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Abstract
Data center networks evolve as they serve customer traffic.
When applying network changes, operators risk impacting
customer traffic because the network operates at reduced
capacity and is more vulnerable to failures and traffic varia-
tions. The impact on customer traffic ultimately translates to
operator cost (e.g., refunds to customers). However, planning
a network change while minimizing the risks is challenging
as we need to adapt to a variety of traffic dynamics and cost
functions while scaling to large networks and large changes.
Today, operators often use plans that maximize the residual
capacity (MRC), which often incurs a high cost under dif-
ferent traffic dynamics. Instead, we propose Janus, which
searches the large planning space by leveraging the high
degree of symmetry in data center networks. Our evaluation
on large Clos networks and Facebook traffic traces shows
that Janus generates plans in real-time only needing 33~71%
of the cost of MRC planners while adapting to a variety of
settings.

CCS Concepts • Networks → Network management;
Network reliability; Network simulations.
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1 Introduction
Data center networks are evolving fast to keep up with traffic
doubling every year [37, 40] and frequent rollouts of new
applications. They continuously change both hardware and
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software to scale out and add new features. These changes in-
clude repairs such as firmware security patches and upgrades
such as addition of new features to switch hardware or soft-
ware. Such changes are even more common in recent years
with the adoption of software-defined networking [20, 23, 26]
and programmable switches [3, 12, 24].
Changes come with an inherent risk of impacting cus-

tomers and their traffic: operators have to apply net-
work changes while upholding high availability and good
performance—draining the entire data center before apply-
ing changes is too costly (typically measured through SLAs).
When a change is taking place, the network operates at re-
duced capacity and has less headroom for handling traffic
variations and failures [17, 18]. Google reports that 68% of
failures occur during the network changes [17]. There are
also other risks due to delayed changes and bugs in the
change itself (§2.1).
A risk is the likelihood of any event impacting customer

traffic. These events result in a violation of service-level
objectives (SLOs) and hurt operator income. For example,
Amazon refunds 30% of credits to customers experiencing
less than 90% uptime. Thus, reducing risk is critical for all
operators, but it also requires investment and is not cheap.
Operators can reduce risk by overprovisioning the network
[18]: with enough capacity, the network has headroom to
absorb traffic variations and failures during network changes
seamlessly, but this comes at a high CAPEX and OPEX cost.
There is a fundamental tradeoff between risk tolerance

and cost: operators can choose to pay more, upfront, by over-
provisioning to keep network utilization and risk low; or run
the network at high utilization and accept a moderate risk
of impacting customer traffic. Each data center operator can
choose its operating point based on their budget for network
resources and penalties associated with SLO violations.
Given an operating point (i.e., the level of capacity over-

provisioning), operators have to make decisions on when
and how to apply changes in a way that minimizes the ex-
pected cost of risks. However, planning a network change is
challenging because it has to meet two goals:
Adaptivity: The best change plan depends on (1) Tempo-
ral and spatial traffic dynamics influence the expected risk
of a plan. A safe plan now could be unsafe one hour later
when traffic volumes are high (temporal dynamics). Similarly,
whether we can apply a change to a core switch depends
on the intra-pod and inter-pod traffic (spatial dynamics). (2)
Cost functions which are the penalties operators incur when
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customers’ traffic is affected in the network. The penalty
depends on the customer/cloud agreements, and it is often
defined based on the type of service [4, 5] (see examples in
§2.1). (3) Other factors also need to be taken into account,
e.g., failures, the topology, and routing (see §2.2).
Today, most operators use capacity-based planning. For

example, Google [17, 40] divides the switches involved in a
change into equal-sized sets and applies the change sequen-
tially to maximize the residual capacity during the change.
This approach is simple and scalable, but it does not adapt
to traffic dynamics or failures, and it often results in higher
penalties such as increased cost (see §2.2). Therefore, new
solutions are needed that can adapt to such changes.
Scalability: Finding a plan for a change is not easy: the
space of possible plans is super-exponentially large (§2.1).
For example, there are 3.4 ˆ 101213 plans for upgrading 500
switches. Brute force search of the entire space is not scalable.
We often need to plan changes in real-time (as plans become
obsolete after long durations due to changes traffic variations
and failures) and therefore, there is a need for a system that
can search the space of possible plans efficiently to find the
best possible plan. We build Janus to do exactly that.
Janus is a change planner that leverages the inherent

symmetry of data center networks to search for the best plan
in a large planning space. Janus has the following key ideas:
Find blocks of equivalent switches: Given topology and
routing, Janus identifies blocks of switches that connect to
the same set of other switches (i.e., switches in one block are
interchangeable). Within a block, we do not need to decide
which individual switches to change at any given time, but
rather how many switches to change (§3.1).
Find equivalent subplans: Some subplans include
switches in different blocks but have the same impact on
customer traffic under all traffic settings (§3.2). We leverage
graph automorphism to identify these equivalent subplans.
Scale cost estimation: We run flow-level Monte-Carlo sim-
ulations to estimate the impact of each subplan on customer
traffic (for various risk factors) and compute its cost. To
speed up simulations, we build quotiented network graphs,
a compressed representation of a data center network while
ensuring its estimation accuracy (§3.3).
Account for failures: Data centers have frequent failures
that lower network capacity and impact customers. It is chal-
lenging to estimate the impact of a change due to the sheer
number of failure scenarios that need to be taken into ac-
count. We introduce the notion of equivalence failure classes
similar to equivalent subplans (§3.4).

We evaluate Janus on large-scale Clos topologies [40] and
Facebook traffic traces [37]. Our evaluation shows that Janus
only needs 33~71% of the cost compared to current best
practice approaches and can adjust to a variety of network
change policies such as different cost functions and different
deadlines. Janus generates plans in real-time: it only takes

8.75 seconds on 20 cores to plan a change on 864 switches in
a Jupiter-size [40] network (61K hosts and 2400 switches).

2 Challenges and key ideas
In this section, we formulate the network change planning
problem. We use examples to discuss strawmen (maximum
residual capacity planners) and their limitations. We then
summarize Janus’s design addressing these limitations.

2.1 Risk assessment for network changes
We focus on planned network changes (such as upgrading
switch firmware or replacing faulty links and switches)
where operators can reliably prepare ahead of time. Such
changes are typically at a larger scale and require more time
than unplanned changes—ones that are in reaction to unex-
pected failures (e.g., mitigating a fault).

Risk assessment is critical for planning such changes: these
changes reduce the residual network capacity and leave less
headroom for dealingwith unexpected events—such as traffic
variations, concurrent failures, and failed changes.

To plan a network change, we consider operator spec-
ified risks and probabilities and estimate their impact on
customers and the corresponding penalty to operators (i.e.,
cost). We choose a plan that minimizes the expected cost
—operators can choose to minimize other metrics such as
99th percentile to be more resilient to the worst-case events.
The steps involved are as follows:
Operator specifies risks and probabilities: Janus relies
on operators to provide the types of risks and their prob-
abilities. Some risks are easier to estimate than others; for
example, operators keep historical failures of devices, which
makes it easy to determine the risk of failures for network
devices [2, 17, 22]. Operators also keep historical traffic ma-
trices [44], which we can use to estimate the risk of traffic
variations. However, there are other risks which are harder
to measure, for example, the risk of losing customers during
downtimes, the impact of downtimes during high profile
events such as Black Friday, or the risk of delaying a pushing
a security upgrade. We posit that even though we cannot
measure the impact of these risks accurately, allowing oper-
ators to express such types of risks (with estimates or best
guesses) allows for better planning decisions.

We refer readers to site reliability engineering (SRE) books,
blog posts, and talks [7, 10, 34] for more detail on techniques
to estimate risks. Improving these techniques is a research
topic in and of itself and is out of scope for this paper.
Estimating the impact on customer traffic: We next es-
timate the impact of these risks on customer traffic during
network changes. We measure impact by counting the per-
centage of ToR pairs experiencing packet loss (similar to
prior work [44, 45]). We consider ToR pairs (as opposed to
host pairs) to reduce the traffic matrix size while preserving
the traffic dynamics inside the network [44]. We use packet
loss as our measure of impact as it is an important customer
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experience indicator [45]. Our solution can be extended to
support cost functions defined on throughput and latency.

The impact is a random variable that depends on the prob-
abilities of traffic matrices and risks. We run Monte Carlo
simulations to estimate the impact under various traffic ma-
trices and risks. For example, we model concurrent failures
by enumerating failure scenarios and their probabilities. Un-
der each failure scenario, the network has a lower capacity
(removing all the switches that fail in this scenario). We
simulate and measure the impact on customer traffic.
Assessing the cost to operators: Customer impact ulti-
mately translates to operator cost because cloud providers
have to refund customers for missing any service-level agree-
ments (SLAs). These functions are often staged: For example,
Amazon uses a staged function for refunding credits for avail-
ability violations: it provides 10% refund between 99.99% and
99.0% uptime, 30% refund for anything below 99.0% uptime
[4]. Similarly, Azure provides its own version: 10% refund
between 99.99%-99.0% uptime, 25% refund for 95%-99%, and
100% for anything below [5]. These functions may differ de-
pending on the type of service [4, 5] and customer settings
(e.g., enterprise agreements [6]). For example, operators may
want to assign a higher penalty when interrupting critical
systems, such as lock services that many other systems de-
pend on, than interrupting background jobs (e.g., log analysis
systems). Similar to customer impact, the cost is also a ran-
dom variable given various risk probabilities.
The change planning problem: We define a network
change as a set of operations on switches or links. When
applying each operation, we move traffic away from the as-
sociated switch or link (drain), apply the operation, andmove
traffic back (undrain). A plan of execution is a partitioning
of changes into subsets where changes in each subset run
concurrently. We refer to each subset of changes in a plan of
execution as a subplan. Given a plan, we compute the cost
as the sum of the cost of all the subplans (i.e., steps).

Janus searches for the best plan that minimizes the ex-
pected cost1 given an operator-specified deadline. Operators
set deadlines to ensure bug fixes and feature updates are done
in a timely fashion. Operators may also set other planning
constraints (e.g., plan cable replacement according to the
technician’s work hours) and tie-breaker policies for plans
with equal cost (e.g., select the plan that finishes faster when
multiple plans have equal cost).

Janus tunes the plan in response to traffic variations, fail-
ures, and other sources of risks. When the risk of continuing
a change is too high, operators can opt to rollback the change.
2.2 Challenges
Given a deadline for applying a change, operators follow
rules of thumb that guides them to devise a plan. For example,
Google [17, 40] uses a capacity-based planner that at every
step changes an equal number of aggregate switches in each
1We can also minimize other statistics such as 90th percentile.

uptime refund uptime refund uptime refund
Staged-1 <95% 100% <99% 25% <99.95% 10%
Staged-2 <95% 50% <99% 25% <99.99% 10%
Staged-3 <95% 100% <99% 30% <99.99% 10%

Table 1. Example staged cost functions from cloud providers

Subplan C1 A1 A2 C1, A1 C1, A2 A1, A2 C1, A1, A2
%ToR pairs 0.1% 0.1% 0.1% 0.2% 2% 2% 4%

Table 2. An example of different subplans impacting different per-
centage of ToR pairs.
pod and an equal number of core switches, which leaves an
equal amount of residual capacity at each step. Such rules
of thumb typically aim to maximize the minimum residual
capacity during the change on the operator’s network.
Without having additional information about when,

where, or how badly traffic variations and failures happen,
planners thatmaximize theminimum residual capacity (MRC
planners) are the best planners for absorbing the impact of
worst-case events in the network.

However, in data centers, operators continuously monitor
traffic variations and failures [37, 40]. This means we have
an opportunity to do much better than MRC if we consider
these factors when planning network changes. We use a few
examples to discuss MRC’s limitations and where there is an
opportunity to improve.
Say we want to upgrade switches A1, A2, C1 in Fig. 1.

Given a deadline of 2 steps, an MRC planner may upgrade
switches A1, C1 and then A2. This plan ensures the min-
imum ToR capacity to any other ToR is 2

3 of its original
capacity.2 However, we show that this plan has more cost
than alternative plans under some traffic settings and cost
functions.
Plan choices depend on spatial traffic distribution.
Consider that traffic from T1s and T2s is 4.5 Gbps, and traffic
from the rest of the network to the T2s is 45 Gbps. The MRC
plan of upgrading A1 and C1 in the first step causes conges-
tion at links between C3/C4/C5/C6 and A4/A5/A6 (Fig. 1(d)).
Instead, if we upgrade two aggregate switches (A1, A2) and
then C1, there is no congestion (Fig. 1(c)).
Plan choices depend on temporal traffic dynamics. Let
us consider a different scenario where the steady-state traffic
between the T1s to T2s is for the majority of the time around
10 Gbps and the rest of the network to T2s is on average
45 Gbps. Say when we start the upgrade task, the current
traffic between the T1s to T2s becomes 4.5 Gbps. MRC, which
upgrades A1 and C1, still causes congestion. However, if we
know about the temporal traffic changes (i.e., the steady-state
is 10Gbps), we can choose to upgrade C1 now and upgrade
A1 and A2 after. Delaying upgrading C1 to later means we
may never have the chance to upgrade it safely later because
of steady-state traffic dynamics.
2Other plans leave less residual capacity: Upgrading A2 and C1 first (and
then A1) reduces the capacity of ToRs in the first pod (T1s) to ToRs in
the second pod (T2) by 50%. Similarly, upgrading A1 and A2 reduces the
network capacity for ToRs in pod one to one-third.
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a. No upgrades.

A1 A2 A3
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T1s T2s
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￫T2s: 
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b. Upgrading C1 (no congestion)

A3

C1 C2 C3 C4 C5 C6

A4 A5 A6

T1s T2s
T1s￫T2s: 4500

￫T2s: 
7500

￫T2s: 
7500
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￫T2s: 
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7500

4500
19500

2250 9750

c. Upgrading A1, A2 (no cong.)

A2 A3

C2 C3 C4 C5 C6

A4 A5 A6

T1s T2s
T1s￫T2s: 4500

2250
2250

10125

20250

1125

￫T2s: 
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￫T2s: 
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￫T2s: 
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￫T2s: 
9000

￫T2s: 
9000

￫T2s: 
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+1500

d. Upgrading A1, C1 (congestion)
Figure 1. The impact of different subplans. ToR to aggregate links are 40Gbps and aggregate to core links are 10Gbps. The traffic from T1s
to T2s is 4500 Mbps; other traffic to T2s are 6*7500= 45000 Mbps. The change task is to upgrade A1, A2, and C1 (yellow circles); Grey circles
are switches under changes. The network runs ECMP: numbers on each link indicates the traffic on the link.

Plan choices depend on cost functions. The cost func-
tion further complicates change planning. Suppose based
on the current traffic dynamics, the probabilities of impact-
ing traffic for different subplans are summarized in Table 2.
Inspired by clouds today, we define three types of staged
cost functions in Table 1. For Staged-3 function, the opti-
mal plan choice is to upgrade A1, A2, and C1 in three steps
and sequentially (cost of 10 ` 10 ` 10 “ 30). However, for
Staged-1, the optimal plan choice is to upgrade A1, A2, C1
concurrently (cost of 25). If Staged-1 returned 35 instead of
25, then the plan choice would have been the same as Staged-
3. Alternatively, if we were upgrading 4 switches (instead
of 3), each upgrade incurring 10 units of cost, then the best
plan would be to upgrade all switches concurrently.
Other factors that impact the plan choice. The best plan
also depends on other factors: topology, failures, and rout-
ing. In a Fat-tree topology, we need to be careful about the
aggregate core connectivity [30] but not in a Clos topology
(where each aggregate has the same set of connections). The
best plan also depends on failures: if switches in a given pod
have higher failure rates than other pods (e.g., because they
are from different vendors), we have to apply their changes
more carefully. Finally, different data centers employ differ-
ent routing algorithms which react to failures and traffic
variations differently [19, 40].
Key challenge: In summary, the plan choice depends on
factors such as spatiotemporal traffic dynamics, cost func-
tions, topology, routing, and failures. Such diversity makes
it challenging to find a heuristic that works for all cases.

We could search for all possible plans, but there are many
possible plans for upgrading n switches: the number of pos-
sible k-step plans is the number of ways we can divide n
switches into k subsets (i.e., Stirling number S(n,k)) where
1 ď k ď n). Therefore, the number of plans grows super-
exponentially (

řn
k“1 k!Spn,kq « Op n!

logn`1
e 2 q). For example,

for a change involving 500 switches, we have more than
3.4 ˆ 101213 plans. Even by exploiting the high degree of
symmetry in data center topologies, the number of plans still
remains prohibitively large. The same upgrade task (for 500
switches) in Jupiter topology [40] has more than 2120 plan
realizations—this is true even after we eliminate plans that
violate operator specified constraints.

The problem is exacerbated when we consider traffic dy-
namics and failures, forcing us to make planning decisions
in real-time and in response to in-network events. The plan-
ning decisions should be faster than the operation time (or
by the time we can apply the plans they are obsolete). Since
many network operations, especially ones on switches, take
minutes [1], the planning time itself should be in seconds.

In summary, Janus has to be adaptive and support a vari-
ety of constraints, scalable and work with the largest data
centers, and fast so that it can select plans in real-time.
2.3 Janus’s key ideas
Given a set of switches (or links) involved in a network
change, the plan navigator builds a repository of candidate
plans (i.e., an ordered set of subplans) based on operator
specified constraints. Janus continuously monitors traffic
dynamics, evaluates the cost of plans using a simulator, and
selects a plan with the minimum cost. After each subplan
(step) finishes, Janus adjusts the plans for the remainder of
the change based on traffic changes and failures.
Our key idea is to leverage the high degree of symmetry

in data centers to navigate the large planning space in real-
time. We show how we use network automorphism using
an example topology in Fig. 2:

Block C

Block 1 Block 2 Block N

Figure 2. Janus decomposes network graphs into blocks
Identifying blocks of equivalent switches: Wefirst iden-
tify switches that have the same connectivity and routing
tables and group them into blocks. Switches in each block
are, for all traffic purposes, indistinguishable (§3.2). There-
fore, a subplan operating on a block needs to only care about
the number of switches and not which switches it is chang-
ing. Fig. 2 shows several core and aggregate blocks. Given n
blocks, we can describe a subplan as a tuple of n numbers
ă b1, ...bn ą where the ith index is the number of steps for
upgrading the ith block. Operators can further reduce this
space by taking similar actions on different blocks, i.e., merge
two blocks to build superblocks (§3.1).
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Identifying equivalent subplans using graph auto-
morphism: For most data center networks, the number
of blocks is large and so is the number of subplans. However,
many subplans, even on different blocks, have the same im-
pact on customers. For example, in Fig. 1, upgrading A1, C1
is equivalent to upgrading A2, C3 even though A1 and A2 are
in different blocks. Network automorphisms can identify such
equivalent subplans. Equivalent subplans speed up planning
by confining risk simulations to unique subplans (§3.1).
Estimating the cost of subplans with scalable Monte
Carlo simulations: We run Monte Carlo simulations on
all possible traffic matrices during the network change. We
discuss how we predict future possible traffic matrices and
handle prediction errors in §3.3. For each traffic matrix and
its probabilities, we run flow-level simulations to estimate
its risk of impacting customer traffic and the corresponding
costs. We then compute the expected cost under all scenarios.
Monte Carlo simulation on many different TMs take a

long time, e.g., the simulation for a single TM takes minutes
even for a modest size data center with 600 switches (a rel-
atively small data center) on a single core (§5.3). To reduce
simulation time, we leverage network symmetry to simulate
flows on a quotient graph instead of the original topology
but ensure the estimated risk remains the same (See §3.3).
Failure equivalence: To estimate the cost of a large num-
ber of failure scenarios, we introduce failure equivalence
classes similar to equivalent subplans. Data centers typically
use a fail-stop model to deal with failures. This makes fail-
ures similar to subplans as they both bring down a set of
switches, links, or line cards. We thus can model failures as
subplans taking down the failed elements for a change task.
3 Janus Design
Janus has to adapt to a variety of conditions (e.g., traffic
dynamics, failures, and cost functions) and scale to large net-
works and large changes. For that, Janus leverages the high
degree of symmetry in data center topologies to search the
large planning space. Fig. 3 shows the four key components
in Janus: (1) Given the topology and routing information,
Janus starts by identifying blocks of equivalent switches;
(2) Janus then identifies equivalent subplans across blocks;
(3) Janus runs Monte-Carlo simulations using quotient net-
works to estimate the impact and cost of each subplan and
selects plans accordingly; (4) To estimate the impact of fail-
ures, we identify equivalent classes of failures in the same
way as equivalent subplans.
3.1 Identifying blocks of equivalent switches
Given topology and routing information, we group switches
connecting to the same hosts and have the same routing table
into blocks. There are many such blocks in data centers today
(Fig. 2). A block is fully specified by two values: a switch
and the number of such switches in that block. Operators
can then granulate the number of steps it takes to upgrade
switches in a block, e.g., ik with 0 ď i ď k of switches in each

block. Blocks are a good representation because they are high
level enough for operators to understand and are succinct
enough for planning purposes—we only need to know a
switch in that block and the number of such switches.
Operators can further make the planning space coarser

by collapsing multiple blocks into one and using the same
steps to upgrade them. We call these groupings superblocks.
The intuition behind superblocks is that in large data center
networks, there is enough path diversity and redundancy
that many close plans have a similar impact on traffic. For
example, for two pods with 20 aggregate switches, upgrading
3 switches in pod 1 and 4 switches in pod 2 versus upgrading
4 switches in both pods are practically similar from the resid-
ual capacity standpoint. Therefore, instead of searching in
the exact planning space, we can search in a coarse-grained
planning space with superblocks.
There are many ways to group blocks into superblocks.

For example, they can build superblocks based on commu-
nication patterns, so that they upgrade two blocks talking
with each other as one entity; or by spreading blocks with
high traffic across different super blocks—so that two blocks
with high traffic have the opportunity of being upgraded
separately; or in its simplest form group blocks based on the
type of switches, e.g., upgrade all aggregate blocks together
and upgrade all core blocks together.

3.2 Finding equivalent subplans
The most computationally intensive part of planning is es-
timating the impact of subplans on large scale topologies.
The saving grace here is that many subplans have an equal
impact under all settings. If we had an automated way of
identifying such subplans, we then would only need to sim-
ulate for each unique class of subplans. However, checking
the equivalence of two subplans is not straightforward be-
cause of topological and routing complexities (§2.2). Here,
we formalize the notion of subplan equivalence and discuss
how we can efficiently find such subplans.

Definition 3.1 (Subplan Equivalence). We define two
subplans s1 and s2 to be equivalent in a network N , when a
renaming function f exists that satisfies three properties:
1. P1: Equivalent topologies. f maps switches in GN {s1 (i.e.,

the topology after removing switches in the subplan s1)
and GN {s2 , where for each link pA,Bq, for switches A and
B in GN {s1 , there exists a matching link, (f pAq,f pBq), in
GN {s2 with the same capacity.

2. P2: Equivalent traffic matrices. The traffic volume between
ToRs pA,Bq in s1 is the same as the traffic volume between
pf pAq, f pBqq in s2.

3. P3: Equivalent routing. For a routing algorithm that makes
forwarding decisions based on the topology in P1 and
the traffic matrix in P2, all the forwarding tables in N {s1
and N {s2 are equivalent. That is, for switch S P N {s1
and f pSq P N {s2 we have: for the ith rule on switch S of
the form (src, dst, action) there exists an ith rule (f psrcq,
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§3.2 Subplan Equivalence Classes§3.1 Blocks = (G1, G2, G3, G4, G5, G6)

G1 G2 G3

G4 G5 G6 G4 G5 G6

§3.4 Modeling Failures

≲ (1, 0, 0, 0, 0, 0)

≲ (0, 0, 0, 1, 0, 0)

A1 A2 A3

C1 C2 C3 C4 C5 C6

A4 A5 A6

(2, 1, 0, 1, 1, 0) ≃ (0, 1, 2, 0, 1, 1)
(1, 0, 0, 1, 0, 0) ≃ (0, 1, 0, 0, 1, 0)

§3.3 Simulation

T1s T2s

T1s T2s
Topology, 
Routing, 
Traffic

Plan 
Selection

Figure 3. Janus’s Design
C3, C4
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(a) Quotient graph of FatTree (k=4)

C2

A2A1 A7 A8

T2 T8 T2 T8T1 T7T1 T7

Figure 4. Example of quotient graphs for FatTree topology.

f pdstq, fApactionq) on switch f pAq in N {s2, where action
is a set of (nexthop, weight) tuples, and fApactionq “

tpf pnexthopq,weightq|pnexthop,weightq P actionu.
For example, in Fig. 5, using this definition, a subplan,

s1, that updates C1 and a subplan, s2, that updates C4 are
equivalent. To show this, consider the renaming function, f ,
shown in the table of the same figure. Using this function,
the topologies in N {s1 after removing C1 and N {s2 after
removing C4 are equivalent (i.e., isomorphic), because we
can map {C2 Ñ C3, C3 Ñ C1, C4 Ñ C2, A1 Ñ A2, A2 Ñ A1,
A7 Ñ A8, A8 Ñ A7, . . . }. Similarly, since the traffic sources
T1, T2, . . ., T7, T8 map to themselves, their flows remain
intact and the flow volumes between the pairs remain the
same. If we use a routing algorithm that makes forwarding
decisions based on P1 and P2, then P3 is also satisfied.
Many routing algorithms are equivalent, i.e., they match

P3. For example, ECMP shortest path routing only uses topol-
ogy information to devise multiple shortest paths between
pairs of hosts. Similarly, WCMP matches P3 because its rout-
ing decisions only depend on the topology. It is possible
to extend this definition to other routing algorithms that
rely on switch configurations, such as BGP, by defining an
equivalence between the switch configurations.
Theorem 3.1. If traffic forwarding only uses the topology,
traffic, and routing as defined in Definition 3.1, two equiva-
lent subplans have the same impact under all traffic scenarios.

Proof sketch: P1, P2, and P3 guarantee that traffic between
two ToRs traverses in the same exact manner throughout the
network and thus sees the same impact during the execution
of the two equivalent subplans: we can find a bisimulation
between the two subplan networks (see §A).
Subplan equivalence with graph automorphism. A
naive approach to finding equivalent subplans may enumer-
ate all the subplans and do a pairwise equivalence check.
However, this takes too much time. Instead, we focus on
finding equivalence classes of subplans: if we find a renam-
ing function for the network that preserves P1, P2, and P3
before applying a subplan, we could rename the network

first. The subplan lacks enough information to tell the differ-
ence between the original and the renamed network. Thus,
we can apply the subplan on the renamed network, and in
the process make it change a different set of switches. For
example, in Fig. 5, if we rename C1 to C4 and C4 to C1, a
subplan that operated on C1 now can also operate on the
renaming of C1, that is C4. Concretely:

Theorem 3.2 (Network Automorphism). For a subplan, s ,
and a renaming function, f , that maps network N onto itself,
if f preserves properties P1, P2, and P3, the two subplans s
and f ¨ s (the subplan after applying the renaming function
to its elements) are equivalent.
Proof sketch: By finding a renaming f that preserves P1,
P2, and P3 for the network, N , we guarantee we can find
a renaming function between N {s and pf ¨ N q{s . Similarly,
we can also prove that a renaming function between N {pf ¨

sq and pf ¨ N q{s exists. Therefore, N {pf ¨ sq and N {s are
equivalent (see appendix for proof §B).
For example, consider the renaming function f in Fig. 5

where f , maps {C1 Ñ C4, C2 Ñ C3, C3 Ñ C2, C4 Ñ C1, A1
Ñ A2, . . . , A7 Ñ A8, T1 Ñ T1, . . . , T8 Ñ T8}. The two sub-
plans pf ¨ N q{s and N {s are equivalent under the renaming
function f , because they preserve P1, P2, P3. Similarly, the
two subplans pf ¨ N q{s and N {pf ¨ sq are equivalent under
the identity function, which indeed preserves P1, P2, and P3.
Therefore, N {pf ¨ sq ” N {s .

The theorem shows that using the set of renaming func-
tions for a network N , we can generate many subplans equiv-
alent to any other given subplan.

Given a set of renaming functions and a set of subplans, we
can use the renaming functions to partition the subplans into
equivalence classes. We observe the set of renaming func-
tions forms a permutation group (it has identity, inverse, asso-
ciativity, and closure properties). Using this group, we define
a group action on our subplans:G ¨s “ ttf ¨v|v P su|f P Gu

where G is the group of renaming functions, s is a subplan,
v is a switch in the subplan, and f is a renaming function.
This action preserves the basic properties of group actions:
compatibility and identity. Group actions partition the set
they act on—by using the group action, we can partition the
subplan set to find equivalence classes of subplans.
For example, Fig. 6 shows three renaming functions for

a k=4 FatTree. The three functions are: {f1: (C1 C2), f2: (C3
C4), f3: (C1 C3)(C2 C4)(A1 A2)(A3 A4)}. We can use the three
renaming functions f1, f2, and f3, subplan {C1} is equivalent
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Figure 5. Example of equivalent subplans. The actions show forwarding decisions at each
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Figure 6. Renaming functions for finding
equivalent subplans

to subplan f1¨{C1} = {f1¨C1} = {(C1 C2)¨C1} = {C2}, f3¨{C1} =
{C3}, and f3f2¨{C1} = {C4}. Similarly, a subplan s2 = {A1, C2}
is equivalent to f1¨s2 = {A1, C1}, f3¨s2 = {A2, C3} and f3f2¨s2
= {A2, C4} but not to {A2, C1}. This is because no possible
combination of generators renames A1 to A2 only.
Encoding for graph automorphism engines. We can
use a graph automorphism engine to find the renaming
group that preserves P1, P2, and P3. Graph automorphism en-
gines typically find automorphism groups of vertex-colored
graphs—a vertex-colored graph is a graph where a coloring
function, C , assigns colors to nodes. The automorphism en-
gine guarantees the permutation of the nodes respects the
coloring: we can only permute nodes that have the same
color. We can define colors in a way that two nodes have the
same color when they satisfy properties P1, P2, P3.
We define a label tuple for each node with one label per

property in Theorem 3.1. Two nodes are permutable, if their
labels exactly match, i.e., all the properties of Theorem 3.1
hold. To build the labels:

For P1, take the topology as an input to the graph automor-
phism engine. To encode each links’ bandwidth, we assign
a unique label per unique link capacity to each edge, e.g., if
the data center topology uses 40G and 100G links, we use
two unique labels to describe each link.
For P2, we assign a unique label to each traffic source.

This coloring ensures that for every pair of traffic source, (A,
B), there exists a pair, (f(A), f(B)), in the renamed network—
the number of unique colored pairs matches the number of
cells in the traffic matrix. If two traffic sources see similar
traffic, we can allow the coloring to rename them by using
the same labels. This ensures that each pair in the network
has a unique traffic label assigned to it.
As P3 depends on P1 and P2, and we already label those

properties, the same labels can be used for P3.
After labeling, we assign a unique color to each unique

label. The number of unique colors is equal to the number
of unique label tuples in the network. It is true: no polyno-
mial algorithms are known for the general case of graph
automorphism, but many polynomial-time algorithms ex-
ist for special cases of this problem [31]. In particular, we

found Nauty [32] can find the automorphism groups of a
large data center with 2,400 switches in 6.25 seconds (§5.3),
which matches the real-time requirements of planning—we
observed similar computation times for expanders [39], fat-
tree [19], and bCube [13] topologies.

3.3 Estimating cost with Monte Carlo simulations
We measure the number of ToR pairs experiencing packet
losses using flow-level Monte-Carlo simulations under vari-
ous traffic matrices and translate the number based on cost
functions. Since we search the entire planning space, we can
support various cost functions. We can also extend Janus to
support multiple tenants, each with their cost function.

We have to model congestion in the network, that is, how
competing ToRs divide (the scarce) bandwidth among them-
selves. For that, we run max-min fairness to decide how
much bandwidth each ToR gets (similar to [23]). This objec-
tive matches that of TCP. We also consider the network’s
routing tables, which is important as the network reacts to
failures and traffic variations through routing changes. This
is in contrast to previous work that used multi-commodity
flow (MCF) for simulating data center traffic [38, 41]: while
MCF is a reasonable estimation of the bisection bandwidth,
it ignores routing algorithms and fairness objectives.

Our simulation relies on knowing possible traffic matrices
during the change. Today, data center operators continuously
collect traffic matrices (TMs). We use the current TM to
represent what happens in the next planning interval and
use the past TMs to predict the TMs for the remainder of
the change. Previous work [44] use a similar approach and
find that the current TM is a good estimation of the future
(e.g., the next step of the plan)—the intuition is that the
TM does not (typically) change dramatically in such a short
time. When traffic is unpredictable, and our predictions are
not a good representative sample of future TMs, Janus may
lose some of its temporal benefits—because Janus’s view of
the future was incorrect. However, Janus still gains spatial
benefits due to more accurate short-term predictions.
With max-min fairness as our objective, we have to find

ways to speed up simulations. This is especially important
for larger data centers where simulations may take much
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longer to complete. We use the inherent symmetries in the
data center network to achieve faster simulations: we build
a quotient graph per subplan by merging switches with the
same forwarding rules (e.g., all the ECMP paths). Fig. 4(a)
shows the quotient graph for a k=4 FatTree. Fig. 4(b) shows
the quotient graph for a subplan upgrading C1.

We build quotient graphs by using network automorphism
(see §3) to identify equivalent sets of switches under P1,
P2, P3. We run the group action G on individual switches
(instead of subplans) and build an equivalence relation on the
switches. We can merge equivalent switches because they
have similar, per-link, traffic patterns. For all switches in the
same equivalence class, we build a super-switch and have
one virtual forwarding table across all original switches—we
can merge the forwarding tables if they are the same, e.g., all
the core switches have similar forwarding tables in a Fat-tree
network. To add links between super switches, we only have
to ensure the link capacity between super-switches is the
same as the original network. Since the new topology has far
fewer links/paths, we can simulate the network much faster.
3.4 Handling failures
Failures are a common risk source when planning network
changes. Google reports that nearly 68% of failures occur
when a change is in progress [17]. Janus models failures as
capacity reductions—a failure on a set of switches remove
these switches from the network graph (fail-stop), which
increases the risks of impacting customer traffic.
Operators can input failure scenarios and probabilities

based on their logging of historical failure events for each
vendor [17, 22]. Given failure scenarios and probabilities,
we can run simulations to measure impact and estimate the
expected cost for each network change plan.
However, the size of failure space is exponential in the

number of switches, e.g., to model independent switch fail-
ures for 2400 switches, we have 22400 possible scenarios. In-
stead, we model the most likely failure scenarios that cover P
(e.g., 99%) of the most probable failures, i.e., Pr rFailuress ě P .
For example, if switches have 0.1% failure rate in a topology
of 2400 switches, we only need to simulate up to 7 concurrent
failures (binomial distribution) to cover 99% of failures.
To further reduce the number of failure scenarios, we

introduce failure equivalence classes, i.e., failures that result
in isomorphic network graphs.We can view a failure scenario
as a subplan bringing down switches in the failure set (or
links/line-cards). Thus, to simulate failures during a change,
Janus considers a bigger change task involving both failed
switches and change switches. We can then apply the same
techniques above to estimate cost under failures.

4 Implementation
Janus has 7.2k lines of C code. It operates in three steps:
Operators specify the change, the cost function, and
the risks. Operators can input arbitrary change requests
into Janus. For each change, operators specify the length of

its operations and a deadline for the change. Operators then
define a cost function where the input is the percentage of
ToR pairs impacted during a change interval, and the output
is the associated cost. Operators can also specify time-based
cost functions—to model time constraints during planning,
e.g., to emphasize the risk of delaying a critical bug fix. In its
current state, Janus canmodel concurrent failure of switches
in the data center where failures are independent. We chose
to implement this failure model following the example of
previous work [28]. For more complex failure models, e.g.,
correlated failures, we rely on previous work and use their
proposed sampling techniques [15] to cover the failure space.
Simulation. We assume the data center network upholding
Max-min fairness for the traffic it routes through its net-
work. Max-min fairness is also commonly used [14, 23, 27]
to model how TCP flows affect each other during congestion.
To model Max-min fairness, we simulate the network while
respecting the routing, topology, and link constraints. Since
our simulation uses P1, P2, and P3 (in Definition 3.1), it sat-
isfies the conditions of Theorem 3.1. Therefore, we can rely
on Theorem 3.1 to reduce the subplan search space. For each
setting, we convert the network into a quotient network,
then run our network simulator on the quotient network.

Janus uses the current TM as a prediction of the traffic for
the upcoming subplan and the 10 previously observed TMs
as a prediction of traffic for the rest of the plan. In practice,
data center operators may have better traffic predictors and
are free to use their own.
Estimate cost in real-time and adjust the plan. At run-
time, Janus goes through all the subplans, applies the failure
model on each subplan, and uses the TM predictions to esti-
mate the impact of each choice. It then measures the impact
of each plan and chooses a plan with the lowest expected
cost. If there are multiple candidate plans, Janus picks the
plan according to operator-specified tiebreakers. Other ter-
mination conditions are also possible; for example, ones that
return the best plan within a deadline.
Scalability. Monte-Carlo simulations are easily paralleliz-
able: we can run each scenario (i.e., subplan and traffic
matrix) independently from others and on different ma-
chines/cores. We can then merge the results of all scenarios
to build the cost random variable of each subplan.
Plan ports and links changes. Janus supports port and
link changes by modeling them as virtual switches. To plan
changes for links, we replace each link in the network graph
with a passthrough virtual switch that sends the incoming
traffic on each of its port to its other port. Any operation
on links can thus be modeled as an operation on virtual
switches. The virtual switch abstraction allows us to use the
previous theorems for scaling. Similarly, to handle ports, we
model each as a passthrough virtual switch similar to links.

Janus supports line card changes (e.g., replacements). A
line card is a collection ofN ports. We can substitute a virtual
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switch with N ` N ports in place of a line card. We connect
the first N virtual switch ports to the links and the second N
ports to the switch where the line card belongs. The routing
table of the virtual switch is, again, a passthrough table where
the first port is directly connected to port N ` 1, the second
port to port N ` 2 and so on.
Rollbacks. It is possible that due to unexpected events,
a change task becomes costly, e.g., because there are no
suitable plans or simply because the change is faulty. In that
case, operators would want to rollback the upgrade. Janus
generates rollback plans instantly: A rollback plan is a change
plan for a subset of original change tasks.
Failed instructions. Operators may fail to follow Janus’s
instructions accurately. In such cases, operators can accom-
modate by adding these failed instructions back into the
change. For example, if during the execution of a change,
Janus issues an impossible instruction, e.g., because switches
are physically too far apart, operators can mark these in-
structions as incomplete so that Janus schedules them in
the upcoming intervals.
Janus offline. There are cases where operators cannot
spare the computational cost of real-time planning, e.g., if
they lack good traffic predictors (so they have to model many
TMs) or when using complex failure models or simulators
that prohibit real-time planning. Under such circumstances,
operators can use Janus in what we call the offline-mode.
In offline-mode, operators feed a large number of traffic

matrices (possibly from previous days) and historical fail-
ures into Janus. For example, operators could use historical
traffic of recent days to predict future days [9, 33, 43, 44].
Janus then finds a static plan for the change that will highly
likely minimize the expected cost under the provided traffic
and failure settings. Operators may also want to change the
objective of Janus to, for example, minimizing the 99th per-
centile of the risk, so that the plans that Janus suggests are
resilient to worst-case scenarios. This mode is very similar
to MRC, as both planners find static plans. However, Janus
still enjoys the spatial benefits, and it also respects operators
planning constraints such as deadlines and cost functions.

5 Evaluation
Here, we demonstrate the cost reduction, scalability, and
generality of Janus using large-scale data center topologies,
network change tasks, and realistic traffic traces. Our evalu-
ation shows that Janus only needs 33~71% of MRC cost and
can adjust to a variety of network change policies such as
different cost functions and different deadlines. Janus gen-
erates plans in real-time: it only takes 8.75 seconds on 20
cores to plan a change on 864 switches in a Jupiter-size [40]
network (61K hosts and 2400 switches).

5.1 Evaluation settings
Topology. We evaluate Janus on Clos topologies (Table 3).
We use four different scales ranging from the default Scale-1

# switches in the DC
Topology # pods # cores,

aggs, ToRs # switches # hosts # upgrades
(cores, aggs)

Scale-1 8 8, 64, 96 168 3840 72 (8, 64)
Scale-4 16 24, 192, 384 600 15360 216 (24, 192)
Scale-9 24 54, 432, 864 1350 34560 486 (54, 432)
Scale-16 32 96, 768, 1536 2400 61440 864 (96,768)

Table 3. Configurations and change task for each topology. We
upgrade all core and aggregate switches in all the pods.

which updates 8 pods (3.8K hosts and 168 switches) to a scale
comparable to the size of Google’s Jupiter topology [40] (61K
hosts and 2400 switches).
Traffic. We generate a cloud-like trace using Google job
traces to model the size and arrivals of tenants [42] and Face-
book traffic traces [37] to model the traffic for each tenant.
Specifically, for each tenant, we decide its arrival and leav-
ing times and the number of ToRs it runs on based on the
Google job trace. We then randomly select its traffic type:
either Hadoop or web traffic, and select the corresponding
trace from Facebook. We generate 400 such traffic matrices
at a 5-minute interval—Minute-level TMs map to the gran-
ularity that operators use to measure SLOs in data centers
today. By default, our traffic has an average maximum link
utilization (MLU) of 80% (the median link utilization is 17%).
We use average MLUs ranging from 65% to 95%.
Network change tasks. We evaluate Janus on a large
change so that it has to explore a large planning space. Con-
cretely, we upgrade all core and aggregate switches in the
data center. Table 3 shows the details for each upgrade task.
We assume each upgrade takes one timeslot (5 minutes), i.e.,
one traffic matrix, matching the length of firmware upgrades
of today’s switches [1]. Each upgrade is repeated 50 times
across different hours. We report the average and standard
deviation of this cost. We set deadlines of 2, 4, or 8 steps for
finishing the change and choose 4 as default—this means
that MRC leaves 50%, 75%, 87.5% of residual capacity in the
network at each step.
Cost functions. We define three types of staged cost func-
tions following the shape of the refund functions of ma-
jor cloud providers such as Azure, Amazon, and GCloud
(Table 1)3. To test the generality of Janus under various
cost functions, we also evaluate a range of synthetic func-
tions, namely, logarithmic, linear, quadratic, and exponential,
where the input is the number of ToR pairs experiencing
packet loss and the output is a cost value between 0 and 100.
The details of these functions are in §C.

We use the Staged-1 function by default. One should only
interpret the relative cost differences across approaches and
settings, not the absolute values because despite using cloud
cost functions (that operators use today in practice), it is
difficult to gauge whether the combination of our choices of

3Even though we use these functions differently than the clouds today, we
suspect that the shape and nature of cost functions will be the same.
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cost functions, topology, and traffic matrices represent what
operators experience in practice.
Planners. We evaluate two planners: (1) Janus which uses
the last 10 and the current traffic matrices to plan the change;
Janus adjusts the plan based on traffic changes (§4). (2)
Janus Offline which uses history traffic to choose a fixed
plan that does not change during execution. (3)MRC: a plan-
ner that maximizes the residual capacity at each step of the
plan §2.2, similar to the state-of-the-art solutions used in
data centers today [40].
Evaluation metrics. We report the expected cost of apply-
ing a network change while meeting each change’s deadline.
For each data point, we run 50 experiments and take the
average.

5.2 Cost savings over MRC
Spatial benefits: We start our evaluation with a simple
scenario of static traffic (using a randomly chosen TM). Be-
cause the traffic does not change, Janus online is the same as
Janus offline. Janus achieves lower or equal cost to MRC un-
der all MLU settings (Fig. 7a). At 85% MLU, Janus takes only
25% of the cost of MRC (2.5 units of cost vs. 10 units). When
MLU is low (e.g., ď 75%), there is enough capacity in the net-
work so both Janus and MRC can pick plans that apply the
change with zero cost. Janus picks plans that upgrade more
switches initially and fewer switches later on and only for
busy pods. In contrast, MRC equally allocates the switches
at each step. When MLU is high (e.g., ě 80%), every step of
the plan is likely to impact ToR pairs. Janus automatically
changes its goal to choose plans with a fewer number of
steps to minimize the duration of traffic disruption.
Temporal benefits: Next, we evaluate Janus with tenant
and traffic dynamics as discussed in our evaluation settings.
Fig. 7b shows that both Janus and Janus offline have a
lower cost than MRC under all MLUs. On average, Janus has
33~71% of the cost of MRC. At 85% MLU, Janus takes only
52% of the cost comparing to MRC. This is because Janus
can change more switches under a low traffic load and fewer
switches under a higher load.

Janus offline does not consider traffic dynamics and thus
performs worse than Janus, but still better than MRC. At
85% MLU, Janus offline takes 90% of the cost comparing to
MRC. This is because of the spatial benefits mentioned above.
In our setting, the spatial benefit is smaller than the tempo-
ral benefit because, with tenant dynamics, the traffic shifts
across ToRs fast, so there is not as much spatial skewness.
MRC also has higher variance than Janus because it

chooses a fixed plan which sometimes performs very poorly.
Such lack of predictability makes it difficult to understand
the potential impacts of MRC plans on customers. In con-
trast, both Janus and Janus offline identify the best plan
based on operators’ policies (including plan deadlines, other
constraints, and tiebreakers).

Predictability of traffic. Janus lowers the planning cost
even when the traffic is hard to predict. Here, we try 5 dif-
ferent traffic traces where we change the ratio of Hadoop
(unpredictable: all to all communication patterns that exhibit
on-off chatters) to Web servers (predictable: spatially stable
and constant chatter of Web servers to cache servers) users
in our trace while keeping the MLU fixed. Fig. 8d shows
that Janus saves cost under all settings. As we increase the
proportion of Web server to Hadoop users, Janus costs de-
crease from 74% of MRC-plan to 51%. As traffic becomes less
predictable, Janus’s temporal benefits disappear, but Janus
gains benefit because of spatial patterns.
Concurrent failures. Janus also considers the probabil-
ities of failures when it plans network changes. Here we
mode independent switch failures using Bernoulli random
variables, that is a switch either fails or does not with 1-5%
failure rate at every step (i.e., every 5 minutes). Typically,
failure rates are lower in data centers, e.g., Gill et al. [16]
report 2.7% failure rate for aggregate switches over a year.
However, we choose high failure rates to ensure there is a
non-zero chance of concurrent switch failures in Scale-1: at
5% failure rate, we expect 4 concurrent switch failures in the
space of 80 switches. High failure rate stress tests Janus as
it requires the simulation of a much larger failure space: to
model 99% of possible failures at 5% failure rate across 80
switches (binomial distribution), we have to consider more
than 2.6 trillion failure scenarios:

ř10
x“1

`80
x

˘

ě 2.6trillion.
Fig. 7c shows that Janus online has 52% to 85% of the cost

of MRC. As we increase the failure rates, Janus becomes
more conservative in preparing for potential failures and
thus requires a higher cost. MRC does not consider failure
rates, and its cost remains the same for all failure rates. With
a higher failure rate, Janus gets closer to MRC. This is be-
cause, as discussed in §2.2, MRC is a good option when we
have little information about failures. Interestingly, as we
increase failure rates, we are indirectly reducing our knowl-
edge of failures by increasing the number of failure scenarios
that we have to consider. More concretely, to cover 99% of
probable failures for 80 switches, we only need to simulate
85k different scenarios at 1% failure rate, whereas that num-
ber explodes to 2.6 trillion at 5% failure rate.

5.3 Scalability
Janus finds plans in real-time even for large topologies. We
evaluate on Scale-1 to Scale-4 (61k hosts) topologies. The de-
tails of these topologies are shown in Table 3). Janus online
plans cost 42% to 61% of MRC plans (Fig. 8c).

Janus spends the majority of its time (>99%) estimating
the impact of subplans at every step, which depends on the
number of subplans and the simulation time to estimate the
impact of each subplan. In §3.2, we discussed how network
automorphism allows Janus to reduce both the number of
subplans using subplan equivalence and the simulation time
through quotient network graphs. Another added benefit is
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Figure 7. Comparing Janus with MRC under various settings.
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Figure 8. Janus adjusts to operators constraints and cost functions and has universal benefits across all settings. The bars show the average
cost of the plans by Janus compared to the MRC planner.

that as subplans are completely independent of each other,
we can parallelize Janus very easily by computing the impact
of each subplan (or TM) on a different core/machine.

We measure the total running time of Janus across all the
steps on one core and report it in Table 4. We also interpolate
the time to 20 cores~4 to show that Janus can plan changes
in real-time even for the largest data centers. With 1 core, it
takes Janus 175 seconds to plan a change for upgrading 864
switches for Scale-16. With 20 cores, it takes 8.75 seconds.

We also compare the simulation time per traffic matrix for
a four-step plan with and without the quotient graph opti-
mization: The running time on one core of Scale-1 improves
from 2.9s to 0.01s, a reduction of 290x. Similarly, the running
time of Scale-4 improves from 184 seconds to 0.045, a reduc-
tion of 4100x–at Scale-4 topology finding a plan could take
upwards of 12 hours on a single core. We could not run the
flow simulations at Scale-9 and Scale-16 without quotient
graphs because we ran out of memory.
5.4 Adaptivity
Janus is adaptive in selecting plans that have low expected
cost for various planning constraints and metrics.
Different cost functions: Fig. 8a shows that Janus online
and offline are consistently better than MRC under a variety
of cost functions. Janus online’s plans cost is 64% of MRC un-
der Staged-2 and Staged-3 cost functions and Janus offline’s
plans cost is 86% of the MRC cost. The results are similar for
the Staged-2 and Staged-3 functions as their cost functions
are similar when the packet loss rate is low (10% credit for
99.99% ToR pair connectivity). The benefits under Staged-1’s

4This is an artifact of the code running single-threaded.

cost function is larger (49% of cost compared to MRC) be-
cause Azure’s cost function has more room for losses (10%
credit for 99.95% availability).
Janus online uses 75~85% cost compared toMRC for logarith-
mic, linear, quadratic, and exponential cost functions. Janus
is uniformly better than MRC regardless of cost function as
Janus exhaustively searches the entire plan space.
Different deadlines: Fig. 8b shows that Janus has a lower
cost than MRC for all deadlines. The cost ratio of Janus
follows a U-shape for all MLUs: when the deadline is small,
there are fewer candidate plans and thus less room for Janus
to reduce cost compared to MRC. When the deadline is far
away, MRC touches fewer switches per step and incurs less
cost. For deadlines in the middle (where the majority of
settings are), Janus has the most gains over MRC. The actual
deadline with the best gain depends on the MLU.
Rollback: We show a scenario where the cost estimates
provided by Janus helps operators to make rollback deci-
sions. As before, the change involves upgrading all the core
and aggregate switches in the Scale-1 topology (72 switches).
Janus initially selects an eight-step plan but continuously
estimates the cost of other plans and rollback plans, as shown
in Fig. 9. At step 5, Janus reports that the expected cost of
the remainder of the plan (42 switches left) is 9.901 units (red
curve) and the cost of rollback of the initial bit of the plan
(30 switches) is 3.354 (green curve). If operators consider
the cost of 9.901 to be too high (e.g., because their budget
is only 5 units), they may choose the rollback plan. After
issuing the rollback, Janus can immediately select a plan for
it. For example, Fig. 9 shows two rollback plans provided
by Janus: Plan 1 upgrades 17, 12, 1 switches in 3 steps, and
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Topology
(Change size)

Planning time simulation time per TM
1 core 20 cores Without quotient With quotient

Scale-1 (72) 2.5 s 0.125 s 2.9 s 0.01 s
Scale-4 (216) 10.06 s 0.503 s 184 s 0.045 s
Scale-9 (486) 35.9 s 1.795 s Out of mem. 0.149 s
Scale-16 (864) 175.0 s 8.75 s Out of mem. 0.8 s

Table 4. Janus planning time.
Step
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Figure 9. Janus suggests a rollback
plan (Green line) that safely revert an
ongoing change.
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Plan 2 upgrades 17, 13 switches in 2 steps. At step 6, Janus
picks Plan 1 as Plan 2 is too risky (cost of 10) due to traffic
dynamics.
Delaying changes: In practice, operators may not have a
strict deadline but instead, have to pay for a cost if a change
takes a longer time. Janus can plan for such cases. We intro-
duce three types of cost for delayed changes: (1) Constant
cost (labeled as Constant): Each step of the plan has a fixed
cost (4 units). For example, applying a change may require a
fixed amount of engineering effort in each step. (2) Increas-
ing cost (labeled as Increasing): We use a linear cost function
where the nth step of the plan costs n units. This happens
if, for example, we need to fix critical bugs quickly and the
longer we wait, the more network remains vulnerable (i.e.,
more cost to operators). (3) Cost after a deadline (labeled as
Deadline): We model this as a fixed cost of 30 units after the
6th step. This happens, for example, when an engineer relays
the rest of the change to another engineer at the end of his
shift (and increases the risk of making errors). (4) TheDefault
bar is the original function with only customer impact cost.
We minimize the total expected cost of customer impact and
delayed changes.
Fig. 10 shows that Janus online only takes 11%-47% of

the MRC cost; similarly, Janus offline has 24%-55% of the
MRC cost. Janus adjusts the plan based on the cost function.
However, MRC can only use a fixed-step plan (e.g., 8 steps
in this case) independent of the cost function.

For Constant and Increasing, Janus selects a shorter plan
(on average 2.82 and 2.84 steps) to reduce the cost of delayed
changes at the expense of increasing the customer impact
cost (from 8.6 in default to 12.4 and 11.96). In this way, Janus
identifies the best tradeoff between the two types of cost. For
Deadline, because there is a significant cost beyond 6 steps,
Janus fits the plan within 6 steps to reduce the overall cost
with the expense of slightly increasing the customer impact
cost (from 8.6 to 9).

6 Related Work
Scheduling network updates. A few prior efforts focus on
planning network updates (i.e., forwarding plane changes).
Reitblatt et al. [36] introduce consistent switch rule updates
to avoid loops or black-holes. zUpdate [29] plans traffic mi-
grations (caused by network updates) with no packet loss

during the worst-case trafficmatrices. SWAN [20] and Diony-
sus [25] schedule forwarding plane updates for WAN by
breaking the updates into stages with barriers in-between.
While these low-level tools are useful in updating individual
switch configurations, Janus plans upgrades for a (large)
group of switches or links in data centers. Moreover, Janus
adjusts plans based on traffic changes in real-time.
Failure mitigation. Autopilot [21] manages end-host up-
dates and remedies failures at the end-hosts through reimag-
ing or rebooting. Bodik et al. [11] discuss an optimization
framework for increasing the resiliency of end-host appli-
cations to faults. Janus deals with the general problem of
network upgrades and can provide scheduling support for
these failure mitigation solutions.
Network symmetry. Beckett et al. [8] compress the con-
trol plane of large networks to test data plane properties,
e.g., reachability and loop freedom. Plotkin et al. [35] scale
up network verification for reachability properties by using
symmetry. It is unclear how such techniques apply to net-
work change planning under traffic dynamics. Janus builds
a compressed data-plane to speed up simulations and uses
subplan equivalence to prune the plan search space.

7 Conclusion
Fast network changes are critical for enabling quick evolu-
tions of data centers today. Janus applies network changes
by estimating the impact of various plans and dynamically
adjusting the plans based on traffic variation and failures.
Janus uses network automorphism to scale to a large num-
ber of plans. Janus plans in real-time even for the largest of
data-centers and finishes upgrades with 33% to 71% of the
cost of MRC planners.
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A Proof of theorem 3.1
Wedefine amodel to capture the states for a flow level simula-
tion of the network. These states together with an operation
semantics specify flows traverse the network. However, we
do not care how such semantics are defined. Rather, we fo-
cus on encoding the network state in a precise manner. This
allows us to define different operational semantics on top of
the network state for various purposes. For example, the se-
mantics could use proportional fairness or max-min fairness
as we did.

Definition Network: We define a network as a tuple
pG,R, Sq where:

P1)G “ pV ,Eq is a graph specifying the network topology.
V is the set of nodes and E : V ˆ V Ñ R is a function
specifying which nodes are connected together and what is
the capacity of the edge.

P2) R is a function assigning rules to nodes:

R : V Ñ R˚ where R “ tpsrc,dst , t ,actionq | in,out P V ,

t is packet specific test conditionu

We refer to the ith rule as Rv,i ; t describes packet testing
conditions not captured in the form of source or destination
nodes, e.g., protocol or port; and action is one of drop or
fwd P where P Ă pV ˆ Rq. P specifies the portion of traffic
that goes through a specific port.

P3) S is a partial function specifying the traffic sent from
the end-hosts: S : V ˆV á T. Where u actively generates
traffic towards v , Spu,vq describes that traffic in terms of a
model-specific encoding T.

Definition Network Isomorphism: We say two networks
are equivalent up to isomorphism if there is a vertex re-
naming function (bijection) that permutes the nodes be-
tween the two networks while preserving the G,R, S rela-
tions. More concretely, two networks, N » N 1 are isomor-
phic if DπV : V ÐÑ V 1 where G »π G1,R »π R1, S »π S 1.
For a renaming function πV :

1) G and G1 are isomorphic when:

Epv1,v2q “ E1pπV pv1q,πV pv2qq

2) R and R1 are isomorphic when:

Ri “ pv, tq ô R1
i “ pπV pvq,πT ptqqwhere:

πT ptq “ pπV pv1q,πV pv2q, t ,πApaqq

πApaq “

#

drop, if a “ drop
fwd tπV pvq|@v P portsu, if a “ fwd ports

3) S and S 1 are isomorphic when: @u,v P V : Spu,vq “

πT pS 1pπV puq,πV pvqqq where πT permutes the nodes
encoded in the traffic using πV .

Definition Isomorphic network function: A network-
isomorphic-invariant function F : N Ñ T is a function
that does not use identifying information for the nodes. That

is, F is invariant under network isomorphisms if N » N 1 ñ

F pN q “ F pN 1q for all networks N ,N 1.
Theorem A.1: A network-isomorphic-invariant function,

F , outputs the same value for two isomorphic networks,
N ,N 1, that is: F pN q “ F pN 1q.
Proof: The proof is given by the definition of F .

Theorem A.2: Max-min fairness is agnostic under net-
work isomorphism.

Proof: Max-min fairness is solving the following equa-
tion:

maximize
ÿ

i

U pxi q

s.t.
ÿ

i

Rl ixi ď cl variablesxi ě 0

Where, xi is the rate allocation between two nodes. cl is the

capacity of the link l . And Rl i is the routing on the links. Rl i
is one when flow i goes through link l and zero otherwise.

By using P1 and P2, we guarantee that the set of equations
that we write for max-min fairness are the same between the
two networks. We know that the output of max-min fairness
is unique. Therefore, an arbitrary renaming of the variables
names does not impact the optimization result. Therefore,
since the two sets of equations between the two networks
are only different in the name of the variables and since the
result is unique, we can conclude that max-min fairness is
network-isomorphic invariant.

B Network Automorphism

Theorem B.1 (Network Automorphism). For a subplan, s ,
and a renaming function, f , that maps network N onto itself,
if f preserves properties P1, P2, and P3, the two subplans s
and f ¨ s (the subplan after applying the renaming function
to its elements) are equivalent.

Proof: To prove this it is enough to show that a renaming
function between the two networks exist. We prove this in
two parts: First, we prove that pf ¨ N q{s is equivalent to
N {pf ¨ sq. Second, We then prove that pf ¨N q{s is equivalent
to N {s . Finally, we conclude that N {pf ¨ sq ” N {s .
To prove the first part, we use the identity function as

the renaming function. First, it is easy to verify that the
two graphs are isomorphic, that is, for every switch A P

pf ¨ N q{s there exists a switch with the same name A P

N {pf ¨ sq. Similarly, for every link, between two switches in
one network, we can find a similar link in the other network.
Therefore, P1 is true.

For P2, since a subplan does not impact traffic sources, we
know that for every traffic source in one graph, there exists
a traffic source in the other graph. And therefore, the traffic
between the two has not changes.

P3 is true given that we have proved P1 and P2.
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Cost function Formula Cost at 99.95% 99.90% 99.75%
log Cp100 ln p637x ` 1qq 20 40 90

linear Cp50000xqq 20 50 100
quad Cpp4200xq2qq 0 10 100
exp Cp100pe277x ´ 1qq 10 30 100

Table 5. Cost functions for purely mathematical functions.

To prove the second part, we already know by definition
that f ¨ N and N are equivalent, therefore, we can replace N
in place of f ¨ N .
C Cost functions
Cost functions are shown in Table 5.C is a clamping function
that bounds the output of each function between 0 and 100
and packs the values in bins of size 10:

C “ maxp0,minp100, t10
x

10
uqq
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