
Software Defined Traffic Measurement with OpenSketch

Minlan Yu† Lavanya Jose∗ Rui Miao†

† University of Southern California ∗ Princeton University

Abstract

Most network management tasks in software-defined

networks (SDN) involve two stages: measurement and

control. While many efforts have been focused on net-

work control APIs for SDN, little attention goes into

measurement. The key challenge of designing a new

measurement API is to strike a careful balance between

generality (supporting a wide variety of measurement

tasks) and efficiency (enabling high link speed and low

cost). We propose a software defined traffic measure-

ment architecture OpenSketch, which separates the mea-

surement data plane from the control plane. In the

data plane, OpenSketch provides a simple three-stage

pipeline (hashing, filtering, and counting), which can be

implemented with commodity switch components and

support many measurement tasks. In the control plane,

OpenSketch provides a measurement library that auto-

matically configures the pipeline and allocates resources

for different measurement tasks. Our evaluations of real-

world packet traces, our prototype on NetFPGA, and

the implementation of five measurement tasks on top of

OpenSketch, demonstrate that OpenSketch is general, ef-

ficient and easily programmable.

1 Introduction

Recent advances in software-defined networking (SDN)

have significantly improved network management. Net-

work management involves two important stages: (1)

measuring the network in real time (e.g., identifying traf-

fic anomalies or large traffic aggregates) and then (2)

adjusting the control of the network accordingly (e.g.,

routing, access control, and rate limiting). While there

have been many efforts on designing the right APIs for

network control (e.g., OpenFlow [30], ForCES [1], rule-

based forwarding [34], etc.), little thought has gone into

designing the right APIs for measurement. Since con-

trol and measurement are two important halves of net-

work management, it is important to design and build

a new software-defined measurement architecture. The

key challenge is to strike a careful balance between gen-

erality (supporting a wide variety of measurement tasks)

and efficiency (enabling high link speed and low cost).

Flow-based measurements such as NetFlow [2] and

sFlow [43] provide generic support for different mea-

surement tasks, but consume too resources (e.g., CPU,

memory, bandwidth) [29, 18, 20]. For example, to iden-

tify the big flows whose byte volumes are above a thresh-

old (i.e., heavy hitter detection which is important for

traffic engineering in data centers [6]), NetFlow collects

flow-level counts for sampled packets in the data plane.

A high sampling rate would lead to too many counters,

while a lower sampling rate may miss flows. While there

are many NetFlow improvements for specific measure-

ment tasks (e.g., [49, 20]), a different measurement task

may need to focus on small flows (e.g., anomaly detec-

tion) and thus requiring another way of changing Net-

Flow. Instead, we should provide more customized and

dynamic measurement data collection defined by the soft-

ware written by operators based on the measurement re-

quirements; and provide guarantees on the measurement

accuracy.

As an alternative, many sketch-based streaming algo-

rithms have been proposed in the theoretical research

community [7, 12, 47, 8, 21, 48], which provide efficient

measurement support for individual management tasks.

However, these algorithms are not deployed in practice

because of their lack of generality: Each of these algo-

rithms answers just one question or produces just one

statistic (e.g., the unique number of destinations), so it

is too expensive for vendors to build new hardware to

support each function. For example, the Space-Saving

heavy hitter detection algorithm [8] maintains a hash ta-

ble of items and counts, and requires customized opera-

tions such as keeping a pointer to the item with minimum

counts and replacing the minimum-count entry with a

new item, if the item does not have an entry. Such al-

gorithms require not only a customized switch chip (or

network processor) to implement, but also are hard to

change for a better solution in the future. Instead, we

should design a simple, efficient data plane that is easy

to implement with commodity switch components, while

leaving those customized data analysis to the software

part in the controller.

Inspired by OpenFlow which enables simple and effi-

cient control of switches by separating control and data

functions, we design and implement a new software-

defined traffic measurement architecture OpenSketch.

OpenSketch provides a generic and efficient measure-

ment solution, by separating the measurement control

and data plane functions (Figure 1). Like OpenFlow,

OpenSketch keeps the data plane simple to implement

and flexible to configure, while enabling flexible and

easy programming for different measurement tasks at the

controller. OpenSketch’s measurement support, together

with OpenFlow-like control support, can form a com-

plete measure and control loop for software-defined net-

working. We expect that OpenSketch will foster more

network management solutions using measurement data

and theoretical innovations in measurement algorithms.

We made two major contributions in OpenSketch:

First, OpenSketch redesigns the measurement APIs

at switches to be both generic and efficient. Unlike

flow-based measurement, OpenSketch allows more cus-

tomized and thus more efficient data collection with re-

spect to choosing which flow to measure (using both

hashing and wildcard rules), which data to measure

(more than just byte/packet counters, such as the average

flow size), and how to store the measurement data (more

compact data structures rather than simple five tuples

plus per-flow counters). We design a three-stage data

plane pipeline that supports many measurement tasks

with simple configurations, operates at high link speed

with limited memory, and works with commodity hard-

ware components.

Second, OpenSketch makes measurement program-

ming easier at the controllers by freeing operators from

understanding the complex switch implementations and

parameter tuning in diverse sketches. We build a mea-

surement library which automatically configures the data

plane pipeline for different sketches and allocates the

switch memory across tasks to maximize accuracy. The

OpenSketch measurement library also makes it easier

for operators to apply new theoretical research results

of sketches and streaming algorithms upon commodity

switch components.

We compare OpenSketch with NetFlow and stream-

ing algorithms using packet traces from CAIDA [42],

and show that OpenSketch provides a good accuracy-

memory tradeoff. We build an OpenSketch data plane

Figure 1: Software defined traffic measurement

prototype on NetFPGA, which shows no additional over-

head on switch data plane. Both OpenSketch data and

control plane codes are publicly available [5].

Although OpenSketch is sketch-based, it can support

a wide variety of measurement tasks because different

sketches already support tasks including counting a set

of flows, measuring various traffic statistics, and identi-

fying specific flows. In order to make OpenSketch sim-

ple enough to implement with commodity hardware and

operate at line rate, OpenSketch does not support all the

traffic measurement tasks. For example, the OpenSketch

data plane does not provide complex data structures (e.g,

binary search tree used in some sketches [9]) or directly

support all measurement algorithms (e.g., flow size dis-

tribution). Instead, we rely on the software in the con-

troller to implement these complex data structures and

algorithms using simpler sketches in the data plane.

With our OpenSketch platform, we implement five

measurement tasks (e.g., heavy hitter detection, flow size

distribution calculation) using the measurement library

with 15-170 lines of code.

2 Background on Sketches

Sketches are compact data structures used in streaming

algorithms to store summary information about the state

of packets. Compared to flow-based counters, sketches

have two key properties:

(1) Low memory usage: The size of summary informa-

tion (sketch outputs) is significantly smaller than the in-

put size. For example, the bitmap [22] is a simple sketch

that maintains an array of bits to count the number of

unique elements (e.g., IP source addresses). We hash

each item in a stream of elements to one of the b bits

in the bitmap and set the bit to 1. The number of unique

elements can be estimated by b× ln(b/z) where z is the

number of unset bits. Another example is the Count-Min

sketch, which maintains a two dimensional array A of

counters with width w and depth k. Each entry in the ar-

ray is initially zero. For each element x, we perform the k

pair-wise independent hash functions and increment the

counts at A[i,hi(x)](i = 1..k). To get the frequency for

an element x, we just perform the same k hash functions,

2

get k counters from the Count-Min sketch, and report the

minimum counter among them.

(2) Provable tradeoffs of memory and accuracy:

Sketches often provide a provable tradeoff between

memory and accuracy, though the definition of accuracy

depends on the actual sketch function. For a bitmap of b

bits, the error in the estimated count n̂ compared to the

real value n is SD(n̂/n)≈√
eρ −ρ − 1/(ρ

√
b), where ρ

is the average number of flows that hash to a bit [22]. In

the Count-Min sketch, the relative error in terms of total

count is εcm = e× t×Hcm/Ccm, where Hcm is the number

of hash functions and the e is Euler’s constant, t is the

number of bytes per counter, and Ccm is its total memory

in bytes. Note that the bound is for the worst-case traf-

fic and thus independent of the traffic characteristics. If

we have a better understanding of the traffic then we can

have a tighter bound for the memory-accuracy tradeoff.

For example, for the Count-Min sketch, if we can esti-

mate the distribution skew of the elements in the stream

(e.g., a Zipfian parameter of α), we can have a tighter es-

timation of the error rate (e× t ×Hcm/Ccm)
max(1,α) [14].

Example measurement solutions built on sketches:

Sketches can be used for many measurement tasks such

as heavy hitters detection [8], traffic change detec-

tion [37], flow size distribution estimation [28], global

iceberg detection [26], and fine-grained delay measure-

ment [36]. For example, to count the number of unique

sources accessing a web server via port 80, we can sim-

ply filter the traffic based on port 80 and then use a

bitmap to count the number of unique source addresses.

Another example is heavy hitter detection [8], which

is important for traffic engineering in data centers [6].

Heavy hitters are those large flows that consume more

than a fraction T of the link capacity during a time inter-

val. To identify heavy hitters, we first use a Count-Min

sketch to maintain the counts for each flow. Then, we

identify potential flows that hashed to heavy counters in

a reversible sketch [37], and verify their actual count us-

ing the Count-Min sketch.1

3 OpenSketch Data Plane

In this section, we first describe the design of Open-

Sketch data plane. We want to be generic and support

various measurement tasks but we also want to be effi-

cient and save switch memory (TCAM, SRAM) and use

only a few simple hash functions. Next, we discuss how

to implement such a data plane with commodity switch

1To insert an element in the reversible sketch, we perform multi-

ple modular hash functions on the same key, and increment counters at

multiple places. To get the original key, we reverse the modular hash

values of the heavy bins, intersect them to get a small set of poten-

tial keys. We discuss the technical details of implementing and using

reversible sketch in the Reference.

hardware at line rate. Finally, we use several example

sketches to show how to configure the simple data plane

to meet different requirements.

3.1 Generic and efficient data plane

A measurement data plane consists of two functions:

picking the packets to measure and storing/exporting the

measurement data. OpenSketch allows more customized

and efficient ways to pick which packets and which data

to measure by leveraging a combination of hashing and

wildcard rules. OpenSketch also allows more flexible

collection of measurement data by breaking the tight

bindings between flows and counters. It reduces the

amount of data to store and export using more compact

data structures.

Picking the packets to measure: OpenSketch shows

that a combination of hashing and classification can sup-

port a wide variety of ways of picking which packets to

measure. Hashes can be used to provide a compact sum-

mary of the set of flows to measure. For example, to

count the traffic to a set of servers, we can use hashing

to provide a compact representation of the set of servers

(e.g., Bloom filter). To count the number of redundant

packets with the same content, we can hash on the packet

body into a short fingerprint rather than store and com-

pare the entire packet body every time. Hashes also en-

able a provable accuracy and memory tradeoff.

Classification is also useful for focusing on some spe-

cific flows. For example, a cloud operator may need to

identify the popular flows from a specific tenant or iden-

tify the DDoS attack targets within a list of web servers.

Therefore, we need a classification stage to measure dif-

ferent flows with different number of counters or with

different levels of accuracy. For example, if there is

too much traffic from the IP address 192.168.1.1, we

can filter out packets from 192.168.1.1/32 i.e. use one

counter to count traffic from the specific IP and another

to count remaining traffic of interest from the subnet

192.168.1.0/24. For classifying flows, we can specify

wildcard rules that match packets on flow fields and al-

low some bits in the flow fields to be “don’t care”. For

example, the rule can match packets on source IP prefix

192.168.1.0/24, where the lower 8 bits are “don’t care”

bits.

Storing and exporting the data: OpenSketch uses a

small table with complex indexing. Each entry in the

table only contains the counters without the flow fields.

These counters can be associated with different entities

like a microflow, a wildcard flow, or even a hash value.

In this way, OpenSketch allows more flexible data collec-

tion with much less memory than traditional flow-based

3

Figure 2: OpenSketch switch data plane

tables. Moreover, OpenSketch can easily export the table

to the controller with small bandwidth overhead.

To get such flexibility and memory saving, Open-

Sketch requires more complex indexing using the hash-

ing and classification modules. Fortunately, these

complex indexes are easy to calculate using commod-

ity switch components. For those measurement tasks

that need to identify specific flows, the controller can

maintain the mappings between counters and flows for

classification-based indexing, or reverse engineer the

flows from the hash values for hash-based indexing (e.g.,

using reversible hashing [37]).

OpenSketch data plane: OpenSketch data plane has

three stages: a hashing stage to reduce the measurement

data, a classification stage to select flows, and a count-

ing stage to accumulate traffic statistics (Figure 2). We

use the bitmap as an example to show how the data plane

works. Suppose we use the bitmap to count the number

of unique source IP addresses to a given destination sub-

net (say 192.168.1.0/24): First, the hashing stage picks

the packet source field and calculates a single hash func-

tion. Next, the classification stage picks the packet des-

tination field and filters all the packets matching the rule

(dst : 192.168.1.0/24→ 1). Each rule has an index field,

which can be used to calculate the counter location in the

counting stage. For example, those packets in the sub-

net get the index “1”, which means counting; the other

packets get the default index “-1” and are not counted.

Finally, the counting input function calculates the index

of the bit to be updated using the hash value of the source

field. The corresponding position in the counting table

for the bitmap is marked as 1.

3.2 Build on existing switch components

OpenSketch data plane can be easily implemented with

commodity switch components:

A few simple hash functions: OpenSketch relies on

hashing to pick the right packets to measure with prov-

able memory and accuracy tradeoffs. However, sketches

may need a different number of hash functions or dif-

ferent types of hash functions, and may operate on dif-

ferent packet fields. For example, the Count-Min sketch

requires k (e.g., 3) pairwise independent hash functions.

On the other hand bitmaps [44] and the PCSA sketch [23]

require a truly random hash function (i.e. each item is

hashed uniformly on its range and completely indepen-

dently of others).

Fortunately, our experiences of implementing vari-

ous sketches show that 4-8 three-wise or five-wise in-

dependent hash functions are enough for many measure-

ment requirements, and can be implemented efficiently

in hardware [35, 40]. Moreover, simple hash functions

can make use of the entropy in the traffic to approximate

even truly random hash functions well [32].

We can also reduce the number of hash functions by

allowing multiple sketches to share the same set of hash

functions.

A few TCAM entries for classification: Classifica-

tion can be easily implemented with high-speed memory

TCAMs (Ternary Content-Addressable Memory), which

already exist in today’s switches to store ACLs (Access

Control Lists). TCAMs can match packets with multiple

rules in parallel and perform actions based on the rule

with the highest priority. Each rule contains the match-

ing fields (including 0’s, 1’s, and“don’t care” bits) and

actions (such as incrementing a counter and pointing to a

SRAM address).

TCAMs are expensive and power hungry, and thus

only have a limited number of entries in most switches

(e.g., at most thousands of entries [16]). Since Open-

Sketch leverages a combination of hashing and classifi-

cation to select packets, it does not maintain individual

flow entries in the TCAM and thus significantly reduces

the number of TCAM entries to support most measure-

ment tasks. In addition to simple wildcard matching on

4

packet fields, we allow TCAM entries to match on hash

values and leverage the “don’t care” bits to perform other

operations such as set checking. We will show our de-

tailed design for supporting different sketches in the next

subsection.

Flexible counters in SRAM: We store all the counters

in the SRAM, because SRAMs are much cheaper, more

energy-efficient, and thus larger than TCAMs. Leverag-

ing the provable memory-accuracy tradeoffs in sketches,

we can make sure that the sketches always fit in the

switch SRAM independent of the traffic pattern.

However, different sketches require different numbers

and sizes of counters: the bitmap contains an array of

0’s and 1’s, while the Count-Min sketch [13] contains

several counters for a single packet. We introduce a list

of logical tables in the SRAM (e.g., in Figure 2 we show

three logical tables of different colors). These tables can

represent different counters in the same sketch (e.g., k

tables for the Count-Min Sketch) or different sketches

in the same SRAM. Since all the counters stored in the

SRAM can be easily accessed by their addresses, we use

a single physical address space to identify the counters

in all the logical tables. Based on the table id and the

relative counter position in the table, we can easily locate

the counter position in the SRAM. On those SRAMs that

have 6-8 read/write ports [17], these counters can even

be updated at the same time.

3.3 Supporting diverse sketches

OpenSketch data plane can support a wide variety of

sketches by leveraging a smart combination of hashing,

classification, and counting. Here we only discuss a few

sketches, for which an implementation in OpenSketch

is not obvious. We show more sketch examples such

as hash tables, Count-Min sketches, and wildcard filters

in [45]. The goal of this subsection is not to show the

detailed tricks of implementing a specific sketch, but to

show the power of the simple OpenSketch data plane in

implementing many complex sketches.

Bit checking operations: Many sketches require more

complex bit checking operations than simply comparing

the packet fields to a pre-defined rule. For example, the

Bloom filter, which is used to filter packets based on a

predefined set, requires checking if k positions are 1 or

not (based on k hash values calculated from the packets).

The DFAs (Deterministic Finite Automaton) [10, 39] and

regular expressions [31], which are often used for net-

work intrusion detection, require converting one packet

state to another.

To implement such sketches in OpenSketch data

plane, we can leverage the hashes and the wildcard bits

in TCAMs. For example, to check if a packet’s source

port belongs to a predefined set of source ports with

Bloom filters, we first calculate the Bloom filter array B

of 0’s and 1’s (e.g., 0001101101) of the pre-defined set.

Next, we calculate the k hash functions on each incom-

ing packet’s source port and generate the packet’s array P

(e.g., 0001000001). Now we need to check if all the 1’s

positions in P are also 1’s in B. Although such complex

bit checking is not supported by TCAM, we can match P

with B∗, where B∗ replaces all the 1’s in B with ∗ (e.g.,

B∗ =000**0**0*) [24]. Then we can match P against

B∗. The 0 in B∗ correspond to bits that were not set by

any packet in B. If P has a 1 where B∗ has a 0, then we

can conclude that P is not in B. But if P matches the

TCAM entry B∗, there is a chance that P is in B, and we

say the packet matches the Bloom filter.

Picking packets with a given probability: Many

sketches require picking packets with different probabili-

ties. For example, the PCSA sketch (Probabilistic Count-

ing with Stochastic Averaging) [23] provides a way to

count the number of unique values of a header field(s)

The basic idea is to sample packets into different bins

with power-of-two ratios (e.g., 1/2, 1/4, ...1/2n). If

there’s a packet that falls in the bin i, then that means

there are at least 2i different values. Other streaming al-

gorithms may require sampling packets at a given rate

(not necessarily power-of-two) to reduce the measure-

ment overhead.

To support this probabilistic packet selection using

only simple uniform hash functions in OpenSketch, we

choose to combine these hashes with a few TCAM en-

tries. For example, to implement power of two probabil-

ities, we first calculate the hash value for a packet field

using the uniform hash function. Next, we compare the

hash value with TCAM rules such as R1 : 0 ∗ ∗ ∗ ...→ 1;

R2 : 10 ∗ ∗...→ 2; R3 : 110 ∗ ...→ 3; etc. There is a 1/2

chance that a hash value matches rule R1, 1/4 for R2, an

so on. We can further combine these rules to implement

other more complex probabilities.

Picking packets with different granularity: Many

streaming algorithms (such as flow size distribu-

tion [28], counting distinct destinations with the multi-

resolution bitmap [22], and latency tracking with arbi-

trary loss [27]) often make tradeoffs between flow space

coverage and accuracy. If they cover a smaller flow

space, they can devote more counters to more accurately

measure the covered space, but the measurement result is

less representative for the entire flow space. If they cover

a larger flow space, the result is more representative but

less accurate. Therefore, many algorithms require dif-

ferent levels of coverage in the flow space. For exam-

ple, the algorithm to measure flow-size distribution [28]

hashes on the packets and maps the hash value to differ-

ent sizes of ranges ([0,1/2],[1/2, 3/4]), ...) and measures

5

the flow sizes within these ranges. The multi-resolution

bitmap [22] uses a similar idea to count the number of

unique elements in each range. However, all these algo-

rithms assume customized hardware.

Instead, we design a new multi-resolution classifier

that can be easily implemented with TCAM and used in

different measurement programs. The multi-resolution

classifier uses lg(n) TCAM entries to represent differ-

ent ranges in the flow space, where n is the range of

the flowspace: R1 : 0 ∗ ∗ ∗ ... → 1; R2 : 10 ∗ ∗... → 2;

R3 : 110 ∗ ... → 3; etc. Operators simply need to glue

the multi-resolution classifier before their other measure-

ment modules to increase the accuracy of their measure-

ments with a good flow space coverage.

4 OpenSketch Controller

With OpenSketch providing a simple and efficient data

plane, operators can easily program measurement algo-

rithms and even invent new measurement algorithms by

gluing different sketches together. The OpenSketch con-

troller provides a sketch library with two key compo-

nents: A sketch manager that automatically configures

the sketches with the best memory-accuracy tradeoff;

and a resource allocator that divides switch memory re-

sources across measurement tasks.

4.1 Programming measurement tasks

Although OpenSketch is sketch-based, it can support a

wide variety of measurement tasks because: (1) There

are already many sketches for tasks ranging from count-

ing a set of flows, measuring various traffic statistics, to

identifying specific flows. (2) Even when some traffic

characteristics are not directly supported by sketches, we

can still install simpler sketches and implement the com-

plex data analysis part in software in the controller.

As shown in Table 1, we have implemented several

measurement programs by simply gluing building blocks

together. The algorithms to measure flow size distribu-

tion and to count traffic leverage different sketches (e.g.,

multi-classifier sketches and Bloom filters) to pick the

right packets to measure. The heavy hitter detection

and superspreader/DDoS detection algorithms leverage

Count-Min sketches and k-ary sketches to count specific

traffic characteristics. Although there are no sketches

that directly measure traffic changes or flow size distri-

bution, we can still rely on sketches to get basic counters

(e.g., flow size counters) and leave it to the controller to

analyze these counters (e.g., calculate the distribution).

We take the superspreader/DDoS detection as an ex-

ample to show how to use OpenSketch to implement a

measurement task. Superspreaders are those hosts that

send packets to more than k unique destinations during a

time interval. The goal of superspreader detection is to

detect the sources that send traffic to more than k distinct

destinations, and ensure that the algorithm does not re-

port the sources with ≤ k/b destinations, with high prob-

ability ≥ 1−δ [41]. The streaming algorithm for detect-

ing superspreaders [41] samples source-destination pairs

and inserts them into a hash table, which requires a cus-

tomized ASIC to implement in the data plane.

Combining Count-Min sketch and bitmap. Given the

building blocks in the OpenSketch measurement library,

we implement this superspreader algorithm using a com-

bination of the bitmap, Count-Min sketch, and reversible

sketch. Ideally, we would like to use a sketch to count

the number of unique destinations for each source. How-

ever, the Count-Min sketch can only count the number of

packets (not unique destinations) for each source, while

the bitmap can only provide a single count of the total

number of unique destinations but not individual coun-

ters for each source. Therefore, we combine the Count-

Min sketch and the bitmap to count the number of unique

destinations that each source sends: We replace the nor-

mal counters in Count-Min sketch with bitmaps to count

the unique number of destinations instead of the number

of packets. Since the superspreaders algorithm requires

us to report a source if the number of retained destina-

tions is more than r, we need a bitmap that can count

up to around r destinations. Similarly, we combine re-

versible sketches with bitmaps to track the superspreader

sources.

Sampling source-destination pairs to reduce memory

usage: One problem of simply using the sketches is

that the trace can still have a large number destinations,

leading to large memory requirement to get a reasonable

accuracy. To reduce memory usage, we choose to sample

and measure only a few source-destination pairs. Similar

to the streaming algorithm [41], we sample the packet at

rate c/k, and report all source IPs that have more than

r destinations, where c and r are defined as a constant,

given b and δ as shown in Figure 2 in [41]. For example,

when we set b = 2 and δ = 0.2, we get r = 33 and c =
44.83.

Although we use the same sampling solution as the

work in [41], there are three key differences: (1) We

use Count-Min sketches instead of hash tables, which

reduces memory usage with a slightly higher error rate.

Count-Min sketches are especially beneficial when there

are only a few heavy sources (contacting many destina-

tions) and many light sources (contacting a few desti-

nations), because there are fewer collisions between the

heavy and light sources. (2) the work in [41] uses 32

bits to store destination IPs for each pair of source and

destination while the bitmap stores only O(r) bits totally.

If we set a threshold r = 33, we only need a bitmap of

6

Measurement Tasks Definitions Building Blocks

Heavy Hitters [13]

Identify large flows that consume more than a

fraction T of the link capacity during a time in-

terval

Count-Min sketch to count volume of flows, re-

versible sketch to identify flows in Count-Min with

heavy counts

Superspreader/DDoS

A k-superspreader is a host that contacts more

than k unique destinations during a time inter-

val. A DDoS victim is a host that is contacted

by more than k unique sources.

Count-Min sketch to estimate counts for different

sources, bitmap to count distinct destinations for

each Count-Min sketch counter, reversible sketch

to identify sources in Count-Min sketch with heavy

distinct counts

Traffic changes

detection [37]

Identify flows whose absolute contribution to

traffic changes are the most over two consecu-

tive time intervals

k-ary sketch and reversible sketches for consecu-

tive intervals to identify heavy changes

Flow size dist. [28]

Indicate the portion of flows with a particular

flow size

multi-resolution classifier to index into hash table

at right granularity; hash table to count volume of

flows mapped to it

Count traffic
Count the distinct number of source addresses

who send traffic to a set of destinations

Bloom filter to maintain the set of destinations;

PCSA to maintain distinct count of sources

Table 1: Implementing measurement tasks using the OpenSketch library

for (index in rev sketch.bins) {
count = distinct count.get count(index, rev sketch)}

flow array = rev sketch.get heavy keys(counts, r)

for (flow in flow array) {
index list = count min.get index(flow)

count list = distinct count.get count(index list, count min)

if (all count in count list > r) output key}

Figure 3: The querying function in superspreader detection

149 bits to store all pairs of sources and destinations for

each Count-Min counter. (3) It is hard to implement

the original streaming algorithm [41] with commodity

switch components. This is because the algorithm re-

quires customized actions on the hash table (e.g., looking

up the src-dst pair in the hash table, inserting a new entry

if it cannot find one and discarding the packet otherwise,

removing entries if the hash table is full, etc.).

Querying in the control plane. Figure 3 shows the data

analysis part of the superspreader detection program. We

first look at the reversible sketch to identify the sources

with counts more than r using the distinct counts from

the bitmaps and compile a list of heavy bins. The re-

versible sketch “reverse-hashes” these bins to identify

potential superspreader sources. The reversible sketch

uses modular hash functions and doesn’t provide any ac-

curacy guarantees for the sources. So we next query the

Count-Min sketch to verify the counts of the candidate

sources. If the count is above the threshold r, then we

report the source as a superspreader.

Although we have shown several examples that oper-

ators can easily program in OpenSketch, there are still

many open questions on how to provide full language

support for many other measurement programs. We

leave this for future work.

4.2 Automatic config. with sketch manager

Picking the right configurations in the measurement data

plane is notoriously difficult, because it depends on the

available resources at switches, the accuracy require-

ments of the measurement tasks, and the traffic distri-

bution. To address these challenges, OpenSketch builds

a sketch manager: The sketch manager automatically

picks the right sketch to use given the measurement re-

quirements and configures the sketches for the best accu-

racy given the provable memory-accuracy tradeoffs of in-

dividual sketches and the relations across sketches. Fur-

thermore, the sketch manager may automatically install

new sketches in the data plane to learn traffic statistics to

better configure the sketches.

We take the superspreader problem as an example:

Picking the right sketch for a function. Given the

provable tradeoffs between error rate and memory size,

the sketch manager automatically picks the right sketch

if there are multiple sketches providing the same func-

tions. In superspreader detection, given memory size

m bits and the threshold r, there are two common data

structures for distinct counters: the PCSA whose error

rate is 0.78
√

⌈logr⌉/m, and the bitmap whose error rate

is
√

(er/m − r/m− 1)/(r2/m). The operator can simply

use “distinct counter” as the virtual sketch in his pro-

gram. The sketch manager can automatically pick the

right sketch of distinct counters to materialize the virtual

sketch. For example, if there are m= 149 bits for distinct

counters and r = 33, the error rate is 14.5% for PCSA,

and 6% for bitmap. Therefore, the manager picks bitmap

for the superspreader problem.

Allocating resources across sketches. In Open-

Sketch, operators can simply configure the sketches re-

quired for their programs without detailed configura-

tions. The sketch manager can automatically allocate

7

resources across sketches within the measurement pro-

gram, given the memory-error tradeoffs of individual

sketches. For the superspreader example, the man-

ager automatically formulates the following optimization

problem: configuring the sketch parameters (the number

of bits in each bitmap m, the number of hash functions H,

and the number of counters for each hash function M in

the Count-Min sketch), to minimize the error rate of the

superspreader detection, given the total memory size Css,

the threshold r, the sampling ratio c/k, and the estimated

number of distinct src-dst pairs N.

Min εss = (εbmr+ εcm ×N × c/k)/r (1)

s.t. εbm =

√

(er/m − r/m− 1)/(r2/m) (2)

εcm = e(1+ εbm)/Mcm (3)

Css = HcmMcm m ≤Ctotal (4)

m f illup ≤ m ≤ mmax (5)

Eq.(1) describes the goal of the optimization prob-

lem, which is to minimize the error rate of the combina-

tion of Count-Min Sketch and bitmap, which is at most

(εbmr+εcm×N×c/k)/r for counts< r as proved in [25].

Eq.(2) and Eq.(3) define the error rate of the bitmap

and the Count-Min sketch. Eq.(4) describes the mem-

ory constraints: The combination of Count-Min sketch

and bitmap should take less memory than that available

at the switch. Eq.(5) bounds the number of bits m used

in bitmap. As suggested in [44], we set m f illup to be the

minimum m such that m ≥ 5
√

er/m − r/m− 1, which is

the minimum size to guarantee the bitmap doesn’t fill up

with high probability. We also set mmax = 10r, which is

large enough so that the relative error is less than 1% for

distinct counts up to r = 100.

Note that we do not consider the reversible sketches

in the optimization. This is because the reversible sketch

usually has a fixed size of 5 hash tables each with 4096

(distinct) counters as suggested by [37]. In our evalua-

tions with real packet traces we found that for δ = 0.2, 2

reversible sketches of 98-bit bitmaps (a total of 0.5 MB)

was often large enough to not miss any sampled super-

spreaders (thus the false negative rate is caused by sam-

pling, same as the streaming algorithm). In addition, the

false positives of reversible sketches are not important

because we always check with Count-Min sketch which

provides more accurate counts.

We can easily solve the optimization problem to con-

figure sketches automatically. Suppose we want to find

k = 200 superspreaders with b = 2 and a probability of

at most δ = 0.2 false positives and negatives. We set

the sampling rate at c/k = 44.83/200 and report sources

with at least r = 33 distinct destinations retained. Sup-

pose the the maximum number of distinct source desti-

nation pairs on the link is N = 400,000, and we have

1900KB available for the combination of Count-Min

sketch and bitmap. Then solving the optimization prob-

lem, we find that we can minimize the error when the

bitmap has m = 46 bits, the CM has 3 hash functions and

109,226 counters per hash function.

Installing new sketches to learn traffic statistics. As

shown above, some memory-accuracy tradeoffs require

understandings of traffic characteristics to have a more

accurate configurations of the sketches. For example, in

the superspreader example, we need to have an estima-

tion of the maximum number of source-destination pairs

N. In this case, OpenSketch requires operators to given

a rough estimation based on experiences (e.g., operators

can simply give n2 for a network of n nodes.)

The sketch manager can then automatically install new

sketches to help understand such traffic characteristics.

For example, to count the unique pairs of source and des-

tination, the manager installs a new distinct counter and

periodically checks its value. If the difference between

the counting result and the original estimation is above a

pre-defined threshold, then the manager re-optimizes the

resource allocation problem.

Though we described the sketch manager in the con-

text of finding superspreaders, functions like picking

the right sketch and allocating resources across sketches

(which don’t interact in complex ways) can easily be au-

tomated for other measurement tasks too.

4.3 Resource allocation across tasks

When OpenSketch supports multiple measurement tasks

simultaneously, it is important to optimize the accuracy

of the measurement tasks given the limited resources in

the data plane (e.g., the number of hashing modules, the

TCAM and SRAM sizes). Therefore, we build a re-

source allocator in OpenSketch which automatically al-

locates resources across measurement tasks. Operators

simply need to specify the relative importance of accu-

racy among the tasks. For example, to allocate resources

across heavy hitter and superspreader detection, operator

can simply specify a weight β ∈ [0,1]. β = 1 means op-

erators care most about heavy hitter detection and β = 0

means the other way.

The challenge is to allocate resources across tasks

without considering the detailed implementation of each

task. We propose to modularize the resource allocation

problem using optimization decomposition. The basic

idea is to introduce a price λ to indicate the relative re-

source usage and then leave it to each task to optimize

their own accuracy based on the resource allocation.

For example, operators may want to detect heavy

hitters using a Count-Min sketch and to detect super-

spreaders using a combination of Count-Min sketch and

8

bitmaps simultaneously. We first formulate the main al-

location problem: Given the total switch SRAM mem-

ory Ctotal , the resource allocator allocates the memory

across the two measurement tasks (Eq. (7)) to minimize

the weighted error (Eq. (6)). For Superspreaders, the

error rate εss and space used by the building blocks Css

are as described in 1-4. For heavy hitters the error rate

is εhh = e/Mhh
cm and the space used is Chh = Hhh

cm ×Mhh
cm,

where Hhh
cm is the number of hash functions and Mhh

cm is

the number of counters per hash.

Min εall = (1−β)εss +β εhh (6)

s.t. Css +Chh ≤Ctotal (7)

given β ,Ctotal

Next, we solve the resource allocation problem in a

modularized way by first converting the problem into its

dual problem:

Max min((1−β)εss+λ (Css −Cmax/2))

+min(β εhh +λ (Chh −Cmax/2)) (8)

s.t. λ ≥ 0

We can then easily decompose the dual problem into

two sub-problems corresponding to the two tasks super-

spreader and heavy hitter detection (The two sub prob-

lems are omitted for brevity). Iteratively, the master

problem sets a price λ for the space used the two tasks.

Each task minimizes its objective at the given price,

and the master problem updates its price according to

how much extra space was used by the tasks (using the

subgradient method). When the price eventually con-

verges to the optimal value, we get the resource alloca-

tion across the two tasks and the parameter configura-

tions for each task.2

In general, the optimization decomposition technique

allows the resource allocator to allocate space efficiently

between two tasks without any knowledge of how they’re

implemented, it only needs to know their relative impor-

tance to the operator.

5 Prototype Implementation

Figure 4 shows the key components in our prototype: In

the data plane, we implemented the three-stage pipeline

(hashing, classification, and counting) on NetFPGA; in

the control plane, we implemented the OpenSketch li-

brary which includes a list of sketches, the sketch man-

ager, and the resource allocator.

2Note that such optimization decomposition only works for convex

functions. But the superspreader problem is not convex in terms of

number of counters Mss
cm and the bitmap size m. We work around this

by iterate the size of bitmap from m f illup to mmax, and thus make the

problem convex with a fixed m.

Figure 4: OpenSketch Architecture

Data plane: We implement a OpenSketch switch proto-

type on NetFPGA to understand its efficiency and com-

plexity in real hardware deployment. We insert our mea-

surement modules into the reference switch pipeline, in-

cluding Header Parser, Hashing, Wildcard Lookup, and

SRAM Counter. Since we simply pull packet head-

ers to collect the statistics without changing the packet

bus, there is no effect on packet forwarding latency and

throughput. As a packet enters, the Header Parser pulls

the related fields from the packet header, which are then

hashed by hash functions in parallel. We then pass the

packet header and hash values to the Wildcard Lookup,

where we implement wildcard rule matching in paral-

lel. For each matched rule, we update the corresponding

counters in the SRAM Counter. We use the entire 4.5

MB on-board SRAM to store the counters. To answer the

OpenSketch queries from the controller, we implement a

userspace software to query these counters via IOCTL

calls, which then collects all the counters through PCI

interface.

Controller: We implement seven sketches in c++ in

the controller, including bitmap, PCSA sketch, hash ta-

ble, multi-resolution classifier, bloom filter, count-min

sketch, and reversible sketch. Each sketch has two func-

tions for the measurement programs to use: configure to

specify the packet fields, the memory constraint, and the

number of hash functions to use and query to periodically

get the statistics. We also implement the sketch manager

to configure these sketches and the resource allocator to

divide resources across measurement tasks.

The measurement program in the controller can peri-

odically query the sketches about the statistics (e.g., the

distinct counts from bitmap, the flows from reversible

sketches). According to the received statistics, the mea-

surement programs may install new sketches or change

the accuracy requirements accordingly. The sketches au-

tomatically queries the data plane to get the counters

in order to generate the right statistics to the measure-

ment program. Each time after reporting the counters,

the OpenSketch data plane resets the counters as zero in

order to monitor the traffic statistics at the next measure-

ment interval. The history statistics are maintained in the

controller and written to the disk if necessary.

9

 0

 2

 4

 6

 8

 10

 12

 14

 200 400 600 800 1000 1200

F
a

ls
e

 p
o

s
./

n
e

g
.

(%
)

Switch memory size (KB)

NetFlow-pos
NetFlow-neg

OpenSketch-pos
OpenSketch-neg

(a) False positives/negatives of

OpenSketch and NetFlow

 0.01

 0.1

 1

 10

 100

 200 400 600 800 1000 1200

E
rr

o
r

R
a

te
 (

%
)

Switch memory size (KB)

NetFlow
OpenSketch

(b) Error rates of OpenSketch and

NetFlow

 0.01

 0.1

 1

 10

 100

 200 400 600 800 1000 1200

E
rr

o
r

R
a

te
 (

%
)

Switch memory size (KB)

OpenSketch with α=1.0
OpenSketch with α=1.4

Streaming

(c) Theoretical error rates of OpenSketch

and a space-saving streaming algorithm

Figure 5: Heavy hitter detection with OpenSketch, NetFlow, and space-saving streaming algorithm

6 Evaluation

To evaluate the balance between generality and effi-

ciency, we use packet-trace driven simulations to com-

pare OpenSketch with NetFlow and other streaming al-

gorithms for several measurement tasks using CAIDA

packet traces. To evaluate the feasibility of implement-

ing OpenSketch with commodity switch components, we

run stress tests with our OpenSketch prototype. Both our

simulator and prototype are available at [5].

6.1 Data plane generality and efficiency

Evaluation setup We build a trace-driven simulator of

an OpenSketch implementation of heavy hitters and su-

perspreaders, and compare it to NetFlow with packet

sampling, and a superspreader streaming algorithm [41].

We use a one-hour packet trace collected at a backbone

link of a Tier-1 ISP in San Jose, CA, at 12pm on Sept.

17, 2009 [42]. We collect the counters at the end of ev-

ery measurement interval and reset the counters to mea-

sure the next interval. We configure the parameters in

our evaluation based on recommended values from lit-

erature [21, 38]. We set the measurement interval as 5

seconds and run for 120 measurement intervals to ensure

the metrics converge.

OpenSketch provides a better memory-accuracy

tradeoff than NetFlow. Since both OpenSketch and

NetFlow provide general support for diverse measure-

ment tasks, a natural question arises: which one works

better? We compare the two using the heavy hitter detec-

tion problem because NetFlow, which uses packet sam-

pling, can easily catch large flows and is expected to

work well.

We set the threshold T as 0.5% of the link capacity

to find a few large senders in the traffic with a heavy-

tail distribution. The sketch-based heavy hitter algorithm

uses two building blocks: the Count-Min sketch and the

reversible sketch, which are described in [45]. These

sketches are automatically configured by the sketch man-

ager. We conservatively assume each counter (in both

sketches) uses 4 Bytes, though in practice for counting up

to N = 2 million packets, a counter needs only lg(N) <
3 bytes. For NetFlow with packet sampling, the operator

can set the sampling rate according to how much mem-

ory is available at the router. We conservatively assume

that NetFlow uses 32 Bytes per flow entry (as in [21])

and count the actual number of flow entries used by Net-

Flow.

Figure 5 (a) shows the false positives and false neg-

atives for identifying heavy hitters. OpenSketch has no

false-negatives with 85KB memory, and no false posi-

tives when the switch has 600KB memory. In contrast,

NetFlow needs 724KB memory to achieve 3% false pos-

itives and 3% false negatives. Figure 5 (b) compares the

error rate in estimating the volume of detected heavy hit-

ters. Like in [21], we define the error rate as the relative

error (the average error of each heavy hitter’s volume)

divided by the size of the threshold for fair comparison.

We can see that with 600KB memory, the error rate for

OpenSketch is 0.04%, which is far less than NetFlow.

OpenSketch achieves comparable accuracy to the

streaming algorithms, while providing general-

ity. Although OpenSketch supports most sketch-based

streaming algorithms, it does not support those streaming

algorithms that require complex actions in the data plane.

We compare our OpenSketch-based algorithm with these

streaming algorithms to understand the tradeoff between

accuracy and generality.

Heavy hitter detection: We first compare the two the-

oretical bounds of OpenSketch-based heavy hitter al-

gorithm and the space-saving streaming algorithm pro-

posed in [8].3 Figure 5 (c) shows that to achieve the same

0.5% error rate, OpenSketch requires 1354KB memory

while the streaming algorithm only takes 160KB. How-

ever, OpenSketch can further improve its accuracy when

it understands the traffic skew (i.e., the Zipfian parameter

α in Sec 2) from either operators or by installing a hash

table (similar to the flow size distribution problem in Ta-

ble 1). For example, if OpenSketch knows that the skew

3This is the error with 95% confidence.

10

parameter is α = 1.4, it only needs to configure 142KB

memory, which is less than the streaming algorithm.

Superspreader detection: We also compare the accuracy

of OpenSketch with the one-level superspreader detec-

tion algorithm [41] in Figure 6.4 We set k = 200, b = 2,

and δ = 0.05. We conservatively assume it takes 8 Bytes

to store each src-dst pair in a hash table and 6 Bytes to

store each source-counts pair in a second hash table The

total space used by the two hash tables for the sampled

source destination pairs is the memory size (assuming no

hash conflicts).

The streaming algorithm requires an average of 1MB

memory to achieve a false positive rate of 0.1% and a

false negative rate of 0.3%. For OpenSketch, we use the

arrows to show the pairs of false positives (+) and false

negatives (X) with different size combination of Count-

Min sketches and bitmaps calculated by our sketch man-

ager. With the same 1MB memory, OpenSketch achieves

0.9% false positive rate and 0.3% false negative rate.

Note that there are only 29 superspreaders on average

during each measurement interval and thus the differ-

ences between OpenSketch and the streaming is only 1

superspreader at some intervals. OpenSketch can reach

the same false positive and false negative rate as the

streaming algorithm when it has 2.4MB memory.

Many measurement tasks can be implemented on top

of OpenSketch platform with simple controller code

and limited data plane resources: We have imple-

mented five measurement tasks on top of OpenSketch

(Table 2). The implementation is simple because we only

configure existing building blocks and analyze the col-

lected data to report the results. The configuration part

takes about 10-25 lines of code and the analysis part

takes at most 150 lines of code.

We also show the amount of data plane resources we

need for each measurement task according to simulations

and theoretical analysis. We only need 4-10 hash func-

tions, less than 30 TCAM entries, and tens of megabytes

SRAM to support most measurement tasks. For ex-

ample, the flow size distribution task needs 3 TCAM en-

tries for its multi-resolution classifier to index into one of

three hash tables each of which covers a fraction (1
2
, 1

4
, 1

8
)

of the flowspace. We can glue the building blocks to-

gether to count traffic in different ways. For example, we

can count how many distinct senders contact a set of 200

destination address using a PCSA sketch and a Bloom

Filter. We need 10 TCAM entries to store the destina-

tions, each entry corresponds to a Bloom Filter for 20

addresses. For packets that pass the filter, PCSA counts

4The paper [41] also proposes a two-level detection algorithm that

only works better than one-level algorithm when there are lots of

sources contacting only a few destinations. OpenSketch can also in-

troduce another sampling layer as the two-level algorithm to further

improve its accuracy.

the distinct senders (up to ∼ 217) using 17 TCAM entries

and 1KB of SRAM.

Resource allocation across measurement tasks: Fig-

ure 7 shows how OpenSketch allocates memory re-

sources for two measurement tasks: heavy hitter and su-

perspreader detection with different weight β , given the

total memory size 4MB. With a lower β , we devote more

resources to superspreaders to ensure its low error rate5.

When we increase the β to 1 (heavy hitters have higher

weights), heavy hitter detection gets more memory re-

sources and thus higher accuracy.

6.2 Prototype evaluation

OpenSketch has no effect on data plane through-

put: We deploy our NetFPGA based prototype into

a Dell inspiron 530 machine (2 CPU cores and 2 GB

DRAM). We connect 4 servers to the 4 Ethernet ports

on NetFPGA. We first measure the throughput of Open-

Sketch switch. We set TCP flows across all four 1GE

ports on NetFPGA. The OpenSketch prototype switch

can achieve full 1GE throughput among four ports with

different packet sizes (64, 512, and 1500 Bytes) without

any packet losses. This is because the OpenSketch data

plane pipeline does not interrupt the forwarding pipeline

in the original switch, and the delay of each measurement

pipeline component is smaller than packet incoming rate

even for the 64Byte packets. As a result, the packets do

not need to stay in the queue for measurement process-

ing.

OpenSketch measurement performance is not af-

fected by multiple hash functions, multiple wildcard

rules, but is limited by counter updates. We setup

a TCP flow between two servers across NetFPGA, and

measure the processing delay of collecting statistics from

single packet. We vary the number of hash functions

from 1 to 8, and set the number of wildcard rules from

32 to 1024, respectively. The average delay is always 104

ns across all settings. This is because both hash functions

and wildcard rules are implemented in parallel in hard-

ware. However, the delay is affected by the number of

counters we update for each packet. When we update

5 counters per packet in SRAM (which is the maximum

number of updates a sketch may need), the processing

delay increases to 200ns. This is because our SRAM can

only be read and written sequentially. The performance

can be improved with when fabrication of 6 to 8 read

ports for an on-chip Random Access Memory is attain-

able with today’s embedded memory technology [17].

5Note that here we are considering the error rate for superspreader

counters. A 10-20% error rate is enough to ensure low false posi-

tive/negative rates.

11

 0

 0.5

 1

 1.5

 2

 0.5 1 1.5 2 2.5

F
a

ls
e

 p
o

s
./

n
e

g
.

(%
)

Switch memory size (MB)

OpenSketch
Stream-pos
Stream-neg

Figure 6: Superspreader detection (false

positives (+), false negatives (x))

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e
rr

o
r

(%
)

β (Heavy hitters)

Heavy hitters
Superspreaders

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
p
a
c
e
 (

M
B

)

β (Heavy hitters)

Heavy hitters
Superspreaders

Figure 7: Resource allocation across Heavy hitters and Superspreaders (a) Error rate

(b) Memory allocation
Meas. Tasks Error (%) Hash func TCAM entries SRAM size Conf LOC Ana. LOC

Heavy Hitters 0.05 3 for CountMin 0 94KB-600KB 20 25

10 5 for rev. sketch (89KB for rev.)

Superspreaders/ 0, 0 3 for CountMin,1 for bitmap 0 0.9MB-1.5MB 25 30

DDoS 0.2, 0.2 5 for rev. sketch (0.5MB for rev.)

Detect traffic changes 0.1-1 5 for 5-ary sketch, 0 3.2MB-32MB 20 25

> 0.5% of total changes 5 for rev. sketch (82KB for rev.)

Flow size dist 1̃-2 1 3 300KB-7.5MB 20 150

for 100K-2.5M flows

Count traffic from≤100K 0.1-1 1 for PCSA, 17 for PCSA, 1KB for PCSA 10 5

src to a set of 200 dst 8 for Bloom Filter 10-16 for B.F.

Table 2: Implementing measurement tasks in OpenSketch (The numbers for the first two are based on our simulations. The numbers for

the later three tasks are based on theoretical analysis in [37, 28, 24, 23]. The error rate is defined as: the relative error for heavy hitters, the false

positive and false negative percentages for superspreaders, the relative error for traffic change detection, the weighted mean relative difference in

simulation [28] for flow size distribution, and the overall false positive probability of the Bloom Filter for counting traffic (the distinct counter is

configured for 10% relative error.))

7 Related Work

Programmable measurement architectures: In ad-

dition to NetFlow, there are other works that share our

goal of building a configurable or programmable mea-

surement architecture. ProgME [46] allows operators to

specify flowsets and the switches count the packets in

these flowsets. Gigascope [15] is a programmable packet

monitor that supports queries on packet streams and au-

tomatically splits queries between the data plane and the

control plane. In contrast, OpenSketch chooses sketches

as the basis of the measurement architecture. Therefore,

OpenSketch provides more compact data structures to

store statistics with a provable memory-accuracy trade-

off, while supporting a wide range of measurement tasks.

The paper [38] extends NetFlow by using two sam-

pling primitives (flow sampling and sample-and-hold) as

the minimalist measurement support in switches, inde-

pendent of the measurement tasks. Operators can only

passively process the collected data for their measure-

ment tasks. Other companies [3] build new hardware to

provide more line-speed counters at switches. In con-

trast, OpenSketch allows operators to proactively con-

figure different sketches and thus can best use the data

plane with guaranteed accuracy for specific measurement

tasks. OpenSketch also allows multiple measurement

tasks to run at the same time.

Other flexible switch architecture: Software defined

networks provide simple APIs at switches and allow the

controller to program the switches based on the APIs.

PLUG [11] provides flexible lookup modules for deploy-

ing routing protocols. OpenSketch shares the same goal

of separating the data plane which processes packets,

from the control plane that configures how to process the

packets. However, existing proposals for software de-

fined networks are not a good fit for measurement tasks.

Recent work [16, 33] has recognized the problems of

supporting different measurement tasks in OpenFlow [4],

such as limited on-chip memory and large communica-

tion overhead between the controller and switches. In-

stead of incremental improvements on OpenFlow, we de-

sign a new software defined traffic measurement archi-

tecture that provides general and efficient measurement

support at switches.

8 Conclusion

Like OpenFlow, which enables a simple, efficient way

to control switches by separating the data and control

plane, OpenSketch enables a simple and efficient way

to collect measurement data. It uses data-plane mea-

surement primitives based on commodity switches, and

a flexible control plane so that operators can easily im-

plement variable measurement algorithms. OpenSketch

makes sketches more practical by bridging the gap be-

tween theoretical research in streaming algorithms and

practical measurement requirements and constraints of

switches, and makes sketches more flexible in support-

ing various measurement tasks.

12

9 Acknowledgement

We thank our shepherd Andrew Moore, the anonymous

reviewers, Chen-Nee Chuah, Sangjin Han, Zhenming

Liu, Srinivas Narayana, Jennifer Rexford, and Vyas

Sekar, for their comments on earlier versions of this pa-

per.

A Implementing diverse sketches with the

three-stage pipeline

In this section, we describe the sketch-based data struc-

ture in more details and describe how we implement

them in OpenSketch as summarized in Table 3.

Reversible sketches

Configuring hash functions: To configure the hash

stage, the controller configures the number of hash func-

tions to use. For each hash function, the controller se-

lects the packet header fields (similar to OpenFlow [4])

and the value range.

A.1 Configuring the data plane

It is important to define the data-plane interfaces to be

both flexible to support different measurement tasks and

simple for the controller to configure. The controller

configures the hash function, installs the classification

rules, allocates the counters, and specifies the interac-

tions between the three stages. Installing classification

rules: The controller then installs the rules in the classi-

fication stage. For each rule, the controller specifies the

rule priority, a matching bit string, an address index. The

address index is used to find the locations of the counters.

Allocating counters: To configure the counting stage,

the controller first configures the number of tables in the

counting stage. For each table, the controller specifies

the number of counters in the table and the number of

bytes each counter takes. The controller also specifies

how to change the counters (either increase the counter

by a given value or set the counter to a given value).

Based on the hash values in the hash stage and the ad-

dress index in the classification stage, the switch can get

the table id and the counter position in the table. Using

the information, the switch computes the address of the

counter in the memory and updates the counters accord-

ingly. To collect the counters, the controller just peri-

odically sends the statistics query request with the table

id.

Connecting the three stages: The controller defines

three functions whose values are used as input for each

stage. The arguments for these functions are the packet,

the hash value, the address index in the matching rule,

and the configuration parameters in the stages. By inves-

tigating many measurement tasks, we find that the func-

tions can be defined on simple operations including ad-

dition, multiplication, bitwise and/or, and concatenation.

References

[1] http://tools.ietf.org/html/

draft-ietf-forces-protocol-22.

[2] http://www.cisco.com/en/US/products/

ps6601/products_ios_protocol_group_

home.html.

[3] cpacket. http://www.cpacket.com/download/

cPacket_cvu_family_overview_2011a.pdf/.

[4] OpenFlow switch. http://www.

openflowswitch.org/.

[5] Opensketch code release. https://github.com/

lavanyaj/opensketch.git.

[6] AL-FARES, RADHAKRISHNAN, M., RAGHAVAN,

S., HUANG, B., AND VAHDAT, A. Hedera: Dy-

namic flow scheduling for data center networks. In

NSDI (2010).

[7] ALON, N., MATIAS, Y., AND SZEGEDY, M. The

space complexity of approximating the frequency

moments. In STOC (1996).

[8] BANDI, N., METWALLY, A., AGRAWAL, D., AND

ABBADI, A. E. Fast data stream algorithms using

associative memories. In ACM SIGMOD (2007).

[9] BAR-YOSSEF, Z., JAYRAM, T. S., KUMAR, R.,

SIVAKUMAR, D., AND TREVISAN, L. Counting

distinct elements in a data stream. In Proceedings

of the 6th International Workshop on Randomiza-

tion and Approximation Techniques (London, UK,

UK, 2002), RANDOM ’02, Springer-Verlag, pp. 1–

10.

[10] BREMLER-BARR, A., HAY, D., AND KORAL,

Y. CompactDFA: Generic state machine compres-

sion for scalable pattern matching. In INFOCOM

(2010).

[11] CARLI, L. D., PAN, Y., KUMAR, A., ESTAN,

C., AND SANKARALINGAM, K. PLUG: Flexible

lookup modules for rapid deployment of new pro-

tocols in high-speed routers. In SIGCOMM (2009).

[12] CORMODE, G., KORN, F., MUTHUKRISHNAN,

S., AND SRIVASTAVA, D. Finding hierarchical

heavy hitters in streaming data. ACM Transactions

on Knowledge Discovery from Data (Jan. 2008).

13

Building

blocks
Function and Implementation on OpenSketch data plane

Wildcard

filter

Function Filter packets based on values or prefixes of some fields

Classification Install rules that match packets fields and generate address indexes for each matching packets

Hash

table

Function Hash packets into an index

Hash Pick the packet fields f , and perform a single hash on f

Count-

min

sketch [13]

Function Map a packet to counting bins in several hash tables to make an accurate count

Hash Pick the packet fields f , and perform H hash functions

Counting Set up an array A of H ∗w counters;

for the ith hash value hi(f)(i = 1..H), increment the counter A[i∗w+hi(f)]

Bloom

filter [24]

Function Pick packets that belong to a set of flows that can’t be aggregated by prefix and generate counter addresses

Hash Pick the packet fields via bit masking, and perform k (=2-4) uniform hash functions, and generate a bit array of

m bits by marking the k positions as 1’s.6

Classification Create the small Bloom filter for the set of elements (e.g., the blacklist of IP addresses), and install a corre-

sponding m-bit TCAM entry for the small Bloom filter by replacing 1’s with “don’t care” bit

Bitmap

[22]

Function Maintain the number of distinct items, good for smaller cardinalities

Hash Pick the packet fields f and perform a hash on f into range 0..m

Counting maintain a bitmap of m bits and set bit indicated by hash value

super

LogLog

sketch [19]

Function Maintain the number of distinct items, good for larger cardinalities

Hash Pick the packet fields f and perform two uniform hash functions h1, h2

Classification Install rules that matches h2’s value to different positions of the first zero bit (i.g., 0***, 10**, 110*), and output

different indexes i

Counting Set table h1’s the ith bit as 1

Multi-

resolution

classifier

Function Classify traffic stream into substreams 0, 1, 2 ... where a packet is twice as likely to be classified into substream

i+1 as into substream i

Hash Pick the packet fields f , perform a single hash on f

Classification Install rules with different positions of the first zero bit (i.g., 0***, 10**, 110*), and output different indexes

Reversible

sketch [37]

Function ŁOutput the flows that are associated with a counter

Hash Set up qk hash functions of range V each. Each hash function operates on bit range [ai, j,bi, j)(i = 1..k, j = 1..q)
of packet field f from domain 2N , where ai, j = (j−1)∗N/q,bi, j = j ∗N/q.

Counting Concat the q hash results hi, j, j = 1..q to one bit string Si. Set up kV counters. For each incoming packet,

increment the counter (i−1)∗V +Si, i = 1..k

Table 3: Supporting various building blocks in the OpenSketch data plane

[13] CORMODE, G., AND MUTHUKRISHNAN, S. An

improved data stream summary: The count-min

sketch and its applications. J. Algorithms (2005).

[14] CORMODE, G., AND MUTHUKRISHNAN, S. Sum-

marizing and mining skewed data streams. In In

SIAM Conference on Data Mining (2005).

[15] CRANOR, C., JOHNSON, T., SPATASCHEK, O.,

AND SHKAPENYUK, V. Gigascope: A stream

database for network applications. In SIGMOD

(2003).

[16] CURTIS, A. R., MOGUL, J. C., TOURRILHES, J.,

YALAGANDULA, P., SHARMA, P., AND BANER-

JEE, S. Devoflow: Scaling flow management for

high-performance networks. In SIGCOMM (2011).

[17] DIPERT, B. Special purpose SRAMs smooth the

ride. EDN (1999).

[18] DUFFIELD, N., LUND, C., AND THORUP, M. Esti-

mating flow distributions from sampled flow statis-

tics. In ACM SIGCOMM (2003).

[19] DURAND, M., AND FLAJOLET, P. Loglog count-

ing of large cardinalities. In ESA (2003).

[20] ESTAN, C., KEYS, K., MOORE, D., AND VARGH-

ESE, G. Building a better netflow. ACM SIG-

COMM (2004).

[21] ESTAN, C., AND VARGHESE, G. New directions

in traffic measurement and accounting. ACM SIG-

COMM (2002).

[22] ESTAN, C., VARGHESE, G., AND FISK, M.

Bitmap algorithms for counting active flows on

high speed links. In IMC (2003).

[23] FLAJOLET, P., AND MARTIN, G. N. Probabilistic

counting algorithms for data base applications. J.

Comput. Syst. Sci. 31, 2 (Sept. 1985), 182–209.

[24] GOEL, A., AND GUPTA, P. Small subset queries

and Bloom filters using ternary associative mem-

ories, with applications. In ACM SIGMETRICS

(2010).

14

[25] HADJIELEFTHERIOU, M., BYERS, J. W., AND

KOLLIOS, G. Robust sketching and aggregation

of distributed data streams. Tech. rep., Boston Uni-

versity, 2005.

[26] HUANG, G., LALL, A., CHUAH, C.-N., AND XU,

J. Uncovering global icebergs in distributed moni-

tors. In IEEE IWQoS (2009).

[27] KOMPELLA, R., LEVCHENKO, K., SNOEREN, A.,

AND VARGHESE, G. Every microsecond counts:

Tracking fine-grain latencies with a loss difference

aggregator. In ACM SIGCOMM (2009).

[28] KUMAR, A., SUNG, M., XU, J., AND WANG, J.

Data streaming algorithms for efficient and accu-

rate estimation of flow size distribution. In SIG-

METRICS (2004).

[29] MAI, J., CHUAH, C.-N., SRIDHARAN, A., YE,

T., AND ZANG, H. Is sampled data sufficient for

anomaly detection? In Proceedings of the 6th

ACM SIGCOMM conference on Internet measure-

ment (New York, NY, USA, 2006), IMC ’06, ACM,

pp. 165–176.

[30] MCKEOWN, N., ANDERSON, T., BALAKRISH-

NAN, H., PARULKAR, G., PETERSON, L., REX-

FORD, J., SHENKER, S., AND TURNER, J.

OpenFlow: Enabling innovation in campus net-

works. ACM Computer Communication Review

(Apr. 2008).

[31] MEINERS, C. R., PATEL, J., NORIGE, E.,

TORNG, E., AND LIU, A. X. Fast regular ex-

pression matching using small TCAMs for net-

work intrusion detection and prevention systems. In

USENIX Security Symposium (2010).

[32] MITZENMACHER, M., AND VADHAN, S. Why

simple hash functions work: Exploiting the entropy

in a data stream. In SODA (2008).

[33] MOGUL, J. C., AND CONGDON, P. Hey, you

darned counters!: get off my asic! In Proceed-

ings of the first workshop on Hot topics in software

defined networks (New York, NY, USA, 2012),

HotSDN ’12, ACM, pp. 25–30.

[34] POPA, L., RATNASAMY, S., AND STOICA, I.

Building extensible networks with rule-based for-

warding. In OSDI (2010).

[35] PǍTRAŞCU, M., AND THORUP, M. The power

of simple tabulation hashing. J. ACM 59, 3 (June

2012), 14:1–14:50.

[36] SANJUÀS-CUXART, J., BARLET-ROS, P.,

DUFFIELD, N., AND KOMPELLA, R. R. Sketch-

ing the delay: tracking temporally uncorrelated

flow-level latencies. In Proceedings of the 2011

ACM SIGCOMM conference on Internet measure-

ment conference (New York, NY, USA, 2011),

IMC ’11, ACM, pp. 483–498.

[37] SCHWELLER, R., GUPTA, A., PARSONS, E., AND

CHEN, Y. Reversible sketches for efficient and ac-

curate change detection over network data streams.

In IMC (2004).

[38] SEKAR, V., REITER, M. K., AND ZHANG, H. Re-

visiting the case for a minimalist approach for net-

work flow monitoring. In IMC (2010).

[39] SHINDE, R., GOEL, A., GUPTA, P., AND DUTTA,

D. Similarity search and locality sensitive hashing

using TCAMs. In SIGMOD (2010).

[40] THORUP, M., AND ZHANG, Y. Tabulation-based

5-independent hashing with applications to linear

probing and second moment estimation. SIAM J.

Comput. 41, 2 (Apr. 2012), 293–331.

[41] VENKATARAMAN, S., SONG, D., GIBBONS,

P. B., AND BLUM, A. New streaming algorithms

for fast detection of superspreaders. In Network and

Distributed System Security Symposium (2005).

[42] WALSWORTH, C., ABEN, E., KC CLAFFY, AND

ANDERSEN, D. The CAIDA Anonymized

2009 Internet Traces - Sep. 17 2009.

http://www.caida.org/data/passive/

passive_2009_dataset.xml.

[43] WANG, M., LI, B., AND LI, Z. sflow: Towards

resource-efficient and agile service federation in

service overlay networks. Distributed Comput-

ing Systems, International Conference on 0 (2004),

628–635.

[44] WHANG, K.-Y., VANDER-ZANDEN, B. T., AND

TAYLOR, H. M. A linear-time probabilistic count-

ing algorithm for database applications. ACM

Trans. Database Syst. 15, 2 (June 1990), 208–229.

[45] YU, M., JOSE, L., AND MIAO, R. Software de-

fined traffic measurement with opensketch. Tech.

rep., USC Technical Report, 2013.

[46] YUAN, L., CHUAH, C.-N., AND MOHAPATRA,

P. ProgME: Towards programmable network mea-

surement. In ACM SIGCOMM (2007).

15

[47] ZHANG, Y., SINGH, S., SEN, S., DUFFIELD, N.,

AND LUND, C. Online identification of hierarchi-

cal heavy hitters: Algorithms, evaluation, and ap-

plications. In IMC (2004).

[48] ZHAO, Q., XU, J., AND LIU, Z. Design of a novel

statistics counter architecture with optimal space

and time efficiency. In ACM SIGMETRICS (2006).

[49] ZSEBY, T., ET AL. Sampling and fil-

tering techniques for IP packet selection.

http://www.ietf.org/internet-drafts/

draft-ietf-psamp-sample-tech-07.txt,

July 2005. –Work in progress.

16

