
Scheduling Jobs Across Geo-distributed Datacenters

Chien-Chun Hung, Leana Golubchik, Minlan Yu

University of Southern California

{chienchun.hung, leana, minlanyu}@usc.edu

Abstract

With growing data volumes generated and stored across geo-

distributed datacenters, it is becoming increasingly ineffi-

cient to aggregate all data required for computation at a sin-

gle datacenter. Instead, a recent trend is to distribute com-

putation to take advantage of data locality, thus reducing

the resource (e.g., bandwidth) costs while improving per-

formance. In this trend, new challenges are emerging in job

scheduling, which requires coordination among the datacen-

ters as each job runs across geo-distributed sites. In this pa-

per, we propose novel job scheduling algorithms that co-

ordinate job scheduling across datacenters with low over-

head, while achieving near-optimal performance. Our ex-

tensive simulation study with realistic job traces shows that

the proposed scheduling algorithms result in up to 50% im-

provement in average job completion time over the Shortest

Remaining Processing Time (SRPT) based approaches.

1. Introduction

Data intensive jobs run by cluster computing systems (e.g.,

Hadoop[3], Spark[39], Dryad[17]) have recently generated

significant workloads for datacenters, providing services

such as web search, consumer advertisements and product

recommendations, user behavior analysis and business intel-

ligence. These jobs are composed of numerous tasks. Each

task reads a partition of input data and runs on available

computing slots in parallel; the job is finished upon the com-

pletion of all of its tasks [5, 7, 8]. To serve the increasing

demands of various data analytics applications, major cloud

providers like Amazon[1], Microsoft[4] and Google[19]

each deploy from tens to hundreds of geo-distributed dat-

acenters; AT&T has thousands of datacenters at their PoP

locations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoCC ’15, August 27 - 29, 2015, Kohala Coast, HI, USA.
Copyright c© 2015 ACM ISBN 978-1-4503-3651-2/15/08. . . $15.00.
http://dx.doi.org/10.1145/2806777.2806780

Conventional approaches perform centralized job execu-

tion, with each job running within a single datacenter. In

such case, when a job needs data from multiple datacenters, a

typical approach is to first collect all the required data from

multiple datacenters at a single location, and then run the

computation at that datacenter [11, 13, 16, 20, 25]. How-

ever, as data volumes continue to grow in an unprecedented

manner, such an approach results in substantial network traf-

fic [27, 35, 36] and increased job completion time [14].

Moreover, it is becoming increasingly impractical to repli-

cate a large data set across multiple datacenters [24]. Finally,

some data are restricted to certain datacenters due to security

and privacy constraints (e.g., must be kept within a particular

nation [35, 36]), and therefore cannot be moved.

Consequently, instead of data aggregation at a single data

center, a recent trend is to conduct distributed job execution,

i.e., running a job’s tasks at the datacenters where the needed

data are stored, and only aggregating the results at job com-

pletion time. Recent research efforts show that distributed

job execution achieves 250× bandwidth savings [35, 36]

and reduces the 90th− percentile job completion time by

a factor of 3 [14]; moreover, 3− 19× query speed-up and

15−64% reduction in bandwidth costs can be achieved [26].

Although promising, distributed job execution poses new

challenges for job scheduling. Since a job’s completion time

is determined by its last completed task across the datacen-

ters, finishing a portion of the job quickly at one datacenter

does not necessarily result in faster overall job completion

time. In addition, potential skews in number of tasks per job

processed at a particular datacenter (as determined by the

data stored there) further complicate matters. Hence, prior-

itizing a job’s tasks at one datacenter when its counterparts

at other datacenters dominate the overall job completion is

“wasteful” (in the sense that prioritizing a different job may

have led to better overall average completion time).

Consequently, unlike in the single-server-single-queue

scenario, classical Shortest Remaining Processing Time

(SRPT) scheduling [9, 30, 31] fails to optimize the average

job completion time in the case of multiple datacenters with

parallel task execution. To provide insight into sub-optimal

behavior of SRPT (and its natural extensions to the multi-

ple datacenter scenario), we present motivating examples in

Section 2, and then show in Section 5 that SRPT-type tech-

niques’ scheduling of jobs based only on their sizes results

in even worse behavior under heterogeneous datacenters.

To address the challenges outlined above, in this pa-

per, we focus on job scheduling algorithms designed for

the multi-datacenter parallel task execution scenario. Even

single-server-single-queue versions of this scheduling prob-

lem have been shown to be strongly NP-hard [29] or APX-

hard [12]. Thus, our efforts are focused on principled heuris-

tic solutions that can be (experimentally) shown to provide

near-optimal performance. Specifically, our contributions

can be summarized as follows.

• We illustrate why natural SRPT-based extensions leave

significant room for performance improvements, which

provides insights for better approaches. (Section 2)

• We propose a light-weight “add-on”, termed Reordering,

that can be easily added to any scheduling algorithm to

improve its performance by delaying parts of certain jobs

without degrading their response times, while providing

opportunities for other jobs to finish faster. We prove

that executing Reordering after any scheduling algorithm

would result in performance that is not worse than the

one without Reordering. (Section 3)

• We construct three principles for designing a job schedul-

ing algorithm aimed at reducing the average job comple-

tion time in our setting. Armed with these design prin-

ciples, we develop Workload-Aware Greedy Scheduling

(SWAG), that greedily serves the job that finishes the

fastest by taking existing workload at the local queues

into consideration. (Section 4)

• We describe several system extensions (Section 5), and

conduct extensive large-scale simulation-based experi-

ments using realistic job traces under a variety of settings

(Section 6). Our results show that SWAG and Reorder-

ing achieve as high as 50% and 27% improvements, re-

spectively, in average job completion time as compared

to the SRPT-based extensions. The results also show that

the proposed techniques achieve completion times within

2% of an optimal solution (as obtained through brute-

force for comparison purposes), while requiring reason-

able communication and computation overhead.

2. Background and Motivation

In this section, we first present an overview of the distributed

job execution framework in a geo-distributed datacenter sys-

tem. Next we provide a motivating example to illustrate the

needs for better scheduling approaches.

2.1 Job Scheduling across Geo-distributed Datacenters

Figure 1 depicts the general framework for distributed job

execution in geo-distributed datacenters. Our system con-

sists of a central controller and a set of datacenters D span-

ning geographical regions, while the system serves the jobs

running with input data stored across the geo-distributed dat-

���������	
���

����������	
�	�
�����������	�

�����

��������	

��������	
���

���������������������	�

�����
��

�
��
�������
���

����������

��������

������������

��������	
���

���������������������	�

�����
��

����
�����

��������	
������

�����

��������	

�����

��������	
������

Figure 1. System Architecture of Distributed Job Execution

acenters. Each job (arriving at the central controller) is com-

posed of small tasks that process independent input parti-

tions and run in parallel [5, 7, 8].

The main focus of this paper is the development of an

effective job scheduling mechanism for geo-distributed dat-

acenters. In our system, job scheduling decisions are made

(and potentially re-evaluated) at job arrival and departure in-

stants 1 , and involve two levels of schedulers: (1) The global

scheduler residing in the central controller, makes job-level

scheduling decisions for all jobs in the system2, and assigns

a job’s tasks to the datacenters that host the input data. 3

(2) The local scheduler at each datacenter has a queue qd

that stores the tasks assigned by the global scheduler, and

launches the tasks at the next available computing slot based

on the job order determined by the global scheduler (or the

local scheduler itself). In addition, all datacenters report their

progress to the central controller, in support of global job

scheduling decisions. The job-level scheduling decisions are

therefore made by the coordination of the global and local

schedulers (depending on the scheduling technique as de-

scribed later) and are a function of the set of current jobs

J, their tasks, and local queue information data reported by

the datacenters. A job is considered completed only after all

of its tasks are finished; therefore the job completion time is

determined by its last completed task. Our goal is to reduce

the average job completion time.

Fully replicating data across all datacenters in today’s

systems is quite costly, in terms of storage space and in

overhead for maintaining consistency among the copies [24].

Instead, recent systems [24] opt for a single primary copy

plus multiple partial copies based on coding techniques and

replication policies. In our system, each task is assigned to

the datacenter that holds its primary copy of the input data.

We refer to the subset of the job’s tasks assigned to the

same datacenter as the job’s sub-job at that datacenter. Let

1 We illustrate later in Section 5 that this is sufficient.
2 In some cases the global scheduler delegates the job-level scheduling to

the local schedulers as discussed later.
3 Some local jobs may go directly to the datacenter where all of their

required data is located. We assume that each datacenter reports information

about local jobs to the central controller as the jobs arrive.

v j,d denote the sub-job composed of job j’s tasks that are

assigned to datacenter d. The order in which these sub-jobs

are served at each data center is determined by the job-level

scheduling decisions, where the local scheduler continues

launching the task of the first sub-job in the queue whenever

a computing slot becomes available unless the order of sub-

jobs is updated. When such modifications occur, we assume

no preemption for a task execution when it’s running 4 , but

a job (or sub-job) execution can be preempted, i.e., the tasks

of other jobs (or sub-jobs) can be scheduled to run before the

non-running tasks of the currently running job (or sub-job).

To facilitate global scheduling decisions, each datacenter

reports its current snapshot (including the progress of the

sub-jobs in service and those in the queue) to the central

controller. For simplicity of presentation and evaluation, we

assume that this information is guaranteed to be delivered in

time and accurate. In addition, we assume that our system

primarily serves the jobs with single-stage tasks; we discuss

how our system can be extended to serve the jobs with multi-

stage tasks in Section 8.

2.2 Motivating Example

We now present a simple example to illustrate how the vari-

ous scheduling techniques work and the differences of their

scheduling results. Table 1 describes the example settings

(job arrival order, number of tasks per job and their distribu-

tion among the data centers); Figure 2 provides the schedul-

ing results obtained by the various scheduling techniques de-

scribed in this paper. In this example, there are three jobs

arriving to the system at different times, with Job A fol-

lowed by Job B, followed by Job C. At the time the sched-

uler makes the scheduling decision, these three jobs all have

some tasks that are not yet launched. The jobs’ remaining

sizes5 in each datacenter are also given in Table 1. In this

example each datacenter has a single compute slot, i.e., the

datacenter serves one task at a time.

Let the completion time of job i be ri = fi− ai, where

fi and ai are the time instants of finishing the job i (or,

finish time) and job i’s arrival, respectively. Then, the av-

erage job completion time of n jobs is 1
n
×∑n

i=1 ri =
1
n
×

∑n
i=1 (fi−ai) =

1
n
×{∑n

i=1 fi−∑n
i=1 ai}. We can view reduc-

ing the average job completion time as reducing the sum

of the finish times, ∑n
i=1 fi (or equivalently, 1

n
×∑n

i=1 fi), as

∑n
i=1 ai is constant. For simplicity of exposition, we discuss

the remainder of the example in terms of reducing average

finish time (rather than the average completion time).

We further define a sub-job’s finish instant i j,d as the

queue index at which sub-job v j,d ends, which is computed

as iz,d + |v j,d |, where vz,d is the sub-job that is right next to

4 Non-preemptive task execution is common in conventional cluster com-

puting systems [3, 39] as the tasks are typically of short duration and hence

switching cost is (relatively) large.
5 Here, a job’s remaining size is its remaining number of tasks that are not

launched yet.

v j,d while being earlier in the queue, and |v j,d | is the size

(remaining number of tasks) of sub-job v j,d . The sub-job’s

finish instant is a relative measure and a monotonic indicator

of its finish time; 6 specifically, given that ia,d < ib,d∀a,b ∈
J, sub-job va,d finishes no later than sub-job vb,d does. In

addition, a job’s finish instant is the maximum finish instant

of all its sub-jobs, i.e., maxd i j,d ,∀d ∈ D. In this example, if

we were to use a First Come First Serve (FCFS) scheduling

approach, the finish instants of Jobs A, B, and C would be

10, 18 and 11, respectively, which results in an average job

finish instant of 13.

2.3 SRPT-based Extensions

In the single-datacenter scenario - or more specifically

single-server-single-queue with job preemption scenario - it

has been shown that Shortest-Remaining-Processing-Time

(SRPT) minimizes the average job completion time[9, 30,

31] by selecting the job with smallest remaining size first.

To the best of our knowledge, the problem of schedul-

ing jobs across multiple datacenters has not been solved nor

extensively studied. It is natural to consider SRPT-based ex-

tensions to multi-datacenter environment, as we will present

next. However, we illustrate in Section 2.3.3 their shortcom-

ings as the motivation for better approaches.

2.3.1 Global-SRPT

The first heuristic is to run the SRPT in a coordinated man-

ner, which performs SRPT and computes the jobs priority

based on the jobs’ total remaining size across all the data-

centers. We call this heuristic as Global-SRPT. Global-SRPT

runs at the central controller, as it requires the global state

of the current jobs’ remaining tasks across all the datacen-

ters. Then central controller passes the job order computed

by Global-SRPT to all the datacenters, where each datacen-

ter scheduler updates its sub-jobs order in the queue based

on the new job order.

In our motivating example, the total remaining tasks for

Job A,B,C are 12,11,13, respectively, so the job order com-

puted by Global-SRPT is B→ A→C, which is enforced by

each datacenter as shown in Figure 2(b). Since Global-SRPT

gives higher priority to the jobs with fewer tasks and finishes

them as quickly as possible, it avoids the cases that small

jobs are blocked behind the large jobs and spend lots of time

waiting. As a result, Global-SRPT achieves better average

job finish instant (37
3 as in the example) compared to that of

the default scheduling FCFS (13 as in the example).

2.3.2 Independent-SRPT

Since SRPT is designed for single-scheduler scenario, our

second heuristic is to enable each datacenter scheduler to

perform SRPT on its own, with the hope that each datacenter

reduces average completion time for its sub-jobs. We call

6 We will discuss the assumptions that make a job’s finish instant equal to its

finish time in Section 3, and how our system addresses those assumptions

in Section 5.

Job ID Arrival Sequence Remaining Tasks in DC1 Remaining Tasks in DC2 Remaining Tasks in DC3 Total Remaining Tasks

A 1 1 10 1 12

B 2 3 8 0 11

C 3 7 0 6 13

Table 1. Settings of The Example: Job Set, Arrival Sequence and Task Assignment

��� ������

�
�
�
�
�
	

�
�
�

�

����	��	
����

����	�	
��� ����	�	
���

����	�	
����

����	�	
����

����	�	
����

����	�	
����

������	���
����

�� 	��	��

�� 	��	��

�� 	��	��

�!�"����	��

(a) FCFS

��� ������

�
�
�
�
�
	

�
�
�

� ������	���
����

���	��	��

���	��	�

���	��	��

��������	����

����	�	
���

����	�	
����

����	�	
����

����	� 	
����

����	!	
����

����	�	
���

����	"	
����

(b) Global-SRPT

��� ������

�
�
�
�
�
	

�
�
�

� ������	���
����

���	��	��

���	��	�

���	��	��

��������	����

����	�	
���

����	�	
����

����	�	
����

����	� 	
����

����	!	
����

����	�	
���

����	"	
����

(c) Independent-SRPT

��� ������

�
�
�
�
�
	

�
�
�

� ������	���
����

���	��	��

���	��	��

���	��	�

��������	��������	�	
��

����	�	
�� �

����	�	
�� �

����	�!	
�� �

����	"	
�� �

����	�	
��

����	#	
�� �

(d) SWAG

��� ������

�
�
�
�
�
	

�
�
�

� ������	���
����

���	��	��

���	��	�

���	��	��

��������	������	�	
���

����	�	
����

����	�	
����

����	� 	
����

����	!	
����

����	�	
���

����	"	
����

(e) Global-SRPT w/Reordering

��� ������

�
�
�
�
�
	

�
�
�

� ������	���
����

���	��	��

���	��	�

���	��	��

��������	������	�	
���

����	�	
����

����	�	
����

����	� 	
����

����	!	
����

����	�	
���

����	"	
����

(f) Independent-SRPT w/Reordering

Figure 2. Results of The Example: Job Orders and Finish Instants Computed by Different Scheduling Algorithms

this Independent-SRPT, as the datacenter prioritizes its sub-

jobs based on the their sizes and updates the queue order

independently from the information of other datacenters.

In the example, according to the jobs’ remaining number

of tasks for each sub-job, their priorities at each datacenter

may not be the same. In datacenter 1, the priority is A→
B→C, while the priority in datacenter 2 and datacenter 3 are

B→A and A→C, respectively (as shown in Figure 2(c)). By

reducing the finish instant of the sub-jobs in each datacenter,

Independent-SRPT achieves 37
3 for average job finish instant

in the motivating example, which is better than FCFS (13).

2.3.3 Shortcomings of SRPT-based Extensions

Both Global-SRPT and Independent-SRPT improve the av-

erage job completion time by favoring small jobs. However,

since each job may have multiple sub-jobs across all the

datacenters, the imbalance of the sizes among the sub-jobs

causes the problems for SRPT-based scheduling.

Take Global-SRPT for example, in Figure 2(b), we see

that job A’s sub-jobs in datacenter 1 and 3 finish even before

its sub-job at datacenter 2 starts. Since the job’s completion

time is determined by the last completed sub-job across

all datacenters, we can actually defer vA,1 and vA,3 a bit

without hurting job A’s finish instant, while it can yield the

compute resources to the tasks of other sub-jobs, say job

C in this example. The same observation is also valid for

Independent-SRPT in the example, in which vA,1 can yield

to vB,1 and vC,1 in datacenter 1, and vA,3 can yield to vC,3

in datacenter 3, without delaying job A’s finish instant as

depicted by Figure 2(f).

As illustrated in the above example, both Independent-

SRPT and Global-SRPT leave significant room for improve-

ment as they waste resources in serving some sub-jobs while

their counterparts at other datacenters are delayed due to im-

balanced job execution. Next, we first propose a mechanism

in Section 3 to improve the result of scheduling by elimi-

nating the waste of resources in imbalanced job execution.

Then we develop a new scheduling solution in Section 4 that

leads to further improved scheduling results.

3. Reordering-based Approach

Recall that one insight into why the SRPT-based heuristics

do not result in better performance is that they fail to con-

sider the competition for resources faced by each of its com-

ponent sub-jobs, as only the “slowest” sub-job determines

the response time of the job. Consequently, there is no gain

from lowering the response time of a sub-job at datacenter d

if it has a counterpart at datacenter j with a higher comple-

tion time. In that case, we might as well delay this sub-job, in

favor of other sub-jobs at datacenter d which have “faster”

counterparts at other datacenters. This brings us to the no-

tion of reordering the sub-jobs for the jobs, in a coordinated

manner, based on how the sub-jobs of a job are progressing

at various datacenters.

Specifically, we develop Reordering, as an auxiliary

mechanism to reduce the “imbalance” (in terms of their po-

sition in the local queues) of a job’s sub-jobs. Reordering

can work as an “add-on” to any scheduling solution. The ba-

sic idea behind Reordering is to continue moving sub-jobs

later in a local queue, as long as delaying them does not in-

crease the overall completion time of the job to which they

belong; this, in turn, gives other jobs an opportunity for a

shorter completion time.

Algorithm 1 presents the pseudo code of Reordering, and

its actual mechanism works as follows. Given the sub-jobs’

queue order, as computed by any scheduling algorithm, in

each iteration Reordering starts by identifying the datacenter

targetDC with the longest queue length (Step 5) and targets

the last sub-job targetJob in its queue, which has the maxi-

mum value of itargetJob,targetDC in the queue (Step 6). We add

targetJob to N (Step 7), which is a queue data structure that

keeps the sequence of its elements based on their arrival, and

extract all of the sub-jobs associated with Job targetJob from

the corresponding datacenter (Step 8). The same procedure

continues until all current jobs in the system have been added

into N (Step 9). The final job order computed by Reordering

is the reverse order of N (Step 10).

2 Reordering Algorithm

1: procedure REORDERING(i j,d,∀ j ∈ J,d ∈ D)

2: U ← J

3: N← /0 // an ordered list

4: while U 6= /0 do

5: targetDC←maxd |qd |,∀d ∈ D

6: targetJob←max j i j,targetDC,∀ j ∈ J

7: N.push back(targetJob)
8: qd ← qd−|vtargetJob,d|,∀d ∈ D

9: U ←U−{targetJob}
10: return reverse(N)

In our example in Figure 2, Reordering improves both

Global-SRPT and Independent-SRPT by delaying vA,1 and

vA,3 until the end of their associated queues after identifying

that DC2 has the longest queue length and sub-job vA,2 is

the last one in its queue. The delay of vA,1 and vA,3 does not

degrade Job A’s finish instant as it is determined by vA,2. This

procedure continues by selecting Job C, and finally Job B,

which results in N = A→C→ B. Thus, Reordering returns

B→C→ A, with a mean job finish instant of 12 for both

Global-SRPT with Reordering and Independent-SRPT with

Reordering, as opposed to that of 37
3 without Reordering.

Note that in the Reordering algorithm, we use a job’s

finish instant to approximate its job finish time. Moreover,

the job finish instant is exactly the job finish time under the

following assumptions: (1) homogeneous task service times,

i.e., all tasks of all jobs have the same duration; (2) homoge-

neous service rates, i.e., all servers in all datacenters serve

tasks at the same rate; and (3) homogeneous data centers,

i.e., all datacenters have an equal numbers of computing

slots with the same configurations.

Under the above stated assumptions, Reordering would,

at the very least, not result in degradation in completion time.

Theorem 1: Reordering provides non-decreasing perfor-

mance improvement for any scheduling algorithm.

Let fx be job x’s finish instant represented by the queue

position; that is, fx =maxy∈D ix,y. Let O to be any scheduling

algorithm applied to the datacenters and hO be the resulting

overall job finish instant; that is, hO = 1
|J| ×∑x∈J fx. Let R

denote the Reordering algorithm and hO,R to be the overall

job finish instant of executing algorithm O and algorithm R

sequentially. Theorem 1 states that hO,R ≤ hO no matter what

scheduling algorithm O is.

Proof: We provide an intuitive proof based on Mathe-

matical Induction on the number of jobs. When n = 1, the

theorem obviously holds. Assume the theorem holds when

n = k. We define h(k) as the overall job finish instant when

the number of jobs is k. So, hO,R(k)≤ hO(k). When n= k+1,

suppose we first process job a, since it is identified from the

data-center with the longest queue, after being processed,

its finish time f
′

a is the same as fa, which is job a’s fin-

ish instant before applying Reordering. For the other jobs,

based on step 3 we know that hO,R(k) ≤ hO(k). Therefore,

hO,R(k+1) =
k×hO,R(k)+ f

′
a

k+1 ≤ k×hO(k)+ fa
k+1 = hO(k+1).

The above Theorem proves that Reordering improves,

or does no harm at least, the average job finish instant for

any job scheduling algorithm. With the assumption that job

finish instant can estimate the job finish time, Reordering

improves the average job finish time, and the average job

response time as the result. In Section 5 we discuss how

we address these assumptions for a system prototype, and

evaluate it in Section 6.

In summary, we emphasize that Reordering is an add-

on mechanism that can be easily used with any scheduling

approach to improve (or at the very least not harm) overall

average job completion time. We leave further discussions

about Reordering’s usages until Section 8.

4. Workload-aware Approach

Given the “do no harm” property of Reordering as described

above, it is naturally a conservative approach (to modifying

the original scheduling decisions), with results depending

significantly on the original scheduling algorithm to which

the reordering process is applied. However, Reordering still

leaves rooms for improvement. In the motivating example in

Section 2, both Global-SRPT (Figure 2(e)) and Independent-

SRPT (Figure 2(f)) came up with the job order of B→C→
A. We observe that the scheduling performance would be im-

proved if we switched the order of job B and job C, and result

in the new job order C→ B→ A. Doing so would bring per-

formance improvement for job C while hurting the comple-

tion time of job B, which is against the principle of Reorder-

ing, yet the net effect results in overall performance improve-

ment as shown in Figure 2(d). This observation motivates us

to develop the more aggressive approach than Reordering,

termed Workload-Aware Greedy Scheduling (SWAG), which

schedules the jobs greedily based on their estimated finish

time. We first discuss the design principles for SWAG, and

then present its algorithm details.

4.1 SWAG Design Principles

Recall that a job’s completion time is composed of the wait-

ing time as well as the service time, and the traditional SRPT

results in the shortest total waiting time for all jobs by greed-

ily scheduling the job with the shortest remaining process-

ing time over the long ones. Therefore SRPT optimizes the

average job completion time since the jobs’ service times

are fixed. 7 This insight is common for all job scheduling

in reducing the average job completion time, yet it sets the

ground of our first design principle for SWAG.

First Principle: In order to reduce the total waiting time

and further reduce the response time, jobs that can finish

quickly should be scheduled before the other jobs.

However, as shown in Section 2.3.3, following the first

principle by favoring the small jobs only is sub-optimal

in the multiple-scheduler-multiple-queue scenario, due to

the imbalance between the sizes of the sub-jobs across the

datacenters and the fact that the finish time of a job depends

only on its last completed sub-job. In fact, a small job with a

large sub-job may not finish as quickly as a large job with

many small sub-jobs. Therefore it leads us to the second

design principle.

Second Principle: Since the small jobs are not guaran-

teed to finish quickly (as is the case in the single-scheduler-

single-queue scenario), we should consider scheduling jobs

more as a function of sub-job sizes rather than the size of the

overall job.

The first two principles guide us to select the job finishing

the quickest under the condition that it occupies the entire

system. However each datacenter has different workload

at the scheduling decision instant, which also impacts the

waiting time that each sub-job suffers. This gives us the final

design principle for SWAG.

Third Principle: Since the sub-jobs of a job experience

different delays at different datacenters, we should also con-

sider the local queue sizes in assessing the finish times of

sub-jobs.

Figure 3 presents a simple example to illustrate the

third principle, in which there are two jobs A and B to be

7 Note that in a traditional scheduling problems a job is an atomic process-

ing unit, as opposed to our problem where a job is composed of small tasks

that can be executed in parallel.

��� ������

�
�
�
�
�
	

�
�
�

�

���

�	
����

������

�	
����

���

�	
����

������	���
����

���	��	��	���	��	��	� �!����	���

���

�	
����

���

�	
����

(a) SRPT-based Approach

��� ������

�
�
�
�
�
	

�
�
�

�

���

�	
����������

�	
����

���

�	
����

���

�	
����

���

�	
����

������	���
����

���	��	��	���	��	��	� �!����	�

(b) Better Approach

Figure 3. Motivating Example for Third Principle

scheduled over 3 datacenters, and there are two tasks al-

ready at the first datacenter. Note that both Global-SRPT

and Independent-SRPT would result in the scheduling re-

sult shown in Figure 3(a) as they both prioritize the jobs or

sub-jobs based on their sizes only. Also note that executing

Reordering after Global-/Independent-SRPT does not im-

prove their performances because the dominating jobs and

sub-jobs are already put at the end of the queue.

In conclusion, all the 3 principles are essential for reduc-

ing the average job completion time. Next, we present how

we construct SWAG based on these principles.

4.2 SWAG Algorithm

In our design, the central controller runs SWAG whenever

a new job arrives or departs. The new order of all jobs is

computed from scratch based on the estimated job finish

times. Let qd denote the current queue length at datacenter

d, and |v j,d | denote the size of job j’s sub-job at datacenter

d. v j,d = 0 if none of job j’s tasks is assigned to datacenter

d. In addition, we define the makespan m j for job j as:

m j = max
d

(qd + |v j,d |),∀d ∈ D. (1)

Then SWAG—as detailed in Algorithm 3—greedily pri-

oritizes jobs by computing their estimated finish times based

on the current queue length (accumulated number of tasks to

be served) as well as the job’s remaining size (number of re-

maining tasks). Initially, SWAG computes the makespan for

each job based on Equation 1 (Step 5). Then SWAG selects

the job with the minimal makespan (Step 6), appends it into

the job order (Step 7) and updates the queue length based on

the selected job’s sub-job sizes (Step 8). If there are more

than one job with the minimal makespan, SWAG picks the

one with the smallest total remaining size as a tie-breaker.

SWAG continues to greedily add the next job with the small-

est makespan, with respect to the current queue lengths, until

all the current jobs in the system have been added.

In our example presented in Figure 2, SWAG first selects

Job C as it has the smallest makespan of 7, as compared to

10 for Job A and 8 for Job B. After that, the queue length for

datacenter 1 and datacenter 3 would be updated to 7 and 6,

respectively, according to Job C’s sub-job size. At this point,

both Jobs A and B result in the same makespan of 10, with

respect to the new queue lengths. Since Job B has a smaller

remaining size than Job A, it is added after Job C, followed

by Job A . The final job order as computed by SWAG is

4 Workload-Aware Greedy Scheduling (SWAG)

1: procedure SWAG(J,v j,d ,∀ j ∈ J,d ∈ D)

2: N← /0 // an ordered list

3: qd ← 0,∀d ∈ D

4: while |N| 6= |J| do

5: m j←maxd (qd + |v j,d |),∀ j ∈ J,d ∈ D

6: targetJob←min j m j,∀ j ∈ J

7: N.push back(targetJob)
8: qd ← qd + |vtargetJob,d|,∀d ∈ D

9: return N

C→ B→ A, and the resulting average job finish time is 35
3 ,

which is better than that the SRPT-based solutions.

5. System Extensions

In this section we describe several system extensions.

Heterogeneous Tasks Duration. In above presentation

we assumed that all tasks across all jobs were of the same

duration. However, previous works [5, 7, 8] show that tasks

duration could be heterogeneous within and across jobs in

a real system due to various reasons. We address this by

having the local scheduler of each datacenter select the task

with the longest expected duration that is not yet launched

for the sub-job with the highest priority determined by the

central controller. The rationale behind this method is to

start the larger tasks earlier in order to reduce the makespan

across all tasks of a particular sub-job.

Inaccuracies in Task Duration Estimation. The way we

address heterogeneous tasks duration (task-level scheduling

by local schedulers) relies on reasonably accurate estimation

of task durations. Unfortunately, there is no guarantee that

the estimations at the scheduler are accurate because tasks

duration are subject to many dynamic factors[5, 7, 8], in-

cluding I/O congestion and performance interference among

concurrent tasks. The typical approach to this problem is to

use the finished tasks’ duration to estimate the duration of

the remaining tasks of the same job[5, 7, 8]; it is reported

that the estimation accuracy with such approaches reaches

≈ 80%, as the jobs get closer to the completion[8]. Here, we

do not assume a specific estimation mechanism for task du-

ration, but rather (in Section 6) evaluate the sensitivity of our

system’s performance to the estimation accuracy.

Scheduling Decision Points. The heterogeneous nature

of tasks duration and the (potential) lack of accuracy in their

estimation indicate that in a real system we should consider

(re)evaluating scheduling decisions at task departure points

(in addition to job arrival and departure points). However,

our simulation study indicates that the heterogeneous na-

ture of tasks duration and the inaccuracies in their estimation

only have a marginal impact on the scheduling results. Since

the frequency of task departures can be a few orders of mag-

nitude larger than that of job arrivals and departures, running

of job-level scheduling at such high frequency would incur

substantial overhead, particularly as job-level scheduling is

performed by the central controller. Consequently, we con-

clude that in a real system it is sufficient to consider schedul-

ing decisions upon job arrivals and departures.

6. Performance Evaluation

In this Section we conduct an extensive simulation study,

with realistic job traces, for the proposed scheduling ap-

proaches (SWAG and Reordering) compared to the tradi-

tional solutions (FCFS and SRPT extensions) with regard to

performance improvement and fairness (Section 6.2), over-

head evaluation (Section 6.3) and sensitivity analysis (Sec-

tion 6.4). Our results show that SWAG and Reordering im-

prove SRPT-based approaches by 50% and 27%, respec-

tively, over a wide range of settings.

6.1 Experiment Settings

The main performance metric we focus on is average job

completion time, which is defined as the average elapsed

duration from the job’s arrival time to the time instant at

which the job has all its tasks completed and can depart

from the system. Average job completion time is a common

metric for data analytics systems; this is a reasonable metric

when focusing on customer quality-of-service. In addition,

we also evaluate the jobs’ slowdown, which is defined as the

job completion time divided by the job service time. We use

slowdown as a metric for evaluating fairness among jobs of

different sizes, as detailed in Section 6.2. All performance

results are presented with confidence intervals of 95%±5%.

We compare the performance of: FCFS, Global-SRPT,

Independent-SRPT, Global-SRPT followed by Reordering,

Independent-SRPT followed by Reordering, and SWAG. We

also show the results generated by Optimal Scheduling,

which are obtained through an offline brute-force search,

i.e., with full knowledge of future job arrivals and actual

tasks duration. We use the results from Optimal Scheduling

as an upper-bound on the response time improvement that

can be achieved through better scheduling, to investigate

how much room for improvement is left. We run FCFS as

our baseline scheduling approach, for comparison purposes

only. For clarity of exposition, we present our results as the

normalized average job completion time of each algorithm,

i.e., normalized by the average job completion time achieved

by the FCFS approach for the same setting.

Workload: We use synthetic workloads in our experi-

ments with job size distributions obtained from Facebook’s

production Hadoop cluster [5–8] and Google cluster work-

load trace[2, 28, 33], as well as the Exponential Distribu-

tions, referred to as Facebook trace, Google trace and Expo-

nential trace, respectively. Table 2 summarizes the job traces

we use in our simulation experiments. We adjust the jobs’

inter-arrival times for both workloads based on Poisson Pro-

cess in order to make the two workloads consistent in terms

of system utilization. The default settings for the average job

Trace Type Avg. Job Size
Small Jobs

(1−150 tasks)

Medium Jobs

(151−500 tasks)

Large Jobs

(501+ tasks)
Trace Characteristic

Facebook[5–8] 364.6 tasks 89% 8% 3% high variance with a few extremely large jobs

Google[2, 28, 33] 86.9 tasks 96% 2% 2% small variance with a few large jobs

Exponential 800 tasks 18% 29% 53% moderate variance in job sizes

Table 2. Job Traces

size is 800 tasks, and we tune the inter-job-arrival time to ob-

tain the workload with certain system utilization.

Tasks Duration: The tasks duration in our simulations

are modeled by Pareto distribution with β = 1.259 accord-

ing to the Facebook workload information described in [8],

and average task duration to be 2 seconds. In our simulation

experiments, we investigate the impact of inaccurate estima-

tion of task duration in Section 6.4.

Task Assignment: To evaluate the impact of imbalance

due to task assignment, we use Zipf Distribution to model

the skewness of task assignment among the datacenters. The

higher the Zipf’s skew parameter is, the more skewed that

tasks assignment is (i.e., constrained to fewer datacenters).

We also consider two extreme cases where tasks of each job

are: (i) distributed uniformly across all datacenters, or (ii)

assigned to only one datacenter. The default setting for the

skew parameter is 2, while we investigate how skew of task

assignment affects the performance in Section 6.4.

System Utilization: We define the percentage of occu-

pied computing slots as our system utilization. Multiple fac-

tors contribute to the system’s utilization: job inter-arrival

time, job size, task duration, and task assignment.

Other Default Settings: In our experiments the default

number of datacenters is 30, with 300 computing slots per

datacenter. Such default system settings result in≈ 78% sys-

tem utilization, which allows us to explore how the system

performance behaves at reasonably high utilization.

6.2 Scheduling Performance Results

Figure 4(a), 4(c), and 4(e) depict the average job comple-

tion time (normalized by that of FCFS), using the Facebook

trace, Google trace and Exponential trace respectively. We

vary the average job inter-arrival times and observe how per-

formance characteristics react to different system utilization.

Performance Improvements of Reordering Our exper-

iment results first confirm that Reordering does result in re-

duction of average completion time for SRPT-based heuris-

tics, as stated by Theorem 1. The performance improvements

for SRPT-based heuristics due to Reordering reaches as high

as 27% under highly utilized settings, and is up to 17% under

lower utilization. Finally, the results also show that Reorder-

ing is more beneficial to Independent-SRPT than to Global-

SRPT. This is intuitive as Independent-SRPT does not co-

ordinate between the sub-jobs of a job and thus results in

a higher imbalance between the sub-jobs; this creates more

opportunities for Reordering to improve performance.

Without Reordering, Global-SRPT performs better than

Independent-SRPT in the Facebook trace, while the Google

trace and the Exponential trace display the opposite trend.

Under higher utilization, Global-SRPT outperforms Independent-

SRPT by 27% in the Facebook trace, while in Exponen-

tial trace, Independent-SRPT outperforms Global-SRPT by

32%. This is the result of the fact that the variance of job

sizes in the Facebook trace is significantly higher than that

of the Google trace and the Exponential trace, so Global-

SRPT benefits more from favoring small jobs by considering

the total job size across all datacenters, while Independent-

SRPT performs even poorly by considering only the indi-

vidual sub-job sizes. In the Google trace, however, the gap

between Global-SRPT and Independent-SRPT is not obvi-

ous. Most of the jobs in Google trace are small and so are

the variance in the job sizes. With such characteristic, the

skews among the sub-job sizes tend to be smaller compared

to the other two job traces, and, therefore, Global-SRPT and

Independent-SRPT perform similar job scheduling decision.

With Reordering, Independent-SRPT performs better

than Global-SRPT in all traces, because Independent-SRPT

benefits significantly from Reordering than Global-SRPT

does as mentioned above. The gap between them becomes

significant (10% or more) starting at lower utilization (39%)

in Exponential trace, and reaches 40% under higher uti-

lization. In the Facebook trace, however, the gap is only

significant under higher utilization (68% and 78%). This

is because Global-SRPT performs reasonably well, unlike

Independent-SRPT without Reordering, in the Facebook

trace. Thus, Global-SRPT with Reordering also performs

well as compared to the performance in the Exponential

trace. These results also show that the performance of Re-

ordering depends on the original scheduling algorithm.

Performance Improvements of SWAG Compared to

SRPT-based heuristics, SWAG’s performance improvements

under higher utilization are up to 50%, 29% and 35% in

the Facebook, Google and Exponential trace respectively,

with at least 12% improvement under lower utilization. The

differences in performance improvements attribute to the

fact that job traces with higher variance in job sizes tend

to have more large jobs, which potentially results in more

sever skews among the sub-jobs. Thus, high-variance job

trace like Facebook trace displays more opportunities that

allow SWAG to achieve higher improvement by selecting

jobs that can finish quickly according to its design princi-

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

39% 46% 58% 68% 78%N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e
 J

o
b

 C
o

m
p

le
ti

o
n

 T
im

e

System Utilization (%)

Global-SRPT
Independent-SRPT

Global-SRPT w/Reordering
Independent-SRPT w/Reordering

SWAG
Optimal

(a) Performance with Facebook Trace

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

Overall Small Medium Large

S
lo

w
d

o
w

n

Independent-SRPT
Independent-SRPT w/Reordering

SWAG

(b) Fairness with Facebook Trace

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

39% 46% 58% 68% 78%N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e
 J

o
b

 C
o

m
p

le
ti

o
n

 T
im

e

System Utilization (%)

Global-SRPT
Independent-SRPT

Global-SRPT w/Reordering
Independent-SRPT w/Reordering

SWAG
Optimal

(c) Performance with Google Trace

 1

 2

 3

 4

 5

 6

 7

Overall Small Medium Large

S
lo

w
d

o
w

n

Independent-SRPT
Independent-SRPT w/Reordering

SWAG

(d) Fairness with Google Trace

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

39% 46% 58% 68% 78%N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e
 J

o
b

 C
o

m
p

le
ti

o
n

 T
im

e

System Utilization (%)

Global-SRPT
Independent-SRPT

Global-SRPT w/Reordering
Independent-SRPT w/Reordering

SWAG
Optimal

(e) Performance with Exponential Trace

 1

 1.5

 2

 2.5

 3

 3.5

 4

Overall Small Medium Large

S
lo

w
d

o
w

n

Independent-SRPT
Independent-SRPT w/Reordering

SWAG

(f) Fairness with Exponential Trace

Figure 4. Performance and Fairness Results with Different Workload Traces

ples. In addition, SWAG outperforms, by up to 10%, SRPT-

based heuristics with Reordering, under various utilization

and in all job traces. Finally, SWAG achieves near-optimal

performance throughout our experiments: the performance

gap between SWAG and Optimal is within only 2%.

Fairness among Job Types: Figure 4(b), 4(d) and 4(f)

present the slowdown results for the Facebook, Google and

Exponential trace respectively. We further present the slow-

down for different job types by classifying the jobs based

on their sizes (number of tasks): small jobs (1-150 tasks),

medium jobs (151-500 tasks) and large jobs (501 or more

tasks). The slowdown for FCFS is omitted as it is signifi-

cantly larger than the rest and is more than 15 in all cases.

Also, Global-SRPT and Independent-SRPT have similar re-

sults; thus, we only include the results for one of them.

We note that that all scheduling approaches have the same

trends, i.e., that small jobs have the smallest slowdown while

large jobs have the largest slowdown. As expected, this is

naturally due to the fact that all algorithms essentially fa-

vor smaller jobs in order to reduce the average job comple-

tion time. In addition, the major differences of slowdown

between the scheduling solutions exist in large jobs.

In Facebook and Exponential trace, the slowdown of

large jobs for Independent-SRPT is 40% more than its

overall slowdown, while the gap is no more than 30% for

Independent-SRPT with Reordering and no more than 25%

for SWAG. Google trace displays significant gap of slow-

down between large jobs and overall jobs. This is because

most of the jobs in Google trace are small jobs, therefore

the few large jobs are often queued for a long time while

the system is serving many small jobs as determined by the

scheduling solutions. However, Independent-SRPT with Re-

ordering and SWAG still maintain relatively low slowdown

compared to Independent-SRPT. Hence, we conclude that

Reordering and SWAG improve performance without signif-

icantly sacrificing performance of large jobs.

We also observe that Reordering improves the original

scheduling approach by mainly improving performance of

large jobs. This is because small jobs get to be served earlier

than the other even after Reordering is performed, while

Reordering provides the opportunity for some large jobs to

get served earlier by delaying some other sub-jobs.

We use the Exponential trace for the following overhead

and sensitivity evaluation as it displays moderate character-

istics compared to the other two.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

33% 39% 46% 52% 60% 71% 78%

R
u

n
n

in
g

 T
im

e
 (

m
s

e
c

)

System Utilization (%)

Global-SRPT w/Reordering
Independent-SRPT w/Reordering

SWAG

(a) Scheduling Running Time

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

33% 39% 46% 52% 60% 71% 78%

A
m

o
u

n
t

o
f

D
a

ta
 (

K
B

y
te

s
)

System Utilization (%)

Global-SRPT
Global-SRPT w/Reordering

Independent-SRPT w/Reordering
SWAG

(b) Communication Overhead

Figure 5. Scheduling Overhead Results

6.3 Overhead Evaluation

We evaluate our system overhead on the following aspects.

Computational Overhead. We obtain this by monitor-

ing the execution time due to running of the scheduling al-

gorithms during each scheduling decision point.

Communication Overhead. This is defined as the addi-

tional messages required by the global scheduler as needed

to be transferred from each local datacenter to the central

controller. Note that this does not include the fundamental

and necessary information needed by the system, e.g., the

metadata of the jobs and the tasks, or the task program bi-

naries. Instead, It includes the information such as the set of

current jobs IDs as well as their remaining number of tasks

associated at each datacenter.

Figure 5(a) depicts the scheduling running time under

various system utilization. The results for FCFS, Global-

SRPT and Independent-SRPT are omitted as they are neg-

ligible compared to the rest. These results suggest that even

under higher utilization (78%), the scheduling running time

of SWAG (4.5ms) is relatively small compared to the average

task duration time (2s). In addition to the scheduling run-

ning time, our prototype confirms that the control message

passing between the global scheduler and the local sched-

uler required by Reordering and SWAG takes no more than a

few hundred milliseconds. As a result, the delay in schedul-

ing running time and message passing does not significantly

degrade the completion time of the jobs. Note that although

SWAG has a higher computational (worst-case) complexity

than Reordering (O(n2×m) for SWAG and O(n×m) for Re-

ordering, where n is the number of current jobs and m is

the number of datacenters), the actual difference in compu-

tational overhead between SWAG and SRPT-based heuristics

with Reordering is not significant, because SWAG is able to

keep the number of current jobs (i.e., n) in the system small,

by scheduling jobs that can finish quickly.

Figure 5(b) depicts the communication overhead in-

curred by each scheduling algorithm. Note that FCFS and

Independent-SRPT do not require any additional informa-

tion from local schedulers, so their overhead is zero. The

communication overhead essentially depends on the number

of current jobs in the system. Since SWAG succeeds in keep-

ing the number of current jobs small, it achieves the smallest

communication overhead.

The overhead analysis confirm that the performance gains

from the proposed Reordering and SWAG techniques come

with acceptable computation and communication overhead.

6.4 Performance Sensitivity Analysis

Impact of Task Assignment In this experiment we study

the sensitivity of scheduling algorithms to the skew in task

assignments. In Figure 6(a), the X-axis represents the skew-

ness of task assignment, with Uniform Distribution being

the least skewed and One-DC Assignment being the most

skewed. Between Uniform and One-DC are the results un-

der different Zipf’s skew parameters.

The general trend in Figure 6(a) is that as the skewness

increases, the performance of the scheduling algorithms first

increases and then decreases. There is not much room for

improvement when all tasks are uniformly distributed across

datacenters. The performance improvement becomes more

significant as the imbalance in task assignments requires

greater coordination of jobs scheduling across the datacen-

ters to reduce the jobs’ completion time. Beyond a certain

skewness level, the imbalance of task assignment becomes

so substantial that most of the tasks from the same job only

span a few datacenters, in which case not much can be done.

As expected, when all the tasks of a job are assigned

to a single datacenter, the execution of Global-SRPT and

Independent-SRPT are essentially the same as they are both

equivalent to performing SRPT on the local datacenters ex-

clusively. In this case, there is no room for Reordering to

improve SRPT-based approach either.

Among the scheduling algorithms, SWAG and Independent-

SRPT are more sensitive to the changes in skewness of task

assignment than Gobal-SRPT. This is because their schedul-

ing decisions are subject to how the sub-jobs of the other

jobs are ordered at each datacenter, which is directly im-

pacted by the extent of skews among the sub-jobs of the

same job. On the other hand, Global-SRPT considers only

the global view of the job sizes across all the datacenters,

and is therefore less sensitive to how the skewness varies.

Number of Datacenters In this experiment we investi-

gate how the number of datacenters affects the performance

by varying the number of datacenters while keeping the to-

tal number of computing slots constant. In Figure 6(b), the

performance improvements by Reordering and SWAG gener-

ally increase as the number of datacenters increases, because

more datacenters provide greater opportunities for coordina-

tion of sub-jobs across the datacenters.

Accuracy of Task Duration Estimation In this experi-

ment we study how the error in task duration estimation af-

fects the scheduling algorithms’ results. The estimation error

happens as task execution is subject to unpredictable factors

like I/O congestion and interference as discussed in Section

5, and it has impact on how local schedulers schedule the

tasks because the scheduling decisions are based on esti-

mates of tasks duration. We introduce estimation error to our

experiments based on a uniform distribution with the origi-

 0

 0.2

 0.4

 0.6

 0.8

 1

Uniform 1 2 3 4 One-DC

N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e
 J

o
b

 C
o

m
p

le
ti

o
n

 T
im

e

Skew Parameter of Zipf Distribution for Task Assignment

Global-SRPT
Independent-SRPT

Global-SRPT w/Reordering
Independent-SRPT w/Reordering

SWAG
Optimal

(a) Various Task Assignment Scenarios

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

10 15 20 25 30

N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e
 J

o
b

 C
o

m
p

le
ti

o
n

 T
im

e

Number of Datacenters

Global-SRPT
Independent-SRPT

Global-SRPT w/Reordering
Independent-SRPT w/Reordering

SWAG

(b) Various Number of Datacenters

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 40 80 100

N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e
 J

o
b

 C
o

m
p

le
ti

o
n

 T
im

e

Estimation Accuracy for Task Duration (%)

Global-SRPT
Independent-SRPT

Global-SRPT w/Reordering
Independent-SRPT w/Reordering

SWAG

(c) Various Estimation Accuracy

Figure 6. Performance Sensitivity Results

nal task duration as the average. For example, if we want to

investigate 75% estimation accuracy, we set the estimation

value for task duration to be uniformly drawn from the range

of [0.75,1.25] ∗ actual task duration, so that the estimation

error is at most 25% of the actual task duration.

Figure 6(c) shows that the performance improves marginally

as the estimation accuracy for task duration increases. This

is because there is often a high variance in task duration due

to stragglers [5, 7, 8], and the estimation error is not sig-

nificant enough to affect the order of task scheduling much.

Therefore, our Reordering and SWAG algorithms are robust

to estimation errors.

7. Related Works

Distributed Job Execution. Relatively little work exists

in the research literature on running applications on geo-

distributed datacenters [14, 27, 35, 36]. Dealer [14] dynam-

ically redistributes poorly performing tasks of a single job

to other datacenters to reduce user-perceived latency. How-

ever, it only uses one datacenter at a time per job phase. In

contrast, our work distributes tasks of a job (upon arrival)

among multiple datacenters, based on data locality, with the

advantage of reducing resource (network, storage) usage.

JetStream [27] focuses on the scenario in which ap-

plications aggregate data across wide-area networks, and

deals with insufficient backhaul bandwidth by applying pre-

processing at each source site before transferring all data to

the central location. In addition to having bandwidth over-

head reduction advantages, our work also dynamically ad-

justs scheduling decisions across datacenters, to further re-

duce average job completion time.

The closest works to ours are [35, 36], which propose to

push the analytical queries to where the data are hosted and

optimize their execution plans accordingly. Another work

[26] similar to ours further improves bandwidth usage of

geo-distributed analytics by placing data and computation

across datacenters based on their bandwidth constraints.

None of the above mentioned works address the challenges

of job scheduling in distributed job execution setting; to the

best of our knowledge, our work is the first to address the

job-level scheduling problem in multi-datacenters.

Data Locality Scheduling. Scheduling jobs and tasks to

meet data locality within clusters has been a recent trend

[18, 34, 38] as it significantly improves average job comple-

tion time. Our work focuses on job scheduling given the task

distribution among the datacenters, and therefore is orthog-

onal to the above-mentioned works as their approaches to

scheduling for data locality within a datacenter can be com-

bined with our solution.

Conventional Job Scheduling. Shortest Remaining Pro-

cessing Time (SRPT) is a well-known scheduling algorithm

that achieves optimal average job completion time for pre-

emptive job scheduling in a single-server-single-queue en-

vironment [9, 30, 31]; it has been extensively studied and

applied to many problem domains [15, 21, 22, 32, 37]. Our

problem setting, specifically job scheduling in distributed

job execution scenarios, differs in that: (a) jobs are com-

posed of tasks that can run in parallel, and (b) tasks of the

same job potentially span multiple datacenters, each with

a number of compute slots, controlled by a local sched-

uler. As shown in Section 2.3, SRPT-based extensions do

not work well in this context, mainly due to skew in a sub-

job’s task distribution. Several efforts, in a more idealized

(theoretical) settings, include concurrent open shop prob-

lems [12, 23, 29], in which each job has certain operations

to be processed at each machine, and the goal is to minimize

the weighted average job completion time. Our work differs

from that of concurrent open shop [12, 23, 29] in several

ways: (a) we address a more general scheduling problem as

each datacenter (or, machine as termed in concurrent open

shop) has multiple compute slots that can run the tasks of the

same job in parallel, (b) we develop online scheduling mech-

anisms rather than the offline deterministic scheduling anal-

ysis proposed by previous efforts on concurrent open shop,

and (c) we conduct simulation-based experiments to evaluate

the performance of scheduling solutions under more realistic

settings and with realistic workloads.

Coflow Scheduling. Similar to job scheduling of many

tasks, Varys [10] schedules coflows, each composed of sev-

eral sub-flows. There are several key differences between

Varys and this paper: First, Varys schedules the coflows and

their sub-flows all at a centralized controller, while in this

paper, scheduling of jobs and tasks is carried out through the

collaboration of global and local schedulers. Second, Varys

needs to decide the sending rates of the flows in addition

to their orders for flow scheduling, while SWAG only de-

cides the order of the jobs in job scheduling. Therefore, their

scheduling results are different.

8. Discussions

SWAG vs. Reordering The two approaches proposed in

this paper are Reordering and SWAG. Reordering is a light-

weight add-on that can be easily combined with any schedul-

ing approach, potentially improving average job completion

time, while SWAG is a stand-alone scheduling approach.

Both incur the same communication overhead in collect-

ing information from local datacenter schedulers, to sup-

port global job scheduling decisions. Although SWAG has a

greater computational overhead than Reordering (as shown

in Section 6.3), our simulation results (in Sections 6.2 and

6.4) show that SWAG outperforms all other scheduling algo-

rithms in all settings, including those improved by Reorder-

ing, largely due to the principles upon which it is designed.

We note, however, that Reordering can easily adapt to cer-

tain job scheduling constraints that SWAG may not be able

to address. For instance, if jobs have deadlines and deadline-

aware scheduling is used, Reordering can still improve, or at

least not harm, the average job completion time.

Finally, note that SWAG cannot be further improved by

Reordering. Recall that in each iteration of Reordering ex-

ecution, it selects the last job in the most-loaded datacenter

and adds it into the final job order (in reverse). Since SWAG

schedules jobs based on minimizing their makespan, all of

the sub-jobs of the job selected by Reordering are already at

the end of the queue of their associated datacenter. There-

fore, applying Reordering after SWAG returns exactly the

same job order as that obtained by running SWAG only.

DAG of Tasks. Real workloads suggest that jobs can

typically be modeled as a DAG of tasks - the first-stage

tasks process their input data from physical storage, and

tasks in following stages aggregate the output from the first-

stage tasks. Note that those following stages initiate data

shuffling across the geo-distributed datacenters through wide

area networks, which can incur unpredictable latency and

potentially large cost at the backhaul.

Our presentation here essentially assumes jobs are com-

posed of single-stage tasks. To extend our approach to multi-

stage jobs, we can first assign the first-stage tasks to the dat-

acenters hosting the input data (using the algorithms pro-

posed here), then redirect the tasks of the following stages

and transfer all the intermediate results from the first-stage

tasks to the datacenter that has the largest sub-job of the orig-

inal job. The tasks of the following stages can then run within

this datacenter and the sizes for all the original sub-jobs can

be updated accordingly. As a result, there remains a single

sub-job (of the original job) for the remainder of its stages.

Data Transfer Schedule. In running jobs across geo-

distributed datacenters, a job’s completion time depends on

not only how the jobs are scheduled for service, but also how

the data transfer flows are scheduled. To reduce the over-

all job completion time, our work takes the initial step of

coordinated job scheduling across all datacenters. For finer

control and further improvements in overall job completion

time, our system can be extended to consider how data trans-

fer flows consume wide area network bandwidth, e.g., when

the flow should start sending data at what transmission rate.

Multiple Task Placement Choices. In this paper we as-

sume each task can only be placed at the datacenter that has

its required data. One future extension is to allow each task

multiple placement choices which would result in a joint op-

timization of job scheduling and task placement.

Heterogeneous Datacenter Capacity. In previous sec-

tions we assume all datacenters to be homogeneous in that

they have the same number of compute slots for serving the

tasks. In reality datacenters may have different capacity of

the number of computing slots. Recall that both Reordering

and SWAG rely on queue length as the estimation for job

finish time (e.g., Step 5 in Algorithm 1 and Step 5 in Algo-

rithm 3). However, the same queue length would result in

different job finish time if equipped with different number

of compute slots. Reordering and SWAG can easily adapt to

heterogeneous datacenter capacity by normalizing the queue

length of each datacenter by their number of computing

slots. For example, Step 5 in Algorithm 1 can be modified

as targetDC←maxd [
|qd |
cd

],∀d ∈D, and Step 5 in Algorithm

3 can be modified as m j ← maxd [
(qd+|v j,d |)

cd
],∀ j ∈ J,d ∈ D,

where cd represents the number of computing slots in dat-

acenter d. The intuition is that the datacenters with more

compute slots spend shorter time finishing serving the same

workload than the datacenters with less compute slots.

9. Conclusions

In the big data era, as data volumes keep increasing at dra-

matical rates, running jobs across geo-distributed datacen-

ters emerges as the promising trend. In this setting, we pro-

pose two solutions for job scheduling across datacenters:

Reordering, which improves scheduling algorithms by ef-

ficiently adjusting their job order with low computational

overhead; and SWAG, a workload-aware greedy scheduling

algorithm that further improves the average job completion

time and achieves near-optimal performance. Our simula-

tions with realistic job traces and extensive scenarios show

that the average job completion time improvements from Re-

ordering and SWAG are up to 27% and 50%, respectively, as

compared to SRPT-based extensions, while achieved at rea-

sonable computational and communication overhead. In the

future, we also plan to investigate our system with an imple-

mented prototype along with the realistic settings.

Acknowledgment

We would like to thank Ganesh Ananthanarayanan, Samir

Khuller and Wyatt Lloyd for their insightful discussions.

We would like to thank the anonymous reviewers and our

shepherd, Bernard Wong, for their thoughtful suggestions.

This work is supported in part by the NSF grant CNS-

1423505 and the Zumberge Research Award.

References

[1] http://aws.amazon.com/about-aws/global-infrastructure/.

Amazonn Global Infrastructure.

[2] https://code.google.com/p/googleclusterdata/. Google Cluster

Workload Traces.

[3] http://hadoop.apache.org/. Hadoop Cluster Computing Sys-

tem.

[4] http://www.microsoft.com/en-us/server-cloud/cloud-

os/global-datacenters.aspx. Microsoft Cloud Platform.

[5] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica,

Y. Lu, B. Saha, and E. Harris. Reining in the outliers in map-

reduce clusters using mantri. In USENIX OSDI, 2010.

[6] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,

S. Kandula, S. Shenker, and I. Stoica. Pacman: coordinated

memory caching for parallel jobs. In USENIX NSDI, 2012.

[7] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Sto-

ica. Effective straggler mitigation: Attack of the clones. In

USENIX NSDI, 2013.

[8] G. Ananthanarayanan, C.-C. Hung, X. Ren, I. Stoica, A. Wier-

man, and M. Yu. Grass: trimming stragglers in approximation

analytics. In USENIX NSDI, 2014.

[9] N. Bansal and M. Harchol-Balter. Analysis of SRPT schedul-

ing: Investigating unfairness. ACM, 2001.

[10] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow

scheduling with varys. In ACM SIGCOMM, 2014.

[11] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Fur-

man, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,

et al. Spanner: Googles globally distributed database. ACM

Transactions on Computer Systems (TOCS), 2013.

[12] N. Garg, A. Kumar, and V. Pandit. Order scheduling mod-

els: hardness and algorithms. In FSTTCS 2007: Foundations

of Software Technology and Theoretical Computer Science.

Springer, 2007.

[13] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai,

S. Wu, S. G. Dhoot, A. R. Kumar, A. Agiwal, et al. Mesa:

Geo-replicated, near real-time, scalable data warehousing. In

Proceedings of the VLDB Endowment, 2014.

[14] M. Hajjat, D. Maltz, S. Rao, K. Sripanidkulchai, et al. Dealer:

application-aware request splitting for interactive cloud appli-

cations. In ACM CoNEXT, 2012.

[15] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal.

Size-based scheduling to improve web performance. ACM

Transactions on Computer Systems (TOCS), 2003.

[16] J.-H. Hwang, U. Cetintemel, and S. Zdonik. Fast and reliable

stream processing over wide area networks. In IEEE ICDE

Workshop, 2007.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:

distributed data-parallel programs from sequential building

blocks. In ACM SIGOPS Operating Systems Review, 2007.

[18] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,

and A. Goldberg. Quincy: Fair scheduling for distributed

computing clusters. In ACM SOSP, 2009.

[19] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experi-

ence with a globally-deployed software defined wan. In ACM

SIGCOMM, 2013.

[20] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete.

Mdcc: Multi-data center consistency. In ACM EuroSys, 2013.

[21] M. Lin, A. Wierman, and B. Zwart. The average response

time in a heavy-traffic srpt queue. ACM SIGMETRICS Per-

formance Evaluation Review, 2010.

[22] M. Lin, A. Wierman, and B. Zwart. Heavy-traffic analysis of

mean response time under shortest remaining processing time.

Performance Evaluation, 2011.

[23] M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and

N. A. Uhan. Minimizing the sum of weighted completion

times in a concurrent open shop. Operation Research Letter,

2010.

[24] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,

S. Pan, S. Shankar, V. Sivakumar, L. Tang, et al. f4: Facebook

warm blob storage system. In USENIX OSDI, 2014.

[25] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,

M. Welsh, and M. Seltzer. Network-aware operator placement

for stream-processing systems. In IEEE ICDE, 2006.

[26] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,

P. Bahl, and I. Stoica. Low latency geo-distributed data ana-

lytics. In ACM SIGCOMM, 2015.

[27] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman.

Aggregation and degradation in jetstream: Streaming analyt-

ics in the wide area. In USENIX NSDI, 2014.

[28] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.

Kozuch. Heterogeneity and dynamicity of clouds at scale:

Google trace analysis. In Proceedings of the Third ACM

Symposium on Cloud Computing, 2012.

[29] T. A. Roemer. A note on the complexity of the concurrent

open shop problem. Springer, 2006.

[30] L. Schrage. A proof of the optimality of the shortest remaining

processing time discipline. Operations Research, 1968.

[31] L. E. Schrage and L. W. Miller. The queue m/g/1 with the

shortest remaining processing time discipline. Operations

Research, 1966.

[32] B. Schroeder and M. Harchol-Balter. Web servers under

overload: How scheduling can help. ACM Transactions on

Internet Technology (TOIT), 2006.

[33] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and

C. R. Das. Modeling and synthesizing task placement con-

straints in google compute clusters. In Proceedings of the 2nd

ACM Symposium on Cloud Computing, 2011.

[34] J. Tan, X. Meng, and L. Zhang. Delay tails in mapreduce

scheduling. ACM SIGMETRICS Performance Evaluation Re-

view, 2012.

[35] A. Vulimiri, C. Curino, B. Godfrey, T. Jungblut, J. Padhye,

and G. Varghese. Global analytics in the face of bandwidth

and regulatory constraints. In To Appear in NSDI, 2015.

[36] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and

G. Varghese. Wanalytics: Analytics for a geo-distributed data-

intensive world. In To Appear in CIDR, 2015.

[37] A. Wierman and M. Harchol-Balter. Classifying scheduling

policies with respect to unfairness in an m/gi/1. In ACM

SIGMETRICS Performance Evaluation Review, 2003.

[38] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,

S. Shenker, and I. Stoica. Delay scheduling: A simple tech-

nique for achieving locality and fairness in cluster scheduling.

In ACM EuroSys, 2010.

[39] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-

Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient dis-

tributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. In USENIX NSDI, 2012.

