
CherryPick: Adaptively Unearthing the Best 
Cloud Configurations for Big Data Analytics

Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, 
Shivaram Venkataraman, Minlan Yu, Ming Zhang



22

Apps & Data Frameworks

Recurring

Recurring jobs are popular

Microsoft reports 40% of key jobs at Bing are rerun periodically.
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Cluster SizeMachine TypeProviders

r3.8xlarge, i2.8xlarge, 
m4.8xlarge, c4.8xlarge, 

r4.8xlarge, m3.8xlarge, …

A0, A1, A2, A3, A4, A11, 
A12, D1, D2, D3, L4s, … 

n1-standard-4, n1-highmem-2, 
n1-highcpu-4, f1-micro, ...

+ configurable VMs 

10s~ optionsX XHundreds of instance types and instance count combinations



Choosing a good configuration is important

Better performance:

- For the same cost: best/worst running time is up to 3x
- Worst case has good CPUs whereas the memory is bottlenecked.

Lower cost:

- For the same performance: best/worst cost is up to 12x
- No need for expensive dedicated disks in the worst config.
- 2$ vs. 24$ per job with 100s of monthly runs
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How to find the best cloud configuration 
One that minimizes the cost given a performance constraint

for a recurring job, given its representative workload?
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High Accuracy Adaptivity

Close the optimal 
configurations

Works across all 
big-data apps

Only runs a few 
configuration

Key Challenges

Low Overhead

Modeling Searching



Existing solution: searching

- Systematically search each dimension (Coordinate descent)
- On each resources: RAM, CPU, disk, cluster sizes

- Problem: not accurate
- Non-convex performance/cost curves across many resources
- If you search one dimension, drop early, it would mislead you later
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Existing solution: modeling
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- Modeling the resource-perf/cost tradeoffs 
- Ernest [NSDI 16] models machine learning apps for each machine type

- Problem: not adaptive
- Frameworks (e.g., MapReduce or Spark)

- Applications (e.g., machine learning or database)

- Machine type (e.g., memory vs CPU intensive)
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High Accuracy Adaptivity

Modeling
Ernest

Not general

Searching
Coord. Descent

Not accurate

Exhaustive
High overhead

CherryPick

Low Overhead



Key idea of CherryPick
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- Adaptivity: black-box modeling 
- Without knowing the structure of each application

- Accuracy: modeling for ranking configurations
- No need to be accurate everywhere

 

- Low overhead: interactive searching 
- Smartly select next run based on existing runs



Workflow of CherryPick
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Run the 
config

Black-box 
Modeling

Rank and choose 
next config

Return 
config

Interactive 
search

Start with any 
config
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Workflow of CherryPick
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Bayesian Optimization
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Workflow of CherryPick
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Prior function
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Workflow of CherryPick
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Workflow of CherryPick
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This is the actual cost function curve across all configurations.

Prior function for black box modeling

Feature vector:
CPU/RAM/Machine count/…
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Challenge: what can we infer about configurations with two runs? 

Prior function for black box modeling



Challenge: what can we infer about configurations with two runs? 
There are many valid functions passing through two points
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Prior function for black box modeling



Challenge: what can we infer about configurations with two runs? 
Solution: confidence intervals capture where the function likely lies
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Prior function for black box modeling



Workflow of CherryPick
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Acquisition function Prior function
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Build an acquisition function based on the prior function
Calculate the expected improvement in comparison to the current 

best configuration

Acquisition function for choosing the next config
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Highest expected 
improvement

Acquisition function for choosing the next config



27

It then runs the new configuration.

Acquisition function for choosing the next config
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And update the model.

Iterative searching



CherryPick searches in the area that matters
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A database application 
with 66 configurations



CherryPick searches in the area that matters
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A database application 
with 66 configurations
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CherryPick searches in the area that matters

A database application 
with 66 configurations



Noises in the cloud
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- Noises are common in the cloud
- Shared environment means inherent noise from other tenants
- Even more noisy under failures, stragglers
- Strawman solution: run multiple times, but high overhead.
-

- Bayesian optimization is good at handling additive noise
- Merge the noise in the confidence interval

(learned by monitoring or 
historical data) 

Noise 



Challenge: Multiplicative noise
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A lot of the noise in cloud is multiplicative

- Example: if VMs IO slows down due to overloading

- Writing 1G to disk (5 sec normally) now takes 6 secs (by 20%)
- Writing 10G to disk (50 sec normally) now takes 60 secs (by 20%)

Use the log function to change to additive noise

The max. relative variance in 
a given cloud.



Further customizations
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- Discretize features:
- Deal with infeasible configs and large searching space
- Discretize the feature space

- Stopping condition:
- Trade-off between accuracy and searching cost
- Use the acquisition function knob

- Starting condition:
- Should fully cover the whole space
- Use quasi-random search



Evaluation settings

5 big-data benchmarks

- Database: 
- TPC-DS
- TPC-H

- MapReduce:
- TeraSort

- Machine Learning:
- SparkML Regression
- SparkML Kmeans

66 cloud configurations

- 30 GB-854 GB RAM
- 12-112 cores
- 5 machine types
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Evaluation Settings

36

Metrics

- Accuracy: running cost compared to the optimal configuration
- Overhead: searching cost of suggesting a configuration

Comparing with

- Searching: random search, coordinate descent
- Modeling: Ernest [NSDI’16]
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Not adaptable

CherryPick has high accuracy with low overhead

Coord. search has 20% more 
searching cost in median and 

78% higher running cost in the 
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3.7 times searching cost

TPC-DS

CherryPick



CherryPick corrects Amazon guidelines
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- Machine type
- AWS suggests R3,I2,M4 as good options for running TPC-DS
- CherryPick found that at our scale C4 is the best.

- Cluster size
- AWS has no suggestion
- Choosing a bad cluster size can have 3 times higher cost than 

choosing a right cluster config.

- Combining the two becomes even harder.



Conclusions
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Adaptivity

Low overhead

High accuracy

Restricted amount of information:
Only a few runs available.

Black-box modeling:
Requires running the cloud configuration.

“... do not solve a more general problem ... 
try to get the answer that you really need”                      
—Vladimir Vapnik 



Thanks!
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Please try our tool at:

https://github.com/yale-cns/cherrypick

https://github.com/yale-cns/cherrypick
https://github.com/yale-cns/cherrypick

