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Recurring jobs are popular

Apps & Data Frameworks
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/" Microsoft reports 40% of key jobs at Bing are rerun periodically.

/



Providers Machine Type Cluster Size

r3.8xlarge, i2.8xlarge,
m4.8xlarge, c4.8xlarge,

Hundreds of instance types and instance count combinations

Azure A12, D1, D2, D3, L4s, ...

Q e nl-standard-4, nl-hi

3 - -4, -highmem-2,
@@ 6@ nl-highcpu-4, fl-micro, ...
@ + configurable VMs



& Choosing a good configuration is important

Better performance:

For the same cost: best/worst running time is up to 3x
Worst case has good CPUs whereas the memory is bottlenecked.

Lower cost:

For the same performance: best/worst cost is up to 12x
No need for expensive dedicated disks in the worst config.
2% vs. 24$% per job with 100s of monthly runs



How to find the best cloud configuration
One that minimizes the cost given a performance constraint

for a recurring job, given its representative workload?
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High Accuracy Adaptivity

Close the optimal Works across all
configurations Key Challenges big-data apps

Low Overhead

Only runs a few
configuration



& Existing solution: searching

Systematically search each dimension (Coordinate descent)
On each resources: RAM, CPU, disk, cluster sizes

Problem: not accurate

Non-convex performance/cost curves across many resources
If you search one dimension, drop early, it would mislead you later



& Existing solution: modeling

Modeling the resource-perf/cost tradeoffs
Ernest [NSDI 16] models machine learning apps for each machine type

Problem: not adaptive
Frameworks (e.g., MapReduce or Spark)

Applications (e.g., machine learning or database)
Machine type (e.g., memory vs CPU intensive)



Exhaustive
High Accuracy High overhead Adaptivity
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& Key idea of CherryPick

- Adaptivity: black-box modeling

- Without knowing the structure of each application

- Accuracy: modeling for ranking configurations
- No need to be accurate everywhere

- Low overhead: interactive searching

- Smartly select next run based on existing runs

10



&

Workflow of CherryPick
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Workflow of CherryPick
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Workflow of CherryPick
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Workflow of CherryPick
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Prior function for black box modeling
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C(X)/Cost
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} Conf y Feature vector:
/Configurations | ~p; ;g AM/Machine count/...

This is the actual cost function curve across all configurations.
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Prior function for black box modeling

_}
X /Configurations

Challenge: what can we infer about configurations with two runs?



Prior function for black box modeling

.._}
X /Configurations

Challenge: what can we infer about configurations with two runs?
There are many valid functions passing through two points
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Prior function for black box modeling ?

1

C(X)/Cost
/

__}
X /Configurations

Challenge: what can we infer about configurations with two runs?
Solution: confidence intervals capture where the function likely lies
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Workflow of CherryPick
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Acquisition function for choosing the next config
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Build an acquisition function based on the prior function
Calculate the expected improvement in comparison to the current
best configuration
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Acquisition function for choosing the next config
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Acquisition function for choosing the next config
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& CherryPick searches in the area that matters

Mean Worst  + Mean Best X
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& CherryPick searches in the area that matters

Conf. Int. Worst Il Conf.Int. Best I

Mean Worst 5 Mean Best o
.............. RIS I NOUSUNUINI, RIS— -
@ ---------------- -§----------------E ------------------------------------------
s :
-I‘;: ............................................................................
o)
(O S S S R ST
e e T A e A database application
| | | | : : :
with 66 configurations
8 10 12 14 g

Sampled Configuration



31

& CherryPick searches in the area that matters

Conf. Int. Worst Il Conf.Int. Best I
Mean Worst % Mean Best ©

A database application
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& Noises in the cloud

Noises are common in the cloud
Shared environment means inherent noise from other tenants
Even more noisy under failures, stragglers
Strawman solution: run multiple times, but high overhead.

Bayesian optimization is good at handling additive noise
Merge the noise in the confidence interval

— o
f(X)+ € <+ Noise (learned by monitoring or
historical data)



&§ Challenge: Multiplicative noise

A lot of the noise in cloud is multiplicative

Example: if VMs 10 slows down due to overloading

Writing 1G to disk (5 sec normally) now takes 6 secs (by 20%)
Writing 10G to disk (50 sec normally) now takes 60 secs (by 20%)

A = —
C(X)=C(X) X (]l + €) = The max. relative variance in

a given cloud.

Use the log function to change to additive noise

A = —+
log C(X) =log C(X ) + log(1 + €)
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Further customizations

Discretize features:
Deal with infeasible configs and large searching space
Discretize the feature space
Stopping condition:
Trade-off between accuracy and searching cost
Use the acquisition function knob
Starting condition:
Should fully cover the whole space
Use quasi-random search
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& Evaluation settings

5 big-data benchmarks

Database:
TPC-DS
TPC-H

MapReduce:
TeraSort

Machine Learning:
SparkML Regression
SparkML Kmeans

66 cloud configurations

30 GB-854 GB RAM
12-112 cores
5 machine types
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Evaluation Settings

Metrics

Accuracy: running cost compared to the optimal configuration
Overhead: searching cost of suggesting a configuration

Comparing with

Searching: random search, coordinate descent
Modeling: Ernest [NSDI'16]
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CherryPick has high accuracy with low overhead
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Ernest

Not adaptable

3.7 times searching cost
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400

Searching cost normalized by CherryPick’'s median (%) TPC-DS



& CherryPick corrects Amazon guidelines

Machine type
- AWS suggests R3,12,M4 as good options for running TPC-DS
- CherryPick found that at our scale C4 is the best.

Cluster size
- AWS has no suggestion
- Choosing a bad cluster size can have 3 times higher cost than
choosing a right cluster config.

Combining the two becomes even harder.
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& Conclusions

Adaptivity

Low overhead

High accuracy

Black-box modeling:

Requires running the cloud configuration.

Restricted amount of information:
Only a few runs available.

“... do not solve a more general problem ...
try to get the answer that you really need”
—Vladimir Vapnik

39



& Thanks!

Please try our tool at:

https://github.com/yale-cns/cherrypick
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