CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics

Omid Alipourfard, Hongqgiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, Ming Zhang

&
Microsoft:
Yal Research Derkeley

Recurring jobs are popular

Apps & Data Frameworks

//\ pr— \ — j\ - APACHES®S, ¢ — '

/" Microsoft reports 40% of key jobs at Bing are rerun periodically.

/

Providers Machine Type Cluster Size

r3.8xlarge, i2.8xlarge,
m4.8xlarge, c4.8xlarge,

Hundreds of instance types and instance count combinations

Azure A12, D1, D2, D3, L4s, ...

Q e nl-standard-4, nl-hi

3 - -4, -highmem-2,
@@ 6@ nl-highcpu-4, fl-micro, ...
@ + configurable VMs

& Choosing a good configuration is important

Better performance:

For the same cost: best/worst running time is up to 3x
Worst case has good CPUs whereas the memory is bottlenecked.

Lower cost:

For the same performance: best/worst cost is up to 12x
No need for expensive dedicated disks in the worst config.
2% vs. 24$% per job with 100s of monthly runs

How to find the best cloud configuration
One that minimizes the cost given a performance constraint

for a recurring job, given its representative workload?

&

High Accuracy Adaptivity

Close the optimal Works across all
configurations Key Challenges big-data apps

Low Overhead

Only runs a few
configuration

& Existing solution: searching

Systematically search each dimension (Coordinate descent)
On each resources: RAM, CPU, disk, cluster sizes

Problem: not accurate

Non-convex performance/cost curves across many resources
If you search one dimension, drop early, it would mislead you later

& Existing solution: modeling

Modeling the resource-perf/cost tradeoffs
Ernest [NSDI 16] models machine learning apps for each machine type

Problem: not adaptive
Frameworks (e.g., MapReduce or Spark)

Applications (e.g., machine learning or database)
Machine type (e.g., memory vs CPU intensive)

Exhaustive
High Accuracy High overhead Adaptivity

L' Py
~ d

RN V4

CherryPick

Modeling A Searching

!
|

Not general l Not accurate
!

Low Overhead

& Key idea of CherryPick

- Adaptivity: black-box modeling

- Without knowing the structure of each application

- Accuracy: modeling for ranking configurations
- No need to be accurate everywhere

- Low overhead: interactive searching

- Smartly select next run based on existing runs

10

&

Workflow of CherryPick

Start with any

config

v
Run the Black-box Rank and choose
config Modeling next config

- 7

—_— e ——
—,—— e — ——

Interactive
search

Return
config

11

& Workflow of CherryPick

|

Il

Run the Black-box Rank and choose
config Modeling nextconﬂg
*

~
— —
" — _’-
—————

Interactive
search

Return
config

]

12

& Workflow of CherryPick

|

al

Run the Black-box Rank and choose
config Modeling nextconﬂg
1

~
— —
" — _’-
—————

Interactive
search

Return
config

]

13

&

Workflow of CherryPick

|

Run the Black-box Rank and choose
config Modeling next config

Il

Interactive
search

Return
config

]

14

& Workflow of CherryPick

|

X

Run the Black-box Rank and choose
config Modeling nextconﬂg
*

~
— —
" — _’-
—————

Interactive
search

Return
config

]

15

&

Workflow of CherryPick

Bayesian Optimization
A

|

H

Run the Black-box Rank and choose
config Modeling nextconﬂg
1

~
— —
" — _’-
—————

Interactive
search

Return
config

]

16

&

Workflow of CherryPick

Bayesian Optimization

|

Run the Black-box Rank and choose
config Modeling nextconﬂg

H

\
~ —
~ — —
e, — e — —_———

. . Interactiv
Prior function teractive
search

Return
config

]

17

&

Workflow of CherryPick

Bayesian Optimization
A

|

|
Run the Black-box Rank and choose
config Modeling nextconﬂg

H

~
~ —
— —
-_—____._——_—__

: : Interactiv
Prior function teractive
search

Return
config

]

AcqwsMonfUncUon

18

&

Workflow of CherryPick

Bayesian Optimization

|

Run the Black-box Rank and choose
config Modeling nextconﬂg

H

\
~ —
~ — —
e, — e — —_———

. . Interactiv
Prior function teractive
search

Return
config

]

19

20

Prior function for black box modeling

1

C(X)/Cost
/
\
/

} Conf y Feature vector:
/Configurations | ~p; ;g AM/Machine count/...

This is the actual cost function curve across all configurations.

21

Prior function for black box modeling

_}
X /Configurations

Challenge: what can we infer about configurations with two runs?

Prior function for black box modeling

.._}
X /Configurations

Challenge: what can we infer about configurations with two runs?
There are many valid functions passing through two points

22

Prior function for black box modeling ?

1

C(X)/Cost
/

__}
X /Configurations

Challenge: what can we infer about configurations with two runs?
Solution: confidence intervals capture where the function likely lies

&

Workflow of CherryPick

|

Run the Black-box Rank and choose
config Modeling next config

al

——— _-——'—"/\

: : Interactive
Prior function
search

Return
config

]

Acquisition function

24

Acquisition function for choosing the next config

- —

\\ o ~
\;.‘/\ pd

1

P(X)/Cost

Build an acquisition function based on the prior function
Calculate the expected improvement in comparison to the current
best configuration

L=

Expected
Improvement

_>
X /Configurations

Acquisition function for choosing the next config

-~
n
o
QO
=
T=
®
Highest expected
‘_> .
X/ Configurations oyement
FO N
2 o
oz
o 8
o
=
e

._>
X /Configurations

26

Acquisition function for choosing the next config

%
o sy,
E‘_)\ N , \\
~ N\ Ve
15— S ‘¥
S ® - \ P
o« /
7
W
_)
X /Configurations
FO N
2 ©
oz
o g
a,
=

_>
X /Configurations

27

ﬁ
X /Configurations

chl—)
g o
X 3
=g
&
—_

_>
X /Configurations

28

29

& CherryPick searches in the area that matters

Mean Worst + Mean Best X
L (s e e S YA SRS SR
B Lo e S R s
NN) KSR SNS——— OIS | SN Sor———— S——
&S
g 3 s T R S R S R R R R RS e e
S
D e
X 5 . :] :
N . 2 A database application
0 i i i i i with 66 configurations
4 6 8 10 12 14

Sampled Configuration

30

& CherryPick searches in the area that matters

Conf. Int. Worst Il Conf.Int. Best I

Mean Worst 5 Mean Best o
.............. RIS I NOUSUNUINI, RIS— -
@ ---------------- -§----------------E --
s :
-I‘;: ..
o)
(O S S S R ST
e e T A e A database application
| | | | : : :
with 66 configurations
8 10 12 14 g

Sampled Configuration

31

& CherryPick searches in the area that matters

Conf. Int. Worst Il Conf.Int. Best I
Mean Worst % Mean Best ©

A database application
with 66 configurations

Sampled Configuration

32

& Noises in the cloud

Noises are common in the cloud
Shared environment means inherent noise from other tenants
Even more noisy under failures, stragglers
Strawman solution: run multiple times, but high overhead.

Bayesian optimization is good at handling additive noise
Merge the noise in the confidence interval

— o
f(X)+ € <+ Noise (learned by monitoring or
historical data)

&§ Challenge: Multiplicative noise

A lot of the noise in cloud is multiplicative

Example: if VMs 10 slows down due to overloading

Writing 1G to disk (5 sec normally) now takes 6 secs (by 20%)
Writing 10G to disk (50 sec normally) now takes 60 secs (by 20%)

A = —
C(X)=C(X) X (]l + €) = The max. relative variance in

a given cloud.

Use the log function to change to additive noise

A = —+
log C(X) =log C(X) + log(1 + €)

33

&

Further customizations

Discretize features:
Deal with infeasible configs and large searching space
Discretize the feature space
Stopping condition:
Trade-off between accuracy and searching cost
Use the acquisition function knob
Starting condition:
Should fully cover the whole space
Use quasi-random search

34

& Evaluation settings

5 big-data benchmarks

Database:
TPC-DS
TPC-H

MapReduce:
TeraSort

Machine Learning:
SparkML Regression
SparkML Kmeans

66 cloud configurations

30 GB-854 GB RAM
12-112 cores
5 machine types

35

&

Evaluation Settings

Metrics

Accuracy: running cost compared to the optimal configuration
Overhead: searching cost of suggesting a configuration

Comparing with

Searching: random search, coordinate descent
Modeling: Ernest [NSDI'16]

36

CherryPick has high accuracy with low overhead

175

150

125

Running cost
normalized by opt. Config. (%)

100

Not accurate

Coord. search has 20% more

searching cost in median and
78% higher running cost in the J§

Qo -1- tail for TPC-DS @ (e
Coordinate
search
0@ I
CherryPick
100

37

@

Ernest

Not adaptable

3.7 times searching cost

150 200 250 300 350

400

Searching cost normalized by CherryPick’'s median (%) TPC-DS

& CherryPick corrects Amazon guidelines

Machine type
- AWS suggests R3,12,M4 as good options for running TPC-DS
- CherryPick found that at our scale C4 is the best.

Cluster size
- AWS has no suggestion
- Choosing a bad cluster size can have 3 times higher cost than
choosing a right cluster config.

Combining the two becomes even harder.

38

& Conclusions

Adaptivity

Low overhead

High accuracy

Black-box modeling:

Requires running the cloud configuration.

Restricted amount of information:
Only a few runs available.

“... do not solve a more general problem ...
try to get the answer that you really need”
—Vladimir Vapnik

39

& Thanks!

Please try our tool at:

https://github.com/yale-cns/cherrypick

40

https://github.com/yale-cns/cherrypick
https://github.com/yale-cns/cherrypick

