution

Request

Commit

AcknowledgmentPreparation

Follower 2

Response

Follower 3

Follower 4

(a) The Multi-Paxos/Viewstamped Replication protocol.

eBPF

eBPF

Request AcknowledgmentPreparation Response

Execution

① ①②
③

Commit

eBPF

eBPF

Client

Follower 1

Follower 2

Follower 3

Follower 4

Leader
eBPF

(b) Electrode-accelerated Multi-Paxos/Viewstamped Replication.

Figure 1: Normal case execution of the leader-based Multi-Paxos/Viewstamped Replication protocol vs. Electrode-accelerated one with 5
replicas. Electrode offloads 1⃝: message broadcasting (§4.1), 2⃝: fast acknowledging (§4.2), and 3⃝: wait-on-quorums (§4.3) to eBPF to reduce
the kernel networking stack overhead.

crossings and kernel networking stack traversing. Instead,
eBPF has a bpf_clone_redirect() [45] function that en-
ables us to clone an in-kernel packet buffer multiple times and
send them to different destinations; this eBPF-based message
broadcasting only needs one user-kernel crossing and one
kernel networking stack traversing. Besides broadcasting, we
also utilize eBPF to reduce unnecessary wake-ups of user-
space applications when waiting on quorums, and optimize
how follower nodes handle preparation messages by early
acknowledging before entering the kernel networking stack.
The final result of these three eBPF-based optimizations is
Electrode2 (Figure 1b). When applying Electrode to a classic
leader-based Multi-Paxos protocol, it achieves up to 128.4%
higher throughput and 41.7% lower latency. This translates
into up to 112.9% higher throughput and 19.3% lower latency
for a Paxos-based transactional replicated key-value store.

Electrode has some limitations: it currently targets pro-
tocols implemented in UDP and relies on application-level
retransmission to handle packet loss. This works well for
Paxos protocols whose requests are usually small enough to
fit into a single packet, and data center environments where
packet loss is rare [28, 61].

2 Background

2.1 Consensus Protocols
Distributed protocols that coordinate and synchronize among
a collection of nodes have become an indispensable part of
the modern data center application stack. Storage systems in
data centers replicate data for fault tolerance and availability.
For instance, Berkeley-DB [55] uses a consensus protocol to
replicate its logs over a set of distributed replicas. Transac-
tional storage systems like H-Store [71] and Spanner commit
their updates to multiple replicas in order to be more failure
resilient. At the heart of most replication-based systems is a
consensus protocol [36,37,43,54] that ensures that operations
execute in a consistent manner across all replicas.

2Electrode is a Pokémon that has a high speed score.

Here, we consider a set of nodes either functioning as
clients or replicas. Clients are the users of a particular
application-level service hosted by a collection of replicas. It
should also be noted here that clients could often just be other
servers within the same data center. Clients submit requests
to one or more replicas, which triggers a round of agreement
to occur. Paxos is a common protocol that is used to obtain
an agreement in the presence of node and network failures.

Since applications often need to reach agreements on many
client requests, servers use agreement protocols like Paxos to
implement a state machine-based abstraction that requires all
the replicas to process the exact same set of client requests
in the same order. This log-based state machine abstraction
is often optimized by the use of a leader. In a leader-based
protocol, all the instances of agreement on client requests are
mediated through the leader and the leader also dictates the
order of the log.

In Figure 1a, we have an example of VR (Viewstamped
Replication), a leader-based Multi-Paxos protocol that uses
Paxos for running agreements on individual requests. The
leader here is responsible for ordering all client requests by
assigning sequence numbers to them, and the followers (non-
leader nodes) are responsible for responding to the leader
and applying all the updates in the order in which they’re
sequenced by the leader.

The leader is also responsible for initiating agreement by
sending out a preparation message to all the other replicas.
The leader then waits for a quorum of acknowledgments from
all the other replicas before broadcasting a commit message
to all the replicas. A successful iteration of this two-round
protocol ensures that all non-failed replicas have the client’s
request. And the sequence number assigned by the leader
determines the order in which all the replicas process this
client’s request. This pattern of broadcasting and waiting on
quorums is common in many distributed protocols [38,39,80].

To gain more insights into the performance of the Multi-
Paxos/VR protocol under the standard Linux kernel net-
working stack, we measure the CPU time breakdown of
the leader node, shown in Table 1. There is 44.7% +

1392 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Function Name Description % CPU
__libc_sendto() User function to send packets. 44.7

|– sock_sendmsg() Kernel function to send packets. 32.2
| |– __alloc_skb() Allocate sk_buff for packets. 4.5
| |– dev_queue_xmit() Transmit sk_buff. 6.8
| |– bookkeeping For sock, IP, and UDP layers. 20.9
|– user-kernel crossing Interrupt, mode switching, etc. 12.5

__libc_recvfrom() User function to recv packets. 11.8
|– sock_recvmsg() Kernel function to recv packets. 5.7
|– user-kernel crossing Interrupt, mode switching, etc. 6.1

Table 1: CPU time breakdown for the leader node when running the
Multi-Paxos/Viewstamped Replication protocol with 5 replicas. See
§7 for measurement setup.

11.8% = 56.5% of time spent on the __libc_sendto()
and __libc_recvfrom() functions, while 20.9%+12.5%+
6.1% = 39.5% of time spent on user-kernel crossing and ker-
nel networking stack bookkeeping. These numbers concrete
our previous motivations that implementing distributed proto-
cols under kernel networking stack incurs significant overhead
on user-kernel crossings and kernel stack traversing (while
eBPF can potentially save them).

2.2 eBPF and Hooks
BPF (i.e., Berkeley Packet Filter) [49] enables user-space
applications to customize packet filtering in the kernel. A
BPF program, written in some predicates on packet fields,
is triggered by the kernel event that a packet arrives at a
NIC driver. Once triggered, the BPF program will run inside
a kernel virtual machine with limited registers and scratch
memory, and a reduced instruction set [49]. For example, the
well-known tcpdump [20] command-line packet analyzer is
based on BPF.
eBPF extends the BPF by increasing the number of regis-
ters and adding stack memory. The increased number of reg-
isters and stack memory enable the eBPF program to ex-
ecute more complex operations—the developers can use a
C-like language to express customized operations. This C-like
code is compiled into an eBPF bytecode by the Clang/LLVM
toolchain and runs inside the kernel virtual machine via just-
in-time compilation.

eBPF also introduces various powerful in-kernel data struc-
tures called eBPF maps, which, paired with various helper
functions, are used to store and maintain states across multiple
triggering of eBPF programs. Example eBPF maps include
array, per-CPU arrays, queues, stacks, and hashMaps [46].
These maps are also used to communicate among different
eBPF programs and between eBPF programs and user-space
processes. Each eBPF map can be identified by a map_path
through the file system, e.g., /sys/fs/bpf/<map_name>,
and user-space processes can access a map based on its path.

The kernel events that can trigger eBPF programs are called
eBPF hooks. There are many hooks existing in Linux kernels

Network Interface Card (NIC)

eXpress Data Path (XDP)

Traffic Control (TC)

Netfilter

UDP/TCP Stack

Socket Layer

RX TX

NIC Driver

Figure 2: Linux kernel networking stacks and eBPF XDP/TC hooks.

and various device drivers, such as hooks in NIC drivers
right after it receives a packet. User-space applications can
attach eBPF programs to these eBPF hooks to customize the
handling of corresponding kernel events.
Constrained programming model: An eBPF program needs
to go through strict verification by an in-kernel eBPF verifier
before attaching to an eBPF hook and running inside the ker-
nel. The verification process does a static sanity check to make
sure the eBPF program does not have out-of-bounds memory
access (i.e., safety) and will always terminate (i.e., liveness).
The verifier basically enumerates all possible cases of every
conditional branch and loop to make sure every execution
path meets the safety and liveness requirements. Because the
verification tends to be time-consuming, each eBPF program
can only contain up to 1 million instructions. For a larger
eBPF program, the developer needs to split it into multiple
smaller eBPF programs and uses tail calls to let one eBPF
program call another one in a continuation manner.

Because of the strict verification process, dynamical mem-
ory allocation is not supported in eBPF programs; instead,
eBPF programs can only rely on eBPF maps with capacity
specified statically to maintain in-kernel states.

Due to these limitations, eBPF is commonly used in kernel
tracing, profiling, and monitoring [3,63] and L2-L4 low-level
packet processing such as load balancing [14].
XDP (eXpress Data Path) [21, 64] technique implements an
in-kernel eBPF hook that enables attached eBPF programs
to process RX packets directly out of the NIC driver (Figure
2). Such processing gets triggered before any sk_buff [31]
allocation or entering software socket queues, thus bypassing
any higher-level networking stacks (e.g., UDP, TCP, Socket).
XDP-based packet processing normally achieves comparable
throughput and latency as DPDK-based kernel-bypass packet
processing [21].
TC (Traffic Control) [47] is another important layer/hook
which locates right after the XDP (Figure 2). In the TC layer,
the sk_buff data structure has already been allocated by the
kernel networking stack, thus the performance of TC-based
packet processing will be slightly worse than XDP. However,
the TC hook allows attached eBPF programs to process both
RX and TX packets and manipulate the packet sk_buff. For

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1393

example, one can clone the sk_buff for a TX packet and
thus implements packet broadcasting in the TC layer.

3 Electrode Overview
Electrode is a framework for offloading Paxos protocols under
kernel networking stack to in-kernel eBPF programs to reduce
user-kernel crossings and kernel networking stack traversing.
Electrode has two goals in designing its eBPF offloads: 1)
largely reducing kernel stack overhead to improve perfor-
mance, and 2) carefully partitioning user- and kernel-space
functionalities to keep offloads implementable and efficient
inside the eBPF subsystem.

To achieve the first goal, Electrode carefully extracts
generic and performance-critical fast-path operations from
Paxos protocols to offload to the eBPF. As shown in Fig-
ure 1b, Electrode offloads message broadcasting (§4.1), fast
acknowledging (§4.2), and wait-on-quorums (§4.3). These
operations, if purely implemented in the user space, would
involve many user-kernel crossings and kernel stack travers-
ing, causing significant kernel stack overhead as shown in
§2. Once implemented in the eBPF, message broadcasting
allows the leader node to efficiently send preparation and
commit messages to multiple follower nodes, by cloning and
sending packets in the kernel; fast acknowledging enables
follower nodes to buffer preparation messages in the kernel,
and quickly respond to the leader node without involving user-
space processes; wait-on-quorums lets the leader node eBPF
program wait for a quorum number of acknowledgments from
follower nodes, and only notify user-space processes once.
Moreover, to simplify how user-space applications use these
eBPF-based accelerations, Electrode further designs a set of
user-space APIs (Table 2). Each API corresponds to one oper-
ation that Electrode offloads to the eBPF, and is used to invoke
the offloaded function or retrieve eBPF processing results.

To achieve the second goal, Electrode keeps complicated
slow-path operations of Paxos protocols in the user space.
Specifically, Electrode leaves the procedures of failure re-
covery and handling message loss/reordering (i.e., gap agree-
ment) to user-space applications, using similar mechanisms as
VR [43] and NOPaxos [40]. These procedures involve access-
ing dynamic ranges of memory, which is hard to implement
in eBPF under the static verification (see §8 for details).

Overall, Electrode has the following workflow: first, user-
space applications attach eBPF programs to various hook lo-
cations corresponding to a network interface; then, user-space
applications use Electrode APIs to invoke eBPF-offloaded
functions or retrieve eBPF processing results; finally, the
eBPF programs intercept and process target packets in the ker-
nel without going through the networking stack or user-space
applications (i.e., Paxos protocols in our case). Electrode tar-
gets accelerating the handling of messages that can fit into
one ethernet packet (i.e., up to 9KB for jumbo frames). This
is well-suited for locks, barriers, and configuration parame-
ters [25, 78] that Paxos protocols commonly maintain. Non-

target packets still go through the stack and reach user-space
applications, without impacting applications’ other operations
or protocol semantics.

Finally, we note that Electrode does not aim to offload
every operation of Paxos protocols to the eBPF, because of
eBPF’s constrained programming model vs. the diverse set
of operations that Paxos protocols and related services could
have. For example, currently, Electrode does not offload client-
facing request/response handling. There are two reasons: 1)
Paxos clients normally serialize/deserialize their requests us-
ing widely-used libraries such as protocol buffers [19]; how-
ever, parsing or constructing protocol buffers is difficult in
eBPF, because it involves complex pointer arithmetics and
conditional branches which cannot easily pass the eBPF ver-
ifier. 2) client-facing requests/responses are normally em-
bedded into application-level services like the Chubby lock
service [6], but it is hard and inefficient to implement them
in eBPF because of the strict eBPF verifier and the lack of
dynamic memory allocation. We discuss more on Electrode’s
offloading decisions in §8.

4 Electrode Designs

4.1 Message Broadcasting in TC
In Paxos protocols, one-to-all message broadcasting is widely
used. For example, 1) the leader node sends preparation mes-
sages to all follower nodes, and 2) (after receiving enough
acknowledgments from followers) the leader node sends com-
mit messages to all follower nodes.

To implement the above message broadcasting, the most
common way is sending the same message multiple times in
the user space to different destinations. However, the overhead
(i.e., user-kernel crossing and kernel networking stack travers-
ing) of this implementation on the leader node increases lin-
early as the number of followers increases, while the overhead
on each follower node remains constant. Thus, the leader node
essentially becomes the system bottleneck, e.g., Table 1 has
shown that 44.7% of CPU time is spent on sending messages
on the leader node.

An alternative implementation is to use IP multicast [42,
68,77]. However, IP multicast normally requires support from
the underlying network switches (e.g., storing a large num-
ber of multicast group-table entries for the whole network
topology) [68, 77] or considerable modifications of the Linux
networking stack [42].
Electrode approach: Electrode provides a flexible host-based
broadcasting solution by utilizing eBPF on the TC hook. Here,
we require the eBPF program that implements broadcasting
operations to attach to the TC hook, because only the TC
hook can intercept and process outgoing packets (§2.2). Af-
ter attaching the eBPF program, user-space applications can
call the elec_broadcast() function shown in Table 2 with
specified sock_fd, message, and a list of destination IPs to
broadcast the message to these destinations through the socket.

1394 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Function Name Arguments Output Description
elec_broadcast sock_fd, message, {dst_ips} status Broadcasts <message> to all destinations through <sock_fd>

elec_poll_message map_path messages Polls buffered messages from an eBPF-maintained in-kernel ring buffer identified
by <map_path>

elec_check_quorum received_message bool Checks if <received_message> (acknowledgment) indicates quorum reaching

Table 2: Electrode user-space APIs.

Wait for quorum Execution

Execution

Execution

Request

Res
po

ns
e

Com
m

it

logic

kernel -> user
RX net. stack

user -> kernel
TX net. stack logic

Preparation

Client

Leader

Follower 1

Follower 2
AC

K

(a) Without fast acknowledging.

Com
m

it

logic

logic

AC
K

Client

Leader

Request
Preparation

Wait for quorum Execution

Execution

Execution

Res
po

ns
e

eBPF

eBPF

Follower 1

Follower 2

(b) With fast acknowledging in eBPF.

Figure 3: Fast acknowledging in eBPF reduces Paxos request latency. This example follows Figure 1, but omits followers 3 and 4 for brevity.

Under the hood, the eBPF program makes clones of the mes-
sage packet using the bpf_clone_redirect() [45] helper
function, modifies the destination addresses of cloned pack-
ets accordingly, and sends these packets out. The benefit of
cloning packets and broadcasting in the kernel compared with
sending the same message multiple times in the user space
is that we only need to cross the user-kernel boundary and
traverse the UDP and socket layer once.
Handling message loss: Electrode relies on application-level
timeout and retransmission to handle message loss, similar
to modern RPC-based applications [13, 69]. Specifically, if
the leader node does not receive a response after a certain
time of sending a request, it will resend the request; once
a request experiences several timeouts, the leader node will
mark the destination node as dead and start Paxos failure
recovery. An alternative approach to handling message loss
is doing retransmission in the kernel, which could save user-
kernel context switching overheads, but such savings become
marginal as packet loss happens rarely in data centers [28,61];
it would also involve complex message buffer management
in kernel/eBPF, hurting performance.

4.2 Fast Acknowledging in XDP
As shown in Figure 3a, a significant portion of Paxos request
latency comes from the round-trip delay between the leader
node and follower nodes. Note that the ACK messages in
this figure mean Paxos protocol acknowledgments, not TCP
acknowledgments. For Paxos protocols under the kernel net-
working stack, this round-trip delay includes not only phys-
ical propagation and transmission delay, but also the delay
caused by the kernel networking stack (i.e., user-kernel cross-
ing and networking stack traversing). As the fabric latency
of nowadays data center network reaches a few tens of mi-
croseconds [48] or sub-ten microseconds [18, 27], the latency
of the kernel networking stack, which is also around sub-ten
microseconds [59], becomes non-negligible.

Electrode approach to reducing the Paxos request latency
is to optimize the preparation handling in follower nodes
by directly buffering the preparation messages into an in-
kernel log and early acknowledging to the leader node. At
the same time, user-space applications asynchronously poll
and consume the buffered messages from the log, using the
elec_poll_message() function shown in Table 2. Under
the hood, the function calls a corresponding eBPF syscall to
poll messages in batches, amortizing kernel crossing overhead.
This asynchrony does not break the correctness of Paxos pro-
tocols because as long as a preparation message gets buffered
into the log, it will be eventually processed by the user-space
Paxos protocols, and the message processing order has been
specified by the sequence number assigned by the leader node.
Figure 3b shows that this approach removes two user-kernel
crossings and networking stack traversing from the critical
path of the Paxos request.

Note that not every preparation message can be handled
using fast acknowledging; in some non-critical path cases
(e.g., message loss/reordering, and node failure) where the
eBPF program cannot handle because of its constrained pro-
gramming model, our eBPF program can detect them and
directly forward preparation messages to user-space Paxos
protocols (detailed in §6).
In-kernel log implementation: The in-kernel log temporally
stores incoming early-acknowledged preparation messages,
which are polled and consumed by user-space applications
concurrently. To implement this in-kernel log, we use a special
eBPF map named BPF_MAP_TYPE_RINGBUF [30] (introduced
from Linux kernel 5.8). This map implements an efficient
multi-producer single-consumer (MPSC) ring buffer using
shared memory and a lightweight spinlock, where we can
have multiple writers in eBPF and one reader in user space.
Based on our measurement, the time of pushing a preparation
message into the ring buffer is roughly equal to memcpying
this message, in cases without any lock contention. Note

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1395

that the in-kernel ring buffer also has a fixed size, because
eBPF does not support dynamic memory allocation; in case it
becomes full, the eBPF program can detect them and directly
forward preparation messages to user-space applications.

4.3 Wait-on-Quorums in TC + XDP
Another common operation in Paxos protocols is the leader
node waiting for a quorum number of acknowledgments
(ACKs) from follower nodes (i.e., wait-on-quorums). Assume
there are 2 f +1 replicas including one leader node and 2 f fol-
lower nodes. In most Paxos protocols, once the leader collects
f ACKs from different follower nodes, the Paxos request is
considered committed.

Conventionally, wait-on-quorums is implemented by the
user-space applications that receive all ACKs and count to-
wards the quorum number. However, each acknowledgment
handling incurs the overhead of the user-kernel crossing and
traversing the kernel networking layer. The total overhead of
handling all ACKs is linear to the number of follower replicas
(i.e., 2 f). Moreover, among these 2 f ACKs, only the first f
ones are required to commit a Paxos request.
Electrode approach: Electrode moves the leader-side wait-
on-quorums operations to the eBPF, requiring only one user-
kernel crossing and one networking stack traversing. Elec-
trode maintains an array of bitsets (and other metadata) in
eBPF, each of which indicates whether a Paxos request has
reached the quorum. Electrode only forwards ACK messages
that indicate reaching the quorum to the user-space appli-
cations, while dropping others. Electrode maps each Paxos
request to a specific bitset by using the unique increasing
sequence number assigned by the leader node (§2). Note that
we use the bitset instead of a counter to check if the quorum
gets reached; this is because a timed-out preparation request
could cause duplicate ACK messages from follower nodes,
and we want to avoid double counting.

Electrode maintains the bitset setting and clearing (i.e., ze-
roing out) operations through two eBPF programs hooked
at TC and XDP layers, respectively. The TC-hooked eBPF
program intercepts each outgoing preparation message and
clears the indexed bitset, while the XDP-hooked eBPF pro-
gram intercepts each incoming ACK message from follower
nodes and sets the bit corresponding to the follower node’s
index in replicas.

As shown in Listing 1, the tc_ebpf function/program in-
tercepts each outgoing preparation message and clears a spe-
cific bitset indexed by the sequence number in each message.
Line 6 checks if it is the first time to intercept a preparation
message corresponding to this Paxos request, by comparing
the seq stored along this bitset and the seq extracted from
the message; if so, it updates the stored seq in the array and
clears the bitset that may have been used by previous Paxos
requests (line 17-18).

The xdp_ebpf program intercepts each incoming ACK
message, updates the indexed bitset, drops most of the ACK

1 # Processing outgoing preparation message
2 # pkt: the packet of the message
3 # seq: unique increasing sequence number (from pkt)
4 def tc_ebpf(pkt, seq):
5 idx = seq % array_length
6 if array[idx].seq != seq
7 array[idx].seq = seq
8 array[idx].bitset.clear()
9 forward(pkt) # to follower node

10
11 # Processing incoming ACK message
12 # pkt : the packet of the message
13 # seq : unique increasing sequence number (from pkt)
14 # node_i: follower node index (from pkt)
15 def xdp_ebpf(pkt, seq, node_i):
16 idx = seq % array_length
17 if array[idx].seq == seq
18 array[idx].bitset.set(node_i)
19 if array[idx].bitset.count() == f
20 pkt.mark_quorum_reach(true)
21 forward(pkt) # to user-space application
22 else: drop(pkt)
23 else: # bitset overwritten by tc_ebpf
24 pkt.mark_quorum_reach(false)
25 forward(pkt)

Listing 1: Maintaining the fixed-length bitset array to achieve wait-
on-quorums in eBPF. Each bitset operation is also protected by a
spinlock; we omit it here for simplicity.

packets, and only forwards packets to user-space applications
that indicate reaching quorum or array overflow (explained
in the next paragraph). Lines 17-18 check if this bitset cor-
responds to the seq in the ACK message, and set the proper
bitset bit if so. Line 19 further checks if this ACK message
reaches the quorum: if so, lines 20-21 will mark the packet as
quorum-reaching and forward it to user-space applications;
otherwise, line 22 just drops the packet. Once the user-space
applications receive a quorum-reaching packet—checked by
calling the elec_check_quorum() function shown in Ta-
ble 2, it can directly consider this Paxos request as committed.
Handling array overflow: In some cases, a bitset might be
overwritten by the tc_ebpf because of the fixed size of the
bitset array. xdp_ebpf detects such array overflow in lines
17&23; once detected, lines 24-25 will mark the packet as
not-quorum-reaching and forward it to user-space applica-
tions. Once the user-space applications receive a not-quorum-
reaching packet, it resends the preparation messages to all
follower nodes and waits for ACKs again. In practice, the
leader node could limit the number of in-flight preparations
while provisioning a large bitset array, such that the array
overflow does not normally happen.
RSS: Electrode supports RSS (Receive-Side Scaling) which
distributes incoming packets to different NIC queues and
CPU cores. Specifically, Electrode has two receive-side op-
timizations: fast acknowledging and wait-on-quorums. For
fast acknowledging, the eBPF programs in the follower node
could maintain separate in-kernel ring buffers on different
cores to avoid synchronization overhead during log append-

1396 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

User-Space Applications

Kernel Networking Stack

NIC Driver

handle_ACK
handle_

preparation

drop

write_buffer

fast_ACK

Non-critical
path cases

poll

ring
buffer

push
bitset
array

clear set

tc_broadcast_
and_quorum

Message broadcasting Wait-on-quorums Fast acknowledging

xdp_
dispatcher

E
le

ct
ro

de

quorum
reaching

Non-
ACK/prep

Figure 4: eBPF program structure of Electrode. The thickness of
solid lines indicates traffic volume (the thicker, the higher).

ing, and use spinlocks to synchronize accesses to small shared
in-kernel states (e.g., ebpf_seq in §6); the user-space applica-
tions asynchronously pull messages from all ring buffers, and
process messages following the order specified by their em-
bedded sequence numbers. For wait-on-quorums, the eBPF
programs in the leader node could use atomic instructions
to count how many ACKs it has received and check if the
quorum is reached.

5 Electrode Implementation
Electrode is prototyped with six eBPF programs written in
a restricted C language, and we utilize the Clang/LLVM
toolchain for compiling source code to eBPF bytecode. These
eBPF programs consist of 500 lines of C code in total. Ap-
plication developers can also customize their own eBPF pro-
grams based on needs, e.g., only processing packets with a
specific source port like [25]. Our prototype does not imple-
ment the RSS handling yet.

Figure 4 shows the structure of the six eBPF programs.
One program can transfer its control flow to the next program
via the eBPF tail call. We break the implementation into these
six programs because of 1) avoiding breaking the instruction
limits in the eBPF verifier (§2.2), and 2) modularity. In the
following, we describe each program in detail.
• tc_broadcast_and_quorum: This program intercepts

outgoing preparation messages. It implements the message
broadcasting mechanism (§4.1) and the tc_ebpf function
in Listing 1 for wait-on-quorums (§4.3). For broadcasting,
we generate multiple clones of the preparation packets us-
ing the bpf_clone_redirect() [45] helper function.

• xdp_dispatcher: This program checks the types of in-
coming messages and calls corresponding message han-
dlers. It only intercepts the ACK (only received on the
leader node) and preparation (only received on follower
nodes) messages, and calls the corresponding handle_ACK
and handle_preparation programs. It directly forwards

other types of messages to user-space applications.
• handle_ACK: This program implements the xdp_ebpf

function in Listing 1 for wait-on-quorums (§4.3). In com-
mon cases, it drops most ACK messages, and only forwards
the quorum-reaching ACK messages to user-space applica-
tions.

• handle_preparation: This program implements vari-
ous checks to detect non-critical path cases where it should
forward messages to user-space applications (§4.2). In nor-
mal cases (mostly), it will call write_buffer to begin
fast_ACK.

• write_buffer: This program stores message/packet data
into an in-kernel log for user-space applications to poll
and consume. As mentioned earlier, We use the eBPF ring
buffer [30] to implement the log data structure. This pro-
gram then calls the fast_ACK program.

• fast_ACK: This program reuses and modifies the received
packet buffer to create an ACK packet and sent it out. This
requires swapping the src-dst IP addresses and filling the
corresponding fields of the ACK message.

6 Apply Electrode to Multi-Paxos
Optimizing throughput: We apply the eBPF-based message
broadcasting (§4.1) and wait-on-quorums (§4.3) mechanisms
to the leader node in the Multi-Paxos protocol. This implies
two throughput optimizations: 1) when the leader node sends
out preparation messages to follower nodes, it relies on eBPF
to broadcast these messages instead of sending them one
by one; and 2) when the leader node is waiting for a quo-
rum number of ACK messages from follower nodes, it only
needs to process the quorum-reaching ACK message while
the other ACK messages are pruned/dropped by the eBPF
program. These two optimizations largely reduce the number
of user-kernel crossings and kernel networking stack travers-
ing, thus alleviating the CPU bottleneck on the leader node
and improving system throughput.
Optimizing latency: We apply the eBPF-based fast acknowl-
edging mechanism (§4.2) to each follower node in the Multi-
Paxos protocol. In normal cases (e.g., without packet loss/re-
ordering, and all nodes are alive), the preparation messages
from the leader node are quickly buffered and acknowledged
by the eBPF program in the follower nodes, bypassing both
the kernel networking stack and the user-space Multi-Paxos
protocol. This reduces the commit latency of each Multi-
Paxos request by twice the time of user-kernel crossing and
kernel networking stack traversing.
Detecting non-critical path cases in fast acknowledging:
As mentioned in §4.2, there are some non-critical path cases
in fast acknowledging where the eBPF program must detect
them and forward the incoming packets to the user-space
Paxos protocols. To understand why non-critical path cases
happen and how to detect them, we first elaborate on the
Multi-Paxos/VR protocol shown in §2, following the litera-
ture [43]. In the Multi-Paxos protocol, the leader node assigns

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1397

each Multi-Paxos request a unique and strictly increasing se-
quence number, seq. Each replica including both the leader
node and follower nodes maintains locally a view number, a
status, and its last observed seq; each message sent by a
replica will piggyback these three variables. The view num-
ber indicates which (leader) election epoch this replica is in;
the status indicates if this replica is during a leader election
(status_viewchange), recovering (status_recovering),
or normal state (status_normal). This protocol requires a
follower node to only process a preparation message if the
node is in the normal state, and the message has a matched
view and strictly increasing seq; otherwise, the follower node
needs to drop the message, or execute a complex view-change
or state-transfer procedure [43,54]. Therefore, the non-critical
path cases for Multi-Paxos are:
1. the follower is during a leader election or recovering,
2. the follower receives a message with an unmatched view

that is either (a) stale or (b) newer,
3. the follower receives a message with a non-strictly-

increasing seq caused by message (a) loss/reordering or
(b) duplication.

These cases only happen when replicas fail or join, or mes-
sages get lost/reordered, which is less common in data cen-
ters [27, 61].

To detect these non-critical path cases in eBPF, we maintain
an ebpf_status, an ebpf_view, and an ebpf_seq variable
in the eBPF program using the eBPF map. In particular, these
three variables can be updated by the user-space Multi-Paxos
protocols to reflect the current protocol state. Listing 2 shows
the detection pseudocode. Line 5 detects case 1, and line 6 de-
tects case 2(a); for these two cases, the eBPF program needs
to drop the packet. Line 7 detects cases 2(b) and 3(a), and for-
wards the packet to the user space to execute the view-change
or state-transfer procedure. For case 3(b), i.e., msg_seq <
ebpf_seq + 1, the eBPF program function replies an ACK
(line 11), because it could be a re-transmitted preparation
message due to timeout.
Handling the cases 2(a)&3(a) in fast acknowledging is
tricky, because it (i.e., forwarding packets to the user space
for processing) involves the concurrency between the user-
space protocols and the kernel-space eBPF program, while
eBPF only supports map-based communication but not syn-
chronization between the user and kernel. Our approach is to
let the user-space protocols detach the eBPF program from
the hook while executing the view-change or state-transfer
procedure. Specifically, once a user-space protocol receives a
preparation message corresponding to the case 2(a) or 3(a), it
detaches the eBPF program, then it finishes the view-change
or state-transfer procedure, next it updates the ebpf_status,
ebpf_view, and ebpf_seq properly, and finally it reattaches
the eBPF program. This guarantees the cases 2(a)&3(a) are
exclusively handled by the user-space protocol, avoiding the
synchronization between the user and kernel. An alternative
approach to achieving the same effect as eBPF detach-reattach

1 # pkt : the packet of the preparation message
2 # msg_view: view piggybacked by the pkt
3 # msg_seq : unique increasing sequence number (from pkt)
4 def detect_non_crit_path_cases(pkt, msg_view, msg_seq):
5 if (ebpf_status != status_normal): drop(pkt)
6 if (msg_view < ebpf_view): drop(pkt)
7 if (msg_view > ebpf_view or msg_seq > ebpf_seq + 1):
8 forward(pkt)
9 if (msg_seq == ebpf_seq + 1):

10 append_log(++ebpf_seq, pkt)
11 reply_ack(pkt)

Listing 2: Detecting non-critical path cases during fast
acknowledging for Multi-Paxos. Assume the protocol works in a
single core, in line with prior Paxos work [40, 44, 61].

is to use an eBPF map with a branch testing before any Elec-
trode logic. The first packet in the non-critical path can update
this map atomically and let all following packets directly go
to the user-space application (i.e., closing Electrode optimiza-
tions); later, the user-space application can update this map
to reopen Electrode optimizations.

There are a few caveats: 1) After the user-space protocol
detaches the eBPF program, it needs to poll the in-kernel
ring buffer again, in case the eBPF program still appends
a few messages to the ring buffer before detaching. Note
that the eBPF map can outlive the eBPF program, as long
as the user-space process holds a reference to it, because
its lifetime is managed through reference counting [50]. 2)
While the user-space protocol is setting the ebpf_seq value
and is about to reattach the eBPF program, some preparation
packets might just pass the eBPF hook location but have not
been processed by the user-space protocol, e.g., queued in
the socket layer. In this case, the user-space protocol actu-
ally has set a smaller ebpf_seq value in the map; once the
eBPF program gets reattached, it will trigger more case 3(a)
(lines 7&8). Our solution to this problem is: after the user-
space protocol finishes the view-change or state-transfer pro-
cedure, it first sends a stop_sending_preparation mes-
sage to the leader node to stop it from sending preparation
messages, then it polls the socket to drain and process any
queued packet, next it sets the proper ebpf_seq value, finally
it sends a resume_sending_preparation message to the
leader node to resume sending preparation messages, and reat-
taches the eBPF program. These two messages should be sent
using reliable transport like TCP to handle packet loss.
Generalizability: Electrode’s eBPF-based optimizations are
generic to many more distributed protocols, which normally
consist of broadcasting and wait-on-quorums operations.
More discussions can be found in Appendix A.

7 Evaluation
This section answers the following questions:
1. How do Electrode and each optimization improve the per-

formance of the Multi-Paxos protocol (§7.1 and §7.2)?

1398 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

50

100

150

200

250
M

ed
ia

n
la

te
nc

y
(μ

s) Multi-Paxos (median)
+ Electrode (median)

0 20 40 60 80
Throughput (K req/s)

0

50

100

150

200

250

99
th

-ta
il

la
te

nc
y

(μ
s) Multi-Paxos (tail)

+ Electrode (tail)

(a) 3 replicas.

0

50

100

150

200

250

M
ed

ia
n

la
te

nc
y

(μ
s) Multi-Paxos (median)

+ Electrode (median)

0 20 40 60
Throughput (K req/s)

0

50

100

150

200

250

99
th

-ta
il

la
te

nc
y

(μ
s) Multi-Paxos (tail)

+ Electrode (tail)

(b) 5 replicas.

0

50

100

150

200

250

M
ed

ia
n

la
te

nc
y

(μ
s) Multi-Paxos (median)

+ Electrode (median)

0 20 40
Throughput (K req/s)

0

50

100

150

200

250

99
th

-ta
il

la
te

nc
y

(μ
s) Multi-Paxos (tail)

+ Electrode (tail)

(c) 7 replicas.

Figure 5: Performance comparison of the Multi-Paxos protocol vs. Electrode-accelerated one with different numbers of replicas.

2. How does Electrode improve the performance of real-
world Paxos-based applications (§7.3)?

3. How does Electrode save kernel stack overhead (§7.4)?
4. How does Electrode compare to kernel-bypassing (§7.5)?

Testbed setup: We use eight xl170 servers from Cloud-
Lab [12], each of which has a ten-core Intel E5-2640v4 CPU
at 2.4 Ghz, 64GB memory, and a Mellanox ConnectX-4 25
Gbps NIC. Each server runs an unmodified Ubuntu 20.04
OS with kernel v5.8.0. All servers are connected using a two-
level topology: five Mellanox 2410 as rack switches (each
connecting to forty xl170 servers) and one Mellanox 2700 as
the spine switch. One server is dedicated as the client server
that generates Paxos requests, and other servers run the Paxos
protocol with 3/5/7-replica configurations. By default, we con-
figure each server to use one core for interrupt processing and
another core for Paxos processing, following the performance
optimizations in [41]. We disable irqbalance to avoid out-of-
order packet deliveries as much as possible (which would hurt
Paxos performance), in line with prior Paxos work [40,44,61].
Unlike prior Paxos work [32, 40, 61], we do not use IP mul-
ticast which requires specialized support from the network
(§4.1).
Measurement methodology: The client server runs multiple
Paxos/application clients, and each client sends Paxos/appli-
cation requests in either a closed-loop or open-loop manner.
In closed-loop experiments, each client sends the next request
once it receives the response of the last request; we vary the
number of clients and measure the corresponding through-
put, and median and 99th-percentile tail latency, in line with
prior Paxos work [40,44,61]. In open-loop experiments, each
client sends requests one by one at a specific time interval,
such that the overall request rate reaches a specified value; we
use enough clients (i.e., they could saturate the Paxos servers),
specify different request rates, and measure the corresponding

CPU utilization of each replica node.
Comparisons: We use the Multi-Paxos/VR protocol imple-
mentation in the SpecPaxos [61] open-sourced code [35] as
the baseline, and optimize it using Electrode. We also run a
transactional replicated key-value store similar to the one in
SpecPaxos [61] atop the baseline Multi-Paxos protocol and
Electrode-accelerated Multi-Paxos protocol. All implementa-
tion uses the standard UDP stack and socket layer from the
Linux kernel.

7.1 Overall Results
Figure 5a, 5b, and 5c show the performance comparison of
the Multi-Paxos protocol and the Electrode-accelerated one
when using 3, 5, and 7 replicas, respectively. In each figure,
we vary the number of clients sending Multi-Paxos requests
in a closed-loop manner, and report throughput and median
and 99th-percentile tail latency. All curves eventually hit a
“hockey stick” in their median or tail latency growth when the
system reaches its maximum throughput.
Throughput: the Electrode-accelerated Multi-Paxos proto-
col achieves 34.9%, 104.8%, and 128.4% higher maximum
throughput than the original Multi-Paxos protocol under 3, 5,
and 7 replicas, respectively. The large throughput improve-
ments benefit from the eBPF-based broadcasting and wait-on-
quorums which reduce the kernel stack overhead significantly
on the leader node. With more replicas, the improvement
becomes more significant. This is because, for each Multi-
Paxos request, the leader node will send more preparation and
commit messages, and handle more ACK messages; thus the
eBPF-based broadcasting and wait-on-quorums can save more
user-kernel crossings and kernel networking stack traversing.
Latency: the Electrode-accelerated Multi-Paxos protocol
achieves 12.5%, 20.0%, and 25.6% lower median latency
than the original Multi-Paxos protocol with 2 clients (before

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1399

0 10 20 30 40 50 60
Throughput (K req/s)

0

50

100

150

200

M
ed

ia
n

La
te

nc
y

(μ
s)

Multi-Paxos
+ Message broadcasting
+ Fast acknowledging
+ Wait-on-quorums (i.e., Electrode)

Figure 6: Performance impact of different optimizations for
Electrode-accelerated Multi-Paxos protocol (with 5 replicas).

the “hockey stick”) under 3, 5, and 7 replicas, respectively;
the corresponding tail latency is 11.8%, 24.7%, and 41.7%
lower. The latency reduction mostly comes from the fast
acknowledging in the follower nodes, which, for each Multi-
Paxos request, saves the time of two user-kernel crossings,
two kernel networking stack traversing, and one wake-up of
the user-space process. With more replicas, the latency reduc-
tion becomes larger. This is because the fast acknowledging
bypasses user-space process scheduling and avoids unpre-
dictable scheduling delays [48] by the OS; for the original
Multi-Paxos, with more follower nodes, such unpredictable
scheduling delays would raise the chance of follower nodes
straggling, thus increasing commit latency. Besides, for Multi-
Paxos under 3/5 replicas and Electrode under 7 replicas, their
latency curves first decline a bit and arrive at the lowest point,
then rise and reach the “hockey stick”. This is because, un-
der lower throughput, the Linux scheduler would schedule
the Paxos process off the CPU more frequently, while under
higher throughput, the Paxos process is mostly scheduled on
the CPU.

7.2 Performance Gain Breakdown
Figure 6 shows the performance impact of different optimiza-
tions for the Electrode-accelerated Multi-Paxos protocol with
5 replicas. Similar to §7.1, we vary the number of clients send-
ing Multi-Paxos requests in a closed-loop manner, and report
the throughput and latency. eBPF-based message broadcast-
ing improves the maximum throughput of the Multi-Paxos
protocol by 31.7%; fast acknowledging further reduces the
median latency by 4.3%-12.7% (before the “hockey stick”);
finally, wait-on-quorums improves the maximum throughput
by 57.7%. Overall, we find that the two throughput optimiza-
tions (i.e., eBPF-based message broadcasting and wait-on-
quorums) have almost no impact on the median latency, while
the latency optimization (i.e., fast acknowledging) does not
nearly impact maximum throughput. This division of labor
demonstrates good modularity of each optimization design
in Electrode, and each design can be independently used to
accelerate more distributed protocols as shown in Table 4.

3 replicas
5 replicas

7 replicas
0

2500

5000

7500

10000

Th
ro

ug
hp

ut
 (t

xn
/s

) Multi-Paxos
+ Electrode

(a) Throughput.
3 replicas

5 replicas
7 replicas

0

500

1000

Tx
n

av
er

ag
e

la
te

nc
y

(μ
s) Multi-Paxos

+ Electrode

(b) Latency (one client).

Figure 7: Performance comparison of a transactional key-value store
atop the Multi-Paxos protocol vs. Electrode-accelerated one.

7.3 Application Performance
To demonstrate how Electrode can bring benefits to real-world
Paxos-based applications, we run a transactional replicated
key-value store (similar to the one in SpecPaxos [61]) atop the
Multi-Paxos protocol and Electrode-accelerated one. This key-
value store supports serializable transactions using two-phase
commit and optimistic concurrency control (OCC). Clients
use BEGIN_TXN, COMMIT_TXN, ABORT_TXN, SET, and GET op-
erations to express transactions. We use a synthetic workload
derived from the Retwis application [56]—an open-source
Twitter clone. This workload consists of four types of trans-
actions with different ratios, and each one issues different
numbers of GET and PUT operations. The workload details
can be found in Table 2 of [80]. We vary the number of clients
that execute transactions in a closed-loop manner, and mea-
sure the maximum throughput these clients can achieve and
the average latency under one client.

Figure 7a and 7b shows the maximum throughput and av-
erage latency of the key-value store atop the Multi-Paxos pro-
tocol vs. Electrode-accelerated one under different numbers
of replicas, respectively. Overall, Electrode improves the key-
value store throughput by 32.3%-112.9% and latency by 5.9%-
19.3%. The improvement becomes larger with more replicas,
due to the similar reasons described in §7.1. The latency of
the key-value store atop the original Multi-Paxos gradually in-
creases with more replicas, while Electrode-accelerated one’s
remains relatively stable, because the former is more vulnera-
ble to follower nodes straggling (§7.1).

7.4 CPU Utilization
One design goal of Electrode is to reduce the kernel network-
ing stack overhead (§3) when implementing Paxos protocols.
Thus, in this subsection, we study the impact of Electrode
on CPU utilizations, which indicates how much kernel stack
overhead gets reduced.

Figure 8a and 8b show the CPU utilization of the leader
node and follower nodes, respectively, for the Multi-Paxos
protocol and Electrode-accelerated one with different offered
throughput. The experiments are done in an open-loop man-
ner to control the offered throughput when measuring CPU
utilization. The CPU utilization covers both the core handling

1400 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 20 40
Offered throughput (K req/s)

0

25

50

75

100

C
P

U
 u

til
iz

at
io

n
(%

)

Multi-Paxos
+ Electrode

(a) The leader node.

0 20 40
Offered throughput (K req/s)

0

20

40

60

C
P

U
 u

til
iz

at
io

n
(%

)

Multi-Paxos
+ Electrode

(b) Follower nodes in average.

Figure 8: CPU utilization comparison of the Multi-Paxos protocol
vs. Electrode-accelerated one (with 5 replicas).

interrupts and the core running Paxos. With higher offered
throughput, the CPU utilization gradually increases, demon-
strating the load-aware CPU scaling provided by the kernel
networking stack (§1). We note that for DPDK-based Multi-
Paxos protocol implementation, the CPU utilization would
be always 100% because DPDK busily polls the network
interface. Overall, Electrode reduces the CPU utilization by
22.7%-38.0% on the leader node and 16.0%-35.7% on the
follower nodes, benefiting from the reduced user-kernel cross-
ings and kernel stack traversing.

7.5 Comparison with Kernel-Bypassing
Electrode still handles client-facing requests/responses and
initiates message broadcasting using the Linux kernel net-
working stack (§3); thus, it will achieve lower performance
than pure kernel-bypassing approaches. This subsection com-
pares the performance of Electrode with a kernel-bypassing
baseline, aiming to reveal the performance upper bound of
kernel-based approaches and identify the possible improve-
ments for future work.

We choose Caladan [15] and use its high-performance
DPDK-based UDP stack to implement our kernel-bypassing
baseline. Similar to Caladan, our baseline dedicates one CPU
core for packet polling and another core for running the Paxos
protocol. We also configure the Caladan runtime to never idle
the Paxos core even under low request load.

Table 3 compares the latency and throughput of kernel-
based Multi-Paxos and the kernel-bypassing one. To exclude
the latency incurred by the client-side kernel stack, we tested
all three Paxos implementations with a request generator im-
plemented using Caladan. Electrode achieves 1.4-1.6x lower
latency and 2.0x higher throughput than vanilla Linux, but it
still has 2.2x higher latency and 2.4x lower throughput com-
pared to pure kernel-bypassing. The performance gap between
Electrode and kernel-bypassing exists, because there are still
substantial Paxos messages going through the kernel net-
working stack in Electrode. In particular, our profiling shows
that, on the leader node, around 59.5% CPU time is spent on
__libc_sendto() caused by frequent dev_queue_xmit()
and sk_buff clones. Although eBPF-based broadcasting re-
duces a significant number of user-kernel crossings and sock-

Lowest median/99p
latency

Maximum
throughput

Vanilla Linux 59/69 µs 32 K req/s

Electrode 38/49 µs 65 K req/s

Kernel-bypassing 17/22 µs 154 K req/s

Table 3: Performance comparison of kernel-based Multi-Paxos vs.
kernel-bypassing one (with 5 replicas).

/UDP/IP layer traversing, it cannot fundamentally optimize
how the Linux kernel manages NICs and packet buffers. Fi-
nally, we note that Electrode’s goal is to provide generic eBPF-
based accelerations for distributed protocol implementations
that stick to kernel networking stacks because of compatibility,
security, isolation, and elastic CPU scaling.

An additional evaluation regarding how the interrupt coa-
lescing feature of modern NICs impacts Electrode is in Ap-
pendix B.

8 Discussion and Future Work
Electrode’s offloading decisions: Electrode decides to leave
four components of the Multi-Paxos protocol to the user space:
1) failure recovery, 2) handling packet loss and reordering, 3)
handling client-facing requests/responses, and 4) executing
application-specific operations after reaching the consensus.
The first two components involve complex operations on the
log, e.g., scanning the log and sending inconsistent entries to
other replicas, and inserting missing log entries received from
others. These operations require accessing dynamic ranges
of log entries, which would fail the eBPF static verification.
The last two involve complex serialization/deserialization
and application-level operations (see §3). We note that it
is possible to offload these four components into eBPF by
modifying the kernel eBPF subsystem or verifier—we leave
this as future work.
How to improve the eBPF subsystem for offloading? Ver-
ifying memory accesses more smartly could make more ap-
plication operations offloadable. The current eBPF verifier
only allows accessing static ranges of memory, which hinders
many applications with complex memory accessing behaviors.
Another useful construct in eBPF would be dynamic mem-
ory allocation, which could ease the maintenance of more
advanced data structures in eBPF. To avoid memory leaks, a
possible solution could be enforcing Rust-style single-owner
memory semantics.
io_uring [1] was recently introduced into the Linux kernel
to support efficient batching of asynchronous I/Os via shared
memory between the user and kernel space, thus reducing
the overhead of frequent user-kernel crossings. Therefore,
when implementing Paxos protocols using io_uring, it can
help reduce the overhead of message broadcasting, which
accounts for 12.5% of CPU time based on Table 1. However,
each preparation and ACK message still goes through the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1401

full Linux networking stack and wakes up user-space applica-
tions, incurring significant overhead; Electrode can be used
together with io_uring to reduce such overhead. A recent
work XRP [82] shares a similar view regarding io_uring.
Electrode on shared environments: Electrode requires at-
taching eBPF programs to the network interface, which then
processes every packet accordingly. However, multiple Elec-
trode applications might share the same NIC and attach differ-
ent eBPF programs that might interfere with each other. We
can use the SR-IOV (Single Root IO Virtualization) feature
that is widely available in modern NICs [2, 9] to avoid such
interference. SR-IOV virtualizes a physical network interface
into multiple virtualized ones; the Electrode eBPF program
can be attached to only one virtualized interface, without im-
pacting others (e.g., used by non-Paxos applications). Besides
SR-IOV, Electrode can also check the port numbers of incom-
ing packets in eBPF, and only execute optimizations if the
port numbers belong to target Paxos applications.
Accelerating leader-less consensus protocols using eBPF:
Electrode targets at leader-based consensus protocols such
as Paxos [37] and its variants [36, 43, 54], because they are
the most-used ones by modern distributed applications [6,
8, 22]. Electrode’s eBPF-based optimizations could also be
applied to leader-less consensus protocols, e.g., EPaxos [52],
Mencius [4], SD-Paxos [81], etc. For example, replicas in
EPaxos could acknowledge preparation messages earlier in
an eBPF program before entering the kernel networking stack,
thus reducing latency. We leave the exploration of applying
Electrode to leader-less consensus protocols as future work.

9 Related Work
Kernel-bypass and hardware offloading: Overheads of
the monolithic kernel networking stack have spurred var-
ious attempts to design new kernel-bypassed networking
stacks like mTCP [24], eRPC [27], Demikernel [79] and
more [15, 29, 33, 48, 57, 67], which attempt to eliminate the
kernel from the I/O datapath. But all of these solutions are
not backward compatible with solutions that already use the
standard kernel networking stack, and they incur more costs
in terms of CPU cycles and energy during low I/O loads due
to busy-polling. Electrode attempts to leverage eBPF to un-
clog some of the bottlenecks in the kernel networking stack
for distributed protocols without completely having to shift
to kernel-bypassed stacks.

Similarly, network offload solutions attempt to offload I/O-
intensive operations to specialized hardware, e.g., RDMA [11,
28, 76], FPGA [23], SmartNICs [66], and programmable
switches [10, 25]. But they come with limited interfaces for
programmability and need custom hardware to be installed.
Co-designing distributed systems with networks: There
have been attempts to optimize distributed systems by co-
designing them with data center networks for improved perfor-
mance. SpecPaxos [61] attempts to leverage the natural order
of packet delivery in data centers to optimize the ordering of

messages needed for state machine replication. NoPaxos [40]
uses in-network switches to sequence packets for a similar
purpose. Eris [39] further applies in-network sequencing to
distributed transactions to avoid coordination overhead. These
are orthogonal ways to optimize distributed systems and can
be used in conjunction with Electrode.
Distributed protocols in data centers: Data centers have
a variety of distributed protocols that are deployed for fault
tolerance and data consistency. These include replication pro-
tocols like Mencius [4], EPaxos [52], chain replication [74],
SDPaxos [81], and transaction protocols like TAPIR [80] and
Meerkat [72]. Since many distributed protocols share similar
patterns of communication like broadcasting and quorum re-
sponses, Electrode can be applied to speed up these distributed
protocols as well.
eBPF applications: For a long time, eBPF was only used
for packet filtering [49], monitoring [3, 63], and load balanc-
ing [14] because of its restricted programming model. Now,
it is shown to be able to offload small yet critical operations
to improve application performance. CCP [53] mentions that
it may be possible to leverage the JIT feature of eBPF to
gather datapath’s congestion measurements for congestion
control. BMC [17] uses eBPF to implement an in-kernel
cache to accelerate UDP-based Memcached GET requests and
achieves significant throughput improvement. Syrup [26] uses
eBPF maps to share incoming request information across OS,
networking stacks, and application runtimes to enable user-
defined scheduling. SPRIGHT [65] employs fast eBPF-based
packet forwarding to accelerate sidecar proxies in serverless
computing. XRP [82] offloads storage functions (e.g., B-tree
lookups) into the kernel using eBPF to reduce kernel stor-
age stack overhead. SynCord [58] leverages eBPF to inject
workload-specific and hardware-aware kernel lock policies
specified by application developers. Electrode further demon-
strates that eBPF can be used to accelerate distributed proto-
cols under the kernel networking stack.

10 Conclusion
Electrode is a system that accelerates distributed protocols
using safe in-kernel eBPF-based packet processing before
the networking stack. Electrode retains the benefits of using
the standard Linux networking stack (e.g., good maintenance,
elastic CPU scaling, security, and isolation), while optimizing
the performance-critical operations of distributed protocols
(e.g., broadcasting, and wait-on-quorums) in a non-intrusive
manner. When applying Electrode to a classic Multi-Paxos
protocol, we achieve up to 128.4% higher throughput and
41.7% lower latency. We believe that the designs of eBPF-
based optimizations in Electrode can motivate more research
on improving networked application performance while main-
taining the standard Linux networking stack.

Electrode code is available at https://github.com/E
lectrode-NSDI23/Electrode.

1402 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Electrode-NSDI23/Electrode
https://github.com/Electrode-NSDI23/Electrode

Acknowledgments
We thank our shepherd Adam Belay and the anonymous
reviewers for their insightful comments. We thank Cloud-
lab [12] for providing us with the development and evaluation
infrastructure. This work was supported in part by ACE, one
of the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA. Yang
Zhou is also supported by the Google PhD Fellowship.

References

[1] Efficient IO with io_uring. https://kernel.dk/io
_uring.pdf.

[2] NVIDIA Corporation affiliates. Single Root IO Vir-
tualization (SR-IOV) for Mellanox NICs. https:
//docs.nvidia.com/networking/pages/viewp
age.action?pageId=43718746.

[3] The Cilium Authors. Cilium: eBPF-Based Networking,
Observability, Security. https://cilium.io/.

[4] Catalonia-Spain Barcelona. Mencius: Building Efficient
Replicated State Machines for WANs. In Proceedings
of USENIX OSDI, 2008.

[5] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In Proceedings of
USENIX OSDI, pages 49–65, 2014.

[6] Mike Burrows. The Chubby Lock Service for Loosely-
Coupled Distributed Systems. In Proceedings of
USENIX OSDI, pages 335–350, 2006.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E Gruber. Bigtable: A
Distributed Storage System for Structured Data. ACM
Transactions on Computer Systems (TOCS), 26(2):1–26,
2008.

[8] James C Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s Globally
Distributed Database. ACM Transactions on Computer
Systems (TOCS), 31(3):1–22, 2013.

[9] Intel Corporation. Single Root IO Virtualization (SR-
IOV) for Intel NICs. https://www.intel.com/cont
ent/www/us/en/support/articles/000005722
/ethernet-products.html.

[10] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. Netpaxos: Consensus
at Network Speed. In Proceedings of ACM SIGCOMM
Symposium on Software Defined Networking Research
(SOSR), pages 1–7, 2015.

[11] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Com-
promises: Distributed Transactions with Consistency,
Availability, and Performance. In Proceedings of ACM
SOSP, pages 54–70, 2015.

[12] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, et al. The
Design and Operation of CloudLab. In Proceedings of
USENIX ATC, pages 1–14, 2019.

[13] Facebook. Facebook’s Branch of Apache Thrift, Includ-
ing a New C++ Server. https://github.com/faceb
ook/fbthrift/blob/main/thrift/doc/cpp/cp
p2.md#options.

[14] Facebook. Katran: A High-Performance Layer 4 Load
Balancer. https://github.com/facebookincubat
or/katran.

[15] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating Interference at Mi-
crosecond Timescales. In Proceedings of USENIX OSDI,
pages 281–297, 2020.

[16] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google File System. In Proceedings of ACM
SOSP, pages 29–43, 2003.

[17] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine
Blin, and Gilles Muller. BMC: Accelerating Mem-
cached using Safe In-kernel Caching and Pre-stack Pro-
cessing. In Proceedings of USENIX NSDI, pages 487–
501, 2021.

[18] Dan Gibson, Hema Hariharan, Eric Lance, Moray
McLaren, Behnam Montazeri, Arjun Singh, Stephen
Wang, Hassan MG Wassel, Zhehua Wu, Sunghwan Yoo,
et al. Aquila: A unified, low-latency fabric for datacen-
ter networks. In Proceedings of USENIX NSDI, pages
1249–1266, 2022.

[19] Google. Protocol Buffers. https://developers.g
oogle.com/protocol-buffers/.

[20] The Tcpdump Group. tcpdump. https://www.tcpd
ump.org/.

[21] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1403

https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=43718746
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=43718746
https://docs.nvidia.com/networking/pages/viewpage.action?pageId=43718746
https://cilium.io/
https://www.intel.com/content/www/us/en/support/articles/000005722/ethernet-products.html
https://www.intel.com/content/www/us/en/support/articles/000005722/ethernet-products.html
https://www.intel.com/content/www/us/en/support/articles/000005722/ethernet-products.html
https://github.com/facebook/fbthrift/blob/main/thrift/doc/cpp/cpp2.md#options
https://github.com/facebook/fbthrift/blob/main/thrift/doc/cpp/cpp2.md#options
https://github.com/facebook/fbthrift/blob/main/thrift/doc/cpp/cpp2.md#options
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://www.tcpdump.org/
https://www.tcpdump.org/

Ahern, and David Miller. The eXpress Data Path: Fast
Programmable Packet Processing in the Operating Sys-
tem Kernel. In Proceedings of ACM CoNEXT, pages
54–66, 2018.

[22] Michael Isard. Autopilot: Automatic Data Center Man-
agement. ACM SIGOPS Operating Systems Review,
41(2):60–67, 2007.

[23] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a Box: Inexpensive Coordination
in Hardware. In Proceedings of USENIX NSDI, pages
425–438, 2016.

[24] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In Proceedings of
USENIX NSDI, pages 489–502, 2014.

[25] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-Free Sub-RTT Coordination.
In Proceedings of USENIX NSDI, pages 35–49, 2018.

[26] Kostis Kaffes, Jack Tigar Humphries, David Mazières,
and Christos Kozyrakis. Syrup: User-Defined Schedul-
ing Across the Stack. In Proceedings of ACM SOSP,
pages 605–620, 2021.

[27] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In Proceed-
ings of USENIX NSDI, pages 1–16, 2019.

[28] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
Proceedings of USENIX OSDI, pages 185–201, 2016.

[29] Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP Acceleration as an OS
Service. In Proceedings of EuroSys, pages 1–16, 2019.

[30] The Linux kernel development community. BPF Ring
Buffer. https://www.kernel.org/doc/html/la
test/bpf/ringbuf.html.

[31] The Linux kernel development community. struct
sk_buff. https://docs.kernel.org/networki
ng/skbuff.html.

[32] Marios Kogias and Edouard Bugnion. Hover-
cRaft: Achieving Scalability and Fault-tolerance for
microsecond-scale Datacenter Services. In Proceedings
of EuroSys, pages 1–17, 2020.

[33] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: Making RPCs First-
Class Datacenter Citizens. In Proceedings of USENIX
ATC, pages 863–880, 2019.

[34] Hsiang-Tsung Kung and John T Robinson. On Opti-
mistic Methods for Concurrency Control. ACM Trans-
actions on Database Systems (TODS), 6(2):213–226,
1981.

[35] UW Systems Lab. Speculative Paxos Open Source.
https://github.com/UWSysLab/specpaxos.

[36] Leslie Lamport. Paxos Made Simple. ACM SIGACT
News (Distributed Computing Column) 32, 4 (Whole
Number 121, December 2001), pages 51–58, 2001.

[37] Leslie Lamport. The Part-Time Parliament. In Con-
currency: the Works of Leslie Lamport, pages 277–317.
2019.

[38] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Ver-
tical Paxos and Primary-Backup Replication. In Pro-
ceedings of ACM PODC, pages 312–313, 2009.

[39] Jialin Li, Ellis Michael, and Dan RK Ports. Eris:
Coordination-Free Consistent Transactions Using In-
Network Concurrency Control. In Proceedings of ACM
SOSP, pages 104–120, 2017.

[40] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana
Szekeres, and Dan RK Ports. Just Say NO to Paxos
Overhead: Replacing Consensus with Network Order-
ing. In Proceedings of USENIX OSDI, pages 467–483,
2016.

[41] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and
Steven D Gribble. Tales of the Tail: Hardware, OS,
and Application-level Sources of Tail Latency. In Pro-
ceedings of ACM SoCC, pages 1–14, 2014.

[42] John C Lin and Sanjoy Paul. RMTP: A Reliable Multi-
cast Transport Protocol. In Proceedings of IEEE INFO-
COM, volume 96. Citeseer, 1996.

[43] Barbara Liskov and James Cowling. Viewstamped
Replication Revisited. 2012.

[44] Xuhao Luo, Weihai Shen, Shuai Mu, and Tianyin Xu.
DepFast: Orchestrating Code of Quorum Systems. In
Proceedings of USENIX ATC, pages 557–574, 2022.

[45] Linux Programmer’s Manual. bpf-helpers(7). https:
//man7.org/linux/man-pages/man7/bpf-helpe
rs.7.html.

[46] Linux Programmer’s Manual. bpf(2). https://man7
.org/linux/man-pages/man2/bpf.2.html.

1404 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.kernel.org/doc/html/latest/bpf/ringbuf.html
https://www.kernel.org/doc/html/latest/bpf/ringbuf.html
https://docs.kernel.org/networking/skbuff.html
https://docs.kernel.org/networking/skbuff.html
https://github.com/UWSysLab/specpaxos
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man2/bpf.2.html

[47] Linux Programmer’s Manual. tc-bpf(8). https://ma
n7.org/linux/man-pages/man8/tc-bpf.8.html.

[48] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C Evans, Steve Gribble,
et al. Snap: A Microkernel Approach to Host Network-
ing. In Proceedings of ACM SOSP, pages 399–413,
2019.

[49] Steven McCanne and Van Jacobson. The BSD Packet
Filter: A New Architecture for User-level Packet Cap-
ture. In USENIX winter, volume 46, 1993.

[50] Paul E McKenney. Overview of Linux-Kernel Reference
Counting. N2167, pages 07–0027, 2007.

[51] Henrique Moniz, Nuno Ferreira Neves, and Miguel Cor-
reia. Turquois: Byzantine Consensus in Wireless Ad
hoc Networks. In 2010 IEEE/IFIP International Confer-
ence on Dependable Systems & Networks (DSN), pages
537–546. IEEE, 2010.

[52] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. There is More Consensus in Egalitarian Parliaments.
In Proceedings of ACM SOSP, pages 358–372, 2013.

[53] Akshay Narayan, Frank Cangialosi, Deepti Raghavan,
Prateesh Goyal, Srinivas Narayana, Radhika Mittal, Mo-
hammad Alizadeh, and Hari Balakrishnan. Restructur-
ing Endpoint Congestion Control. In Proceedings of
ACM SIGCOMM, pages 30–43, 2018.

[54] Brian M Oki and Barbara H Liskov. Viewstamped Repli-
cation: A New Primary Copy Method to Support Highly-
Available Distributed Systems. In Proceedings of ACM
PODC, pages 8–17, 1988.

[55] Michael A Olson, Keith Bostic, and Margo I Seltzer.
Berkeley DB. In Proceedings of USENIX ATC,
FREENIX Track, pages 183–191, 1999.

[56] VMware Inc. or its affiliates. Spring Data Redis -
Retwis-J. https://docs.spring.io/spring-dat
a/data-keyvalue/examples/retwisj/current/.

[57] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-Sensitive Datacenter
Workloads. In Proceedings of USENIX NSDI, pages
361–378, 2019.

[58] Sujin Park, Diyu Zhou, Yuchen Qian, Irina Calciu, Tae-
soo Kim, and Sanidhya Kashyap. Application-Informed
Kernel Synchronization Primitives. In Proceedings of
USENIX OSDI, pages 667–682, 2022.

[59] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and
Timothy Roscoe. Arrakis: The Operating System is the
Control Plane. ACM Transactions on Computer Systems
(TOCS), 33(4):1–30, 2015.

[60] Valentin Poirot, Beshr Al Nahas, and Olaf Landsiedel.
Paxos Made Wireless: Consensus in the Air. In EWSN,
pages 1–12, 2019.

[61] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma,
and Arvind Krishnamurthy. Designing Distributed Sys-
tems Using Approximate Synchrony in Data Center Net-
works. In Proceedings of USENIX NSDI, pages 43–57,
2015.

[62] Ravi Prasad, Manish Jain, and Constantinos Dovrolis.
Effects of Interrupt Coalescence on Network Measure-
ments. In International Workshop on Passive and Active
Network Measurement, pages 247–256. Springer, 2004.

[63] The IO Visor Project. BPF Compiler Collection (BCC).
https://github.com/iovisor/bcc.

[64] The IO Visor Project. eXpress Data Path (XDP). https:
//www.iovisor.org/technology/xdp.

[65] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang,
and KK Ramakrishnan. SPRIGHT: Extracting the
Server From Serverless Computing! High-Performance
eBPF-Based Event-Driven, Shared-Memory Processing.
In Proceedings of ACM SIGCOMM, pages 780–794,
2022.

[66] Henry N Schuh, Weihao Liang, Ming Liu, Jacob Nel-
son, and Arvind Krishnamurthy. Xenic: SmartNIC-
Accelerated Distributed Transactions. In Proceedings
of ACM SOSP, pages 740–755, 2021.

[67] ScyllaDB. SeaStar High Performance Server-Side Ap-
plication Framework. https://github.com/scyll
adb/seastar.

[68] Muhammad Shahbaz, Lalith Suresh, Jennifer Rexford,
Nick Feamster, Ori Rottenstreich, and Mukesh Hira.
Elmo: Source Routed Multicast for Public Clouds. In
Proceedings of ACM SIGCOMM, pages 458–471. 2019.

[69] Gráinne Sheerin. gRPC and Deadlines. https://gr
pc.io/blog/deadlines/.

[70] Alberto Spina, Julie McCann, Michael Breza, and
Anandha Gopalan. Reliable Distributed Consensus for
Low-Power Multi-Hop Networks. PhD thesis, Master’s
thesis, Imperial College London, 2019.

[71] Michael Stonebraker, Samuel Madden, Daniel J. Abadi,
Stavros Harizopoulos, Nabil Hachem, and Pat Helland.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1405

https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
https://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
https://github.com/iovisor/bcc
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp
https://github.com/scylladb/seastar
https://github.com/scylladb/seastar
https://grpc.io/blog/deadlines/
https://grpc.io/blog/deadlines/

The End of an Architectural Era: (It’s Time for a
Complete Rewrite). In Proceedings of VLDB, page
1150–1160. VLDB Endowment, 2007.

[72] Adriana Szekeres, Michael Whittaker, Jialin Li,
Naveen Kr Sharma, Arvind Krishnamurthy, Dan RK
Ports, and Irene Zhang. Meerkat: Multicore-
Scalable Replicated Transactions Following the
Zero-Coordination Principle. In Proceedings of
EuroSys, pages 1–14, 2020.

[73] Amy Tai, Igor Smolyar, Michael Wei, and Dan Tsafrir.
Optimizing Storage Performance with Calibrated Inter-
rupts. ACM Transactions on Storage (TOS), 18(1):1–32,
2022.

[74] Robbert Van Renesse and Fred B Schneider. Chain
Replication for Supporting High Throughput and Avail-
ability. In Proceedings of USENIX OSDI, volume 4,
2004.

[75] Ed. W. Eddy. RFC 9293: Transmission Control Protocol
(TCP). https://datatracker.ietf.org/doc/htm
l/rfc9293.

[76] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-Enabled Distributed
Transactions: Hybrid is Better! In Proceedings of
USENIX OSDI, pages 233–251, 2018.

[77] IJsbrand Wijnands, E Rosen, Andrew Dolganow, Tony
Przygienda, and Sam Aldrin. RFC 8279: Multicast
Using Bit Index Explicit Replication (BIER). https:
//www.rfc-editor.org/rfc/rfc8279.

[78] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. NetLock: Fast,
Centralized Lock Management Using Programmable
Switches. In Proceedings of ACM SIGCOMM, pages
126–138, 2020.

[79] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, et al. The Demikernel Datapath OS Archi-
tecture for Microsecond-Scale Datacenter Systems. In
Proceedings of ACM SOSP, pages 195–211, 2021.

[80] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan RK Ports. Build-
ing Consistent Transactions with Inconsistent Replica-
tion. ACM Transactions on Computer Systems (TOCS),
35(4):1–37, 2018.

[81] Hanyu Zhao, Quanlu Zhang, Zhi Yang, Ming Wu,
and Yafei Dai. SDPaxos: Building Efficient Semi-
Decentralized Geo-Replicated State Machines. In Pro-
ceedings of ACM SoCC, pages 68–81, 2018.

[82] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Jun-
feng Yang, Amy Tai, Ryan Stutsman, et al. XRP: In-
Kernel Storage Functions with eBPF. In Proceedings of
USENIX OSDI, pages 375–393, 2022.

1406 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/doc/html/rfc9293
https://www.rfc-editor.org/rfc/rfc8279
https://www.rfc-editor.org/rfc/rfc8279

Types Protocols Applying message broadcasting Applying fast acknowledging Applying wait-on-quorums

Replication

Primary-
backup

The primary broadcasts requests to
backups.

Each backup buffers messages in the kernel and quickly
responds to the primary.

The primary waits for responses
from all backups.

Chain None Each replica (except for the last one) buffers write re-
quests in the kernel and forwards them to the next replica. None

Concurrency
control

Two-phase
locking

A transaction coordinator broad-
casts LOCK and UNLOCK requests to
all shards.

Each shard maintains a lock table in the kernel and di-
rectly handles lock acquiring and releasing.

A transaction coordinator waits for
responses from all shards.

OCC None Each shard checks in the kernel if the committing trans-
action’s timestamp conflicts with all other running ones. None

Atomic com-
mitment

Two-phase
commit

A transaction coordinator broad-
casts PREPARE and COMMIT re-
quests to all shards.

Each shard buffers PREPARE messages in the kernel
and responds to the coordinator, and handles COMMIT
requests by polling the buffered messages.

A transaction coordinator waits for
responses from all shards

Table 4: Applying Electrode to more distributed protocols.

APPENDIX

A Electrode Generalizability
Table 4 summarizes how the classic replication, concurrency
control, and atomic commitment protocols can leverage Elec-
trode optimizations. For example, the primary-back replica-
tion, two-phase locking, and two-phase commit protocols fol-
low the pattern of sending requests to multiple nodes and
waiting for a quorum number of responses; thus they nat-
urally fit well with the eBPF-based message broadcasting
and wait-on-quorums. Together with the above protocols, the
chain replication [74] and opportunistic concurrency control
(OCC) [34] protocols include some critical-yet-simple oper-
ations like storing messages in memory, maintaining a lock
table, and checking timestamp conflicts; these operations are
also suitable for offloading to the eBPF following the fast
acknowledging mechanism.

B Impact of Interrupt Coalescing
During benchmarking, we noticed that the interrupt coalesc-
ing [62] (IC) feature of modern NICs has a big impact on
the measured performance. In IC, after an incoming packet
triggers an interrupt, the kernel networking stack waits until a
threshold of packets arrives or a timeout gets triggered, aim-
ing to amortize the interrupt cost. In our scenarios, we find it
significantly hurts latency and performance predictability in
our settings; similar results are also reported in [73]. Thus, in
all our experiments, we disable IC by default.

Figure 9 shows the performance impact of IC on the Multi-
Paxos protocol and Electrode-accelerated one, by varying the
number of open-loop clients. With IC, load-latency curves
become unpredictable with two “hockey stick”s. The second
“hockey stick” is because the extremely high load triggers coa-
lescing/batching much more packets in one interrupt. Overall,
IC does not nearly impact the maximum throughput for the
Multi-Paxos protocol and Electrode-accelerated one, but it
increases the latency by 57.4%-129.2% and 9.1%-246.8%
with 1-3 clients (before the first “hockey stick”). Moreover,

0 10 20 30 40 50 60
Throughput (K req/s)

0

500

1000

1500

M
ed

ia
n

la
te

nc
y

(μ
s)

Multi-Paxos IC on
Multi-Paxos IC off
+ Electrode IC on
+ Electrode IC off

Figure 9: Performance impact of interrupt coalescing (IC) on the
Multi-Paxos protocol vs. Electrode-accelerated one (with 5 replicas).

enabling IC decreases the one-client throughput by 38.3% and
10.1% for the original Multi-Paxos and Electrode-accelerated
one, respectively.
Electrode performance with IC: Electrode accelerates the
maximum throughput of the Multi-Paxos protocol by 81.4%
and latency by 32.7% with 1 client (before the first “hockey
stick”) when IC is on.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 1407

	Introduction
	Background
	Consensus Protocols
	eBPF and Hooks

	Electrode Overview
	Electrode Designs
	Message Broadcasting in TC
	Fast Acknowledging in XDP
	Wait-on-Quorums in TC + XDP

	Electrode Implementation
	Apply Electrode to Multi-Paxos
	Evaluation
	Overall Results
	Performance Gain Breakdown
	Application Performance
	CPU Utilization
	Comparison with Kernel-Bypassing

	Discussion and Future Work
	Related Work
	Conclusion
	Electrode Generalizability
	Impact of Interrupt Coalescing

