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Wide-area Data Analytics Overview

* User session logs analysis
e System health monitoring,
troubleshooting

* Application data: generated, stored and processed across multiple locations
* Fast response time of wide-area data analytics is critical for applications!



Wide-Area Data Analytics Architecture

Heterogeneity
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Existing Solutions and Limitations

* Centralized approach
* Aggregate all required data at a single site up front
* Incur lots of data transfer and significant delay

* In-Place approach
* Move computation to meet data locality
e Perform poor under data-resource mismatch

* Network-centric approach [iridium-sigcomm15]
e Distribute tasks to minimize network transfer delay
* [gnore computation capacity constraint



Challenge 1:
Heterogeneity in Resource Distribution,
and Mismatch with Resource Demands




Map-task Placement Example

Slte il
#Slots Map
Stage /\ Stage

Up BW 10 10 10
Down BW 1 10 10 M, = 45 My = 25 1v12 = zgr M3 45
Input volume 12 18 10
Network-Centric Approach Optimal Approach
#Map tasks 30 45 25

Places tasks locally for data  Shifts compute loads

Site 1 Site 2 Site 3 Site 1 Site 2 Site 3
Netw. duration 0 0 0 0.8 0.88 0.8
Comp. duration 6 45 13 7 23 23
Total duration 45 23.88

Optimize both network and computation time!



Task Assignment Solution

* Break-down: network transfer followed by computation

 Network transfer time
* Transfer time = data size / network bandwidth
e N? data upload and download transfer given N sites
* Focus on minimizing the the bottleneck of all transfer

e Computation time

* Estimated based on ##waves, i.e., #tasks / #slots
* Focus on minimizing the bottleneck of computation across sites

* Formulate task placement as an Linear Program (LP) to
minimize network transfer time + computation time



Map-task Placement LP

Fraction of map-tasks placed at site y that read data from site x

my,,
Taggr Network duration for input data transfer
Tnap Computation duration for map-stage

S, B,"P, B down | MPUl  golots, up/down b/w, data volume at site x; [Put = | nput

Nmap; tmap #map-tasks; duration of a map-task

mg,l Taggr + Tmap Minimize total duration (net. + comp.)
S.T.

jinput (Zy:tx mx,y) )
Taggr = p P Vx Upload transfer duration

jinput (Zy:tx my,x)
Taggr 2 B, down ) VX Download transfer duration

NmapX Xy M : :
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Reduce-task Placement LP

T, Fraction of reduce-tasks placed at site x
Tshusi Network duration for intermediate data shuffling
Treq Computation duration for reduce-stage

S, B,*P, B, 2oWn [ Shufl  #slots, up/down b/w, data volume at site x

Nreds tred #reduce-tasks; duration of a reduce-task

min Tshupt + Trea Minimize total duration (net. + comp.)
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Challenge 1:

Heterogeneity in Resource Distribution,
and Mismatch with Resource Demands
= Reduce bottleneck of delay,

and balance workloads across the sites




Challenge 2:
Interdependency between
Task Placement and Job Scheduling




Job Scheduling Example

* 3slots per site; 1GBps upload/download bandwidth
 100MB data per task; 1s computation time per task

Job A Placement; Job B Placement; Average
Response Time Response Time Response Time

|deal Placement: (0,1,2) 2 1s (2,4,6) 2 2s 1.5s

run exclusively

Run job A first, (0,1,2) 2 1s (6,4,2) 2 2.4s 1.7s

then job B

Run job B first, (3,0,0) > 2.3s (2,4,6) 2 2s 2.15s
then job A

* Not all jobs get ideal placement in optimal schedule
 Complex interaction between job scheduling and task placement



Job Scheduling Solution

* Decouple job scheduling and task placement

* Job scheduling
» Schedule faster jobs first to reduce waiting time (SJF)
* Jobs’ durations estimated by task placement model

e Task placement

* Solve task placement model based on remaining
network/compute capacity to minimize computation time

* Remaining capacity determined by job order

* Faster jobs get as much resource as possible
e Other jobs may starve...



Incorporating Fairness Scheduling

* A control knob € (0 < £ < 1) balancing fairness and
response time
f;
Zifi

* Each job receives at least (1 — £)*(=—) slots

* f;is job i’s remaining number of tasks

* The number of slots one job can get is capped
* Total #slots - #reserved slots

* £ 0, completely fairness oriented
* £ 1, completely response time oriented



Challenge 2:

Interdependency between

Task Placement and Job Scheduling
- Decouple and solve iteratively




Tetrium: Design Summary
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Prototype and Evaluation

e Tetrium prototype on top of Spark
* |nject job scheduling and task placement into scheduler
* Estimate task running time based on peer tasks
e Batch available slots to reduce scheduling fluctuation
* Solve LP optimizations with Gurobi Solver

* Tetrium deployment in geo-distributed EC2 cluster
e TPC-DS (6™~16 stages) and Big Data (2~5 stages) Benchmark

* Performance characterization through large-scale trace-
driven simulations

* Traces of 3000-machine production cluster



Performance Improvements

Reduction in average job response time compared to baselines

In-Place (Spark): in-place for task placement; fair scheduling across jobs
Iridium: network-centric for task placement; fair scheduling across jobs
Centralized: aggregate all data to one power site
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* Gains are up to 77% and 55% compared to In-Place and Iridium

* Gains are higher with more sites or with more workloads

e Gains attribute to both job scheduling and task placement



Response Time vs. Fairness
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 Comparable gains in response time even when each jobs is
guaranteed to be allocated 60% of the proportional slots



Other Key Results

* Gains are universal across all job sizes
* 50% (36%) improvements for large (small) jobs

* Intermediate-input data ratio
* More improvements for higher ratio

* Scheduling overhead
* Scheduling decision ~1s; LP optimization solving ~100ms
* Keep overhead low by focusing on the faster jobs



Thank you!



