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ABSTRACT
Content distribution networks (CDNs) need to make deci-
sions, such as server selection and routing, to improve per-
formance for their clients. The performance may be limited
by various factors such as packet loss in the network, a small
receive buffer at the client, or constrained server CPU and
disk resources. Conventional measurement techniques are
not effective for distinguishing these performance problems:
application-layer logs are too coarse-grained, while network-
level traces are too expensive to collect all the time. We
argue that passively monitoring the transport-level statis-
tics in the server’s network stack is a better approach.

This paper presents a tool for monitoring and analyzing
TCP statistics, and an analysis of a CoralCDN node in Plan-
etLab for six weeks. Our analysis shows that more than 10%
of connections are server-limited at least 40% of the time,
and many connections are limited by the congestion window
despite no packet loss. Still, we see that clients in 377 Au-
tonomous Systems (ASes) experience persistent packet loss.
By separating network congestion from other performance
problems, our analysis provides a much more accurate view
of the performance of the network paths than what is pos-
sible with server logs alone.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network
Operation - Network Monitoring ; C.4 [Performance of
Systems]: Measurement techniques

General Terms
Measurement, Performance

Keywords
TCP, Content Distribution Network, Performance Bottle-
neck
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1. INTRODUCTION
Content distribution networks (CDNs) run replicated ser-

vers to deliver content to a large number of clients. To op-
timize data-transfer performance, CDNs need to pick the
right server for each group of clients, and select routing paths
that traverse the Internet quickly [15]. To make better de-
cisions, CDNs should first identify the performance bottle-
necks. CDNs can then optimize their software or upgrade
their machines if the servers are limiting the performance,
work with their ISPs if network performance is spotty, or
notify clients if a small receive buffer is the bottleneck (e.g.,
through an embedded message in the Web page, or a modi-
fied HTTP header).

To diagnose performance problems, CDNs need to col-
lect and analyze measurement data. However, conventional
measurement techniques are either too coarse-grained for
diagnosing problems, or too expensive for achieving good
coverage.

Application-layer logs [5, 6], while useful for captur-
ing download times and average throughput, are too coarse-
grained to uncover why clients experience performance prob-
lems. Server logs cannot distinguish whether a connection
is limited by network congestion, slow server writes, a small
receive buffer, or a long round-trip time (RTT). This also
makes it difficult to diagnose congestion by correlating per-
formance across connections [13], because many connections
are limited by other factors.

Network-layer packet traces [17, 18] are useful for
measuring packet loss and inferring TCP connection state
(e.g., slow start and receive window size), but they are too
expensive to capture all the time. In addition, real-time in-
ference of internal TCP state (e.g., number of bytes in the
send buffer, whether a transfer is congestion-window limited,
etc.) from in-network traces is challenging, especially if the
variant of TCP running on each end point is not known in
advance.

Active probing is effective for inferring the properties
of network paths [14, 11, 15, 10]. However, these techniques
rely on a representative set of nodes to launch probe traffic,
and introduce extra load on the network. In addition, active
probing does not provide direct visibility into bottlenecks on
the server machines.

Instead of, or in addition to these techniques, we be-
lieve CDNs should capitalize on transport-layer statistics [16]
readily available in the server network stack [12]. It is more
direct to measure end-to-end performance in the server net-
work stacks than to sniff packets in the network, and col-
lecting transport-layer statistics involves less overhead than



packet traces and active probing. These transport-layer
statistics directly reveal whether a connection is constrained
by the server (e.g., too little data in the send buffer), the
congestion window (e.g., a small window during slow start),
network congestion (e.g., packet loss), or the client buffer
(e.g., a small receive window). We built a measurement
tool to collect and analyze the TCP statistics, and applied
our tool to CoralCDN [8] running on PlanetLab. In addi-
tion to characterizing performance bottlenecks, we identified
congested network paths by correlating packet losses across
connections to clients in the same AS. This is more accurate
than the analysis based on throughput (e.g., from server
logs), since many connections are not limited by network
conditions [9].

The remainder of the paper is structured as follows. We
first discuss the design and implementation of our in-stack
monitoring tool in Section 2. Then, Section 3 presents the
results from applying our tool to CoralCDN. These specific
results do not necessarily apply to other CDNs, since Plan-
etLab servers are resource constrained. Still, we believe our
techniques are broadly useful for other CDNs and cloud ser-
vices in understanding and improving user-perceived perfor-
mance. In Section 4 we demonstrate how to identify con-
gested network paths by correlating packet losses across con-
nections to clients in the same AS. We conclude the paper
in Section 5.

2. MEASUREMENT FRAMEWORK
In this section, we first describe how we collect in-stack

information. Then we show how to classify the performance
problems for each connection, and use two example traces to
illustrate different classes of performance bottlenecks. Our
tool further correlates across the network performance prob-
lems affecting clients in the same AS, as discussed in Sec-
tion 4.

2.1 Measuring TCP Statistics
Our measurement tool polls the network stack to collect

connection-level statistics via web100 tool [2]. Web100 is a
kernel patch that extracts the already-existing TCP statis-
tics, and offers an API to access their values in user space
(An upgraded version, Web10G, is now available for the
Linux mainline [3]). The TCP-level statistics we collect
are shown in Table 1. They directly tell the performance
problems of each connection, with less overhead than packet
traces and more details than CDN logs.

The data include two types of statistics: (i) instantaneous
snapshots (e.g., Cwin, the current size of the congestion win-
dow) and (ii) cumulative counters (e.g., RwinLimitTime, the
total time the connection has been receive-window limited).
Figure 1 shows two connections from our measurements of
CoralCDN, and they illustrate how the TCP statistics evolve
over the life of the connection. Furthermore, our tool is
lightweight. It periodically polls those statistics variables ev-
ery 50ms, and generates less than 200MB of data per server
per day in our measurement of CoralCDN.

2.2 TCP Performance Classifier
With the TCP-level statistics, we then characterize the

performance limitations for each connection. There are four
categories of performance limitations: the network path, the
server network stack, the clients, and the CDN server appli-
cations. Since we have direct access to the TCP stack, we

Statistics Definition
Cwin Current congestion window
Rwin Current receive window

BytesInFlight # of bytes sent but not ACKed
BytesInSndBuf # of bytes written but not ACKed
SmoothedRTT Smoothed RTT computed by TCP
BytesWritten Cumulative # of bytes written by app

BytesSent Cumulative # of bytes sent
PktsRetrans Cumulative # of pkts retransmitted

RwinLimitTime
Cumulative time that a connection
is limited by receive window

CwinLimitTime
Cumulative time that a connection
is limited by congestion window

Table 1: Key TCP Statistics in our Tool

can easily distinguish these performance limitations using
the TCP-level statistics as summarized in Table 2.

(i) Network Path: The network congestion can limit
the performance of the connection by a small congestion
window. Our tool detects congestion when (a) the connec-
tion is limited by congestion window and (b) a packet loss
has occurred (i.e., the number of retransmissions has in-
creased). When the connection is no longer limited by the
congestion window or the congestion window size returns to
its size before the loss, we mark the end of the impact of
loss. In Figure 1(a), a packet loss happens at around 12 sec-
onds, causing the decrease of the congestion window. The
small congestion window recovers for the next five seconds.
During this period, the key performance limitation is the
congestion window size after packet loss.

(ii) Server Network Stack: The congestion window
can limit performance even when no losses occur, partic-
ularly at the beginning of a connection (i.e., during slow
start). Our tool detects this situation when (a) the conges-
tion window limits performance, (b) no loss has occurred,
and (c) the impact of a previous loss has ended. The pe-
riod from 0s to 8s in Figure 1(a) and the period from 0s
to 2s in Figure 1(b) show examples. During the time, the
small congestion window size is the dominant performance
limitation.

(iii) Clients: A small receive window size can also limit
the performance. We detect this situation when the receive
window is the bottleneck of the connection. The connection
in Figure 1(a) is receive-window limited from 8s to 12s; the
receive-window size drops greatly at 8s, limiting the data
the server can send.

(iv) CDN Server Applications: The CDN server may
limit the performance because a slow CPU or scarce disk re-
sources constrains the amount of data written into the TCP
send buffer. We classify a connection as application limited
when the server has less data in the send buffer than the
congestion and receive window sizes (i.e., the connection is
neither congestion-window limited nor receive-window lim-
ited). Starting from about 3s in Figure 1(b), the applica-
tion does not have enough data to send. The BytesInSndBuf
(marker +) and BytesInFlight (marker 4, overlapping) are
smaller than the congestion and receive window sizes.

In each 50ms interval, a connection may have one or more
performance limitations. Therefore, we calculate the frac-
tion of time the connection is limited by the network path,
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Figure 1: Traces of Network-stack Statistics for Two Example TCP Connections (Some Lines are overlapping)

Limitations Classification Method

Network Path
∆CwinLimitTime > 0
and ∆PktsRetrans > 0

Server Network
Stack

∆CwinLimitTime > 0
and ∆PktsRetrans = 0
and Cwin ≥ Cwin before loss

Clients ∆RwinLimitTime > 0
Server App. BytesInSndBuf < min{Cwin, Rwin}

Table 2: Performance Limitation Classifier

the server network stack, the clients, and the server appli-
cations. We also accumulate the number of lost packets.

3. STUDYING CORALCDN WITH OUR
TOOL

In this section, we use our measurement tool to identify
the performance bottlenecks for CoralCDN and discuss how
CoralCDN can use these results to make better decisions on
server and path selection.

3.1 TCP-level Monitoring for CoralCDN
CoralCDN is a popular open content distribution network,

serving over one million clients for over 20 thousand do-
mains per day [7]. CoralCDN consists of Coral DNS servers
and Coral HTTP proxies. The clients accessing a website
served by CoralCDN are transparently directed by Coral-
CDN’s DNS server to a nearby Coral proxy.

We deployed our measurement tool on a Clemson Plan-
etLab node running a CoralCDN proxy. The Coral proxy
configures specific ports to serve the clients, and they are
exclusively used by CoralCDN. We use the port number to
distinguish the traffic to CoralCDN from other connections.
Since February 8, 2011, we have been collecting TCP statis-
tics for all the connections belonging to CoralCDN. For the
rest of the paper, we present the results from the data col-
lected over one week of February 19–25, 2011; our analysis
on other weeks show similar results. During the week, 209K
connections accessed the CoralCDN server.

Note that, since CoralCDN is a proxy, it temporarily

caches the web pages requested by clients. When a cache
miss occurs, the connection will be held to wait for the proxy
to perform a lookup in its distributed hash table (DHT)
and fetch data from either another Coral proxy or the ori-
gin server. The waiting time is about 1 to 2 seconds, which
greatly degrades performance. With our tool, we detect a
cache miss when the send buffer has no data for several sec-
onds at the beginning. Among the 209K connections in the
week, 34.3% encountered a cache miss. Because the time to
fetch data from the origin server dominates the performance,
we exclude these connections from our analysis. The fol-
lowing analysis focuses on the remaining 137K connections,
which are from 2008 ASes.

3.2 Characterizing Performance Bottlenecks
We first study the frequency of different performance lim-

itations in order to identify the factors that influence data-
transfer performance the most. For each connection, at
each interval, we classify the performance limitations based
on Table 2. We then calculate the fraction of time that a
connection is limited by each performance bottleneck. Ta-
ble 3 shows the percentage of connections that have different
percentage of performance limitations, leading the following
conclusions:

(1) In a significant fraction of performance prob-
lems, the CoralCDN proxy is limited by the appli-
cation or servers, not network conditions. A large
fraction of connections are limited by the server application.
More than 10% of connections are application-limited for
more than 40% of their lifetime. The limitations can come
from the web service softwares, or the slow CPU and scarce
disk resources of the PlanetLab node.

(2) The performance of many connections is lim-
ited by the congestion window despite having no
packet loss. Nearly 20% of connections spend at least
40% of their lifetime constrained by a small congestion win-
dow, despite no packet loss. Many of these connections are
short-lived, spending most of their time in TCP’s slow-start
phase. In CoralCDN, more than 80% of the connections
last less than 1 second. For the many small data trans-
fers, performance is largely a function of how TCP increases
the congestion window and the RTT between the client and



% of Connections with Problems for > X% of Duration
Limitations >0 >20% >40% >60% >80% >99%

Server Application 19.76% 15.32% 10.75% 4.98% 2.86% 0.004%
Server Network Stack 52.47% 28.59% 18.72% 10.21% 5.30% 3.99%
Network Path 6.20% 5.30% 3.94% 2.77% 1.68% 0.27%
Clients 5.77% 2.09% 1.27% 0.60% 0.19% 0.03%

Table 3: Percentage of Connections that have Different TCP Performance Problems

the server. As such, directing clients to the closest Coral
proxy (in terms of RTT) is critically important for improv-
ing performance. In addition, the network stack can use a
larger initial congestion window, as some commercial con-
tent providers do [4].

(3) Some connections have significant packet losses.
The network path problem degrades around 6% of the con-
nections. As shown in Table 4, 1.26% of the connections
experienced a packet loss rate higher than 20%. Informa-
tion about packet loss can drive the CDN’s decisions for
server selection and path selection, in the hope of delivering
content to clients over less congested paths. We explore this
topic in greater detail in Section 4.

(4) A small fraction of clients are severely limited
by the receive window. Around 0.6% of the connec-
tions (i.e., 0.8K connections) are severely affected by the
receive-window size at the clients. Most of these clients only
have a receive window of less than 30KB. The Web service
providers could notify these clients of the problem, through
a banner or embedded message in the web page, or a hint
to the browser in the HTTP response header. For these
clients, reconfiguring the receive-buffer size could improve
performance dramatically.

4. CORRELATING NETWORK PROB-
LEMS ACROSS CLIENTS

In this section, we explore how to use our measurements
to identify network paths with performance problems. We
first illustrate the importance of identifying connections lim-
ited by network congestion rather than other factors, such
as the server application or the client receive window. Next
we show that correlating packet loss across connections can
identify Autonomous Systems (ASes) affected by network
performance problems. Then, we show that network perfor-
mance problems persist over time, allowing measurements
from one time period to guide a CDN’s future decisions
about server and path selection.

4.1 More Accurate View of Network Paths
CDNs rely on accurate estimation of network conditions

(e.g., throughput, delay, and packet loss) for load balanc-
ing and path selection. CDNs could easily determine the
average throughput of each connection from coarse-grained
server logs, and identify ASes affected by low throughput
from the CDN server to the clients. Based on these results,
the CDN could change its server-selection and routing poli-
cies to circumvent the network performance problems.

However, drawing conclusions from throughput measure-
ments alone would be misleading, since some connections are
limited by non-network factors, such as the limited CPU/disk
resources at the server, a small congestion window during
slow start, or a small receive window in the client. In con-
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Figure 2: Effect of Focusing on Network-limited
Connections on Throughput

trast, our tool can directly see the network conditions at
transport layer, and separate network congestion (i.e., packet
loss) from other factors to produce more accurate estimates
of path performance. To carry out an AS-level analysis, we
map each client’s IP address to an AS, based on the ASes
originating IP prefixes into BGP as seen in RouteViews [1].
Then we correlate across the connections in the same AS to
analyze the path performance.

To illustrate the risks of focusing on average throughput
alone, we compare the average throughput for all connec-
tions to the performance of network-limited connections.
The scatter plot in Figure 2 plots a single point for each
AS, where the x-axis is the average throughput for all con-
nections and the y-axis only considers the connections that
are network-limited. The solid line shows where the two
throughputs are equal. In the left part of the curve, many
ASes have very low average throughput but relatively few
of these connections are limited by the network—in fact,
the average throughput of network-limited connections is
much higher. Focusing on low average throughput alone
may wrongly label some ASes as experiencing bad network
performance when they are actually bottlenecked by other
factors.

4.2 Correlating Packet Loss by AS
With more fine-grained performance data, we can an-

alyze network performance directly based on the packet-
loss statistics for each AS. Figure 3 plots the fraction of
ASes with a large fraction of connections experiencing a high
packet loss rate (e.g., 5%, 10%, or 20% loss). For 7.1% of the
ASes (143 ASes), more than half of the connections have loss
rates in excess of 10%. CoralCDN could conceivably adjust



% of Connections with Packet Loss Rate > X%
>0 >1% >5% >8% >10% >15% >20% >30% >40% >50%

6.29% 5.44% 3.80% 3.06% 2.67% 1.91% 1.26% 0.60% 0.33% 0.19%

Table 4: Percentage of Connections that have Different Levels of Packet Loss
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the server or path selection to improve the network paths to
these ASes in order to reduce their loss rates.

4.3 Stability of Packet Loss Over Time
CDNs cannot make decisions based on network perfor-

mance unless the measurements have predictive value. We
calculate the coefficient of variation (CV) for each AS to
characterize the persistency of packet losses in three steps:
(i) We aggregate all the active connections during an ag-
gregation interval, and calculate the average packet loss rate
among these connections for the aggregation interval. In our
study, we use 60 seconds as the aggregation interval1, and
exclude those intervals during which no packets are sent.
(ii) With the average packet loss rate for each aggregation
interval for each AS, we then explore the variance of packet
loss rates over a period of time called an analysis window.
A longer analysis window indicates a coarser grained packet
loss behavior (e.g., during a week, a few clients access Coral-
CDN each day and experience packet losses every access),
while a shorter analysis window shows users’ behaviors at
the micro level (e.g., in an hour a few clients continuously
access CoralCDN and all have packet losses). (iii) In the
analysis window, we calculate the coefficient of variation
(CV), which is defined as the ratio of the standard devia-
tion to the mean of the series of average packet loss rates. A
distribution with CV < 1 is considered low-variance. In our
scenario, CV < 1 means that the average packet loss rate
for the AS is stable, and the loss condition is considered
persistent.

Figure 4 shows the fraction of ASes that experience persis-
tent loss problems on different time scales2. For the analysis

1We pick 60 seconds because there are only a few active con-
nections with a smaller aggregation interval (e.g., only one
to three connections within 10 seconds), and larger intervals
show similar results.
2We add 0.001 to all CV value to include the condition of
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Figure 5: Example AS with Persistent Loss Problem

window of one week, 18.8% of ASes (377 ASes) have persis-
tent packet loss (CV < 1). For a randomly picked day (Feb
21 2011), the ratio of ASes with persistent loss problem is
122 out of 739, while the ratio for one hour analysis (Feb 21
2011 18:00–19:00) is 19 out of 121. Our tool can provide with
good prediction of the packet-loss statistics for these ASes.
For example, our tool identified AS 33774 which repeatedly
experienced packet loss for a total of 436 connections dur-
ing the whole week (Figure 5). Based on the information,
CoralCDN can infer a bad network path between the edge
server and the AS.

For future work, we will correlate across AS-level paths
from BGP data to distinguish the AS hops that have net-
work problems to guide better server and path selection deci-
sions. We will also identify those clients whose performance
problems come from the “last hop” (i.e., the local access

CV = 0 in the log figure. When no loss happens in the AS,
its CV is +∞



networks), since changes in server and path selection cannot
significantly improve performance for these clients.

5. CONCLUSION
Our work uses the TCP-level statistics in the server net-

work stack to help CDNs detect and diagnose performance
problems. We deployed our measurement tool in CoralCDN,
and have successfully identified the major performance limi-
tation for the connections using CoralCDN service. By only
looking at packet loss rates, we estimate the network con-
ditions with higher accuracy. Our tool can also benefit the
users if the CDNs provide feedback based on our measure-
ment results (e.g., through embedded messages in the web
page). The feedback can tell whether the user’s performance
is limited by the service, the network, or the client network
stack.

In future work, we plan to explore better ways to pinpoint
network performance bottlenecks, as well as techniques for
diagnosing performance problems for virtual machines run-
ning on shared computing platforms in the cloud. We are
also exploring how to combine the TCP-level statistics with
application logs in order to pinpoint the performance bugs
in online services.
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