CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics

Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan Yu, Ming Zhang

Recurring jobs are popular

Hundreds of instance types and instance count combinations

Azure	A12, D1, D2, D3, L4s,	
	n1-standard-4, n1-highmem-2, n1-highcpu-4, f1-micro, + configurable VMs	

Choosing a good configuration is important

Better performance:

- For the same cost: best/worst running time is up to 3x
 - Worst case has good CPUs whereas the memory is bottlenecked.

Lower cost:

- For the same performance: best/worst cost is up to 12x
 - No need for expensive dedicated disks in the worst config.
 - 2\$ vs. 24\$ per job with 100s of monthly runs

How to find the best cloud configuration One that minimizes the cost given a performance constraint

for a recurring job, given its representative workload?

Existing solution: searching

- Systematically search each dimension (Coordinate descent)
 - On each resources: RAM, CPU, disk, cluster sizes

- Problem: not accurate
 - Non-convex performance/cost curves across many resources
 - If you search one dimension, drop early, it would mislead you later

Existing solution: modeling

- Modeling the resource-perf/cost tradeoffs
 - Ernest [NSDI 16] models machine learning apps for each machine type

- Problem: not adaptive
 - Frameworks (e.g., MapReduce or Spark)
 - Applications (e.g., machine learning or database)
 - Machine type (e.g., memory vs CPU intensive)

Key idea of CherryPick

- Adaptivity: black-box modeling
 - Without knowing the structure of each application
- Accuracy: modeling for ranking configurations
 - No need to be accurate everywhere
- Low overhead: interactive searching
 - Smartly select next run based on existing runs

This is the actual cost function curve across all configurations.

 $\stackrel{
ightarrow}{X}/ ext{Configurations}$

Challenge: what can we infer about configurations with two runs?

 $\stackrel{
ightarrow}{X}/ ext{Configurations}$

Challenge: what can we infer about configurations with two runs? There are many valid functions passing through two points

 $\stackrel{
ightarrow}{X}/ ext{Configurations}$

Challenge: what can we infer about configurations with two runs? **Solution:** confidence intervals capture where the function likely lies

Acquisition function for choosing the next config X)/CostBuild an acquisition function based on the prior function Calculate the expected improvement in comparison to the current best configuration Improvement Expected

Acquisition function for choosing the next config

Acquisition function for choosing the next config

CherryPick searches in the area that matters

CherryPick searches in the area that matters

CherryPick searches in the area that matters

- Noises are common in the cloud
 - Shared environment means inherent noise from other tenants
 - Even more noisy under failures, stragglers
 - **Strawman solution:** run multiple times, but high overhead.
- Bayesian optimization is good at handling additive noise
 - Merge the noise in the confidence interval

$$f(\overrightarrow{X}) + \epsilon \leftarrow Noise$$
 (learned by monitoring or historical data)

Challenge: Multiplicative noise

A lot of the noise in cloud is multiplicative

- Example: if VMs IO slows down due to overloading
 - Writing 1G to disk (5 sec normally) now takes 6 secs (by 20%)
 - Writing 10G to disk (50 sec normally) now takes 60 secs (by 20%)

$$\hat{C}(\vec{X}) = C(\vec{X}) \times (1 + \epsilon)$$
 The max. relative variance in a given cloud.

Use the log function to change to additive noise

$$\log \hat{C}(\vec{X}) = \log C(\vec{X}) + \log(1 + \epsilon)$$

Further customizations

- Discretize features:
 - Deal with infeasible configs and large searching space
 - Discretize the feature space
- Stopping condition:
 - Trade-off between accuracy and searching cost
 - Use the acquisition function knob
- Starting condition:
 - Should fully cover the whole space
 - Use quasi-random search

5 big-data benchmarks

- Database:
 - TPC-DS
 - TPC-H
- MapReduce:
 - TeraSort
- Machine Learning:
 - SparkML Regression
 - SparkML Kmeans

66 cloud configurations

- 30 GB-854 GB RAM
- 12–112 cores
- 5 machine types

Metrics

- Accuracy: running cost compared to the optimal configuration
- Overhead: searching cost of suggesting a configuration

Comparing with

- Searching: random search, coordinate descent
- Modeling: Ernest [NSDI'16]

CherryPick has high accuracy with low overhead

Searching cost normalized by CherryPick's median (%)

TPC-DS

CherryPick corrects Amazon guidelines

Machine type

- AWS suggests R3,I2,M4 as good options for running TPC-DS
- CherryPick found that at our scale C4 is the best.

Cluster size

- AWS has no suggestion
- Choosing a bad cluster size can have 3 times higher cost than choosing a right cluster config.
- Combining the two becomes even harder.

Adaptivity

Black-box modeling: Requires running the cloud configuration.

Low overhead

Restricted amount of information:

Only a few runs available.

"... do not solve a more general problem ... try to get the answer that you really need" –Vladimir Vapnik

Please try our tool at:

https://github.com/yale-cns/cherrypick