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TCP performance diagnosis is important

* Apps are more distributed

* Increasingly rely on the TCP performance

* Tail latency is impactful
* Asingle long latency slows down the entire task

* Need a diagnosis tool for TCP problems in large scale production networks
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Why diagnosing TCP is hard?

e What | learned in the textbook
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TCP is complex!

* Reality...
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TCP is complex!

* Unexpected interactions between diff components

Loss recovery
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No fast recovery

Receiver

Recv window manager




TCP is complex!

* Unexpected interactions between diff components

Send window manager

Sender

No response

Receiver

Attack mitigation

lgnore the packet




TCP is complex!

* Unexpected interactions between diff components

e 63 parameters in Linux TCP that tune the behaviors of diff components

e Continuous error-prone development:
* 16 bugs found in July & Aug of 2018 in Linux TCP



How do we diagnose TCP today?

Tcpdump



Detailed diagnosis is not scalable
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Tension between more details and low overhead

* Existing tools cannot achieve both Runtime record = Data for diagnosis

* DETER solves it, by introducing replay Runtime record < Data for diagnosis
* Lightweight recording during the runtime
* Replay every detail

O\ierhead i Lots of details,
'ep pro ‘e « but high overhead
Tcpdump ¢
All details,
Low overhead, »ebp‘f DETE% low overhead
but miss lots of details | ® Tcp counters
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DETER overview
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Deterministic replay
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Lightweight record Deterministic replay



Intuition for being lightweight

N
‘ Lightweight record ‘ Dth replay

Record socket calls Automatically generate packets
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Non-deterministic interactions w/ many parties

cail| |TCPL TCP| [call
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Non-deterministic interactions w/ many parties

Key contribution:
* Identifying the minimum set of data that enables deterministic replay

Two challenges: fly offect
» . Network wide: nd BTt stic interactions across switches and TCP

e On host: non-determinisms within the kernel




Challenge 1: butterfly effect

* The closed loop between TCP and switches amplifies small noises
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Challenge 1: butterfly effect

Sending time variation

Runtime

us-level:
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Challenge 1: butterfly effect

f

Sending time variation »_ Switch action variation
( Butterfly effect )
TCP behavior variation
Runtime Replay
Cong_win/=2 Cong_win++
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Challenge 1: butterfly effect

Sending time variation ~_ Switch action variation
( Butterfly effect )
What if we reduce it? TCP behavior variation

* To understand the impact of butterfly effect

* We try to replay a long latency problem in a 3-host testbed with 3
flows, by issuing the same set of socket calls as runtime

* Replay 100 times, but none of them reproduce the same problem.
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Challenge 1: butterfly effect

Sending time variation ~_ Switch action variation
( Butterfly effect )
TCP behavior variation
* Run the s : tion,, on; ding
time varit [ © ® Reducing sending time variation
/7~ \  cannot eliminate butterfly effect
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Challenge 1: butterfly effect
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Challenge 1: butterfly effect

d
High overne?
* Directly borrow.ctassic kernel replay techniques?
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Challenge 1: butterfly effect

 Solution: record&replay packet stream mutations
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Challenge 1: butterfly effect

 Solution: record&replay packet stream mutations
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Challenge 1: butterfly effect

e Solution: record&replav packet stream mutations
+ Low overhead:

Drop rate < 10%;
ECN: 1 bit/packet;
Reordering is rare
+ Replaying each TCP connection is independent

Connections interact via drops and ECN, which we replay. | Resource-efficient replay:
- Just need two hosts

TCP _|sock HH
call

+ Need no switches for replay

/ /
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Challenge 1: butterfly effect

* Solution: record&replay ps

ket stream mutations
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Challenge 2: non-determinisms within the kernel

B TCP Replay
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Handling non-determinisms within the kernel

» Other handler function calls (e.g., OS timer calls timeout handler) €@ Very few

* Thread scheduling ‘ 10s of consecutive locks by the same thread, compress a lot

* « ltrEERbY IGge SENAHIRHA P6E 8ifPEREdRI§0 record and replay

. ﬁe B FnTClljéj?re\S ?(}g 'lIOCEpOGSF eonnecif]pg to prevent race conditions
. go W recorg& rep?ay ﬁ1e or é’rJo locK acquisitions of diff threads

‘.‘ Value changes infrequently, only record new values
Correct input to TCP

Runtime Replay
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<1l [ Timeout hdl E)Ec ER
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sock Sockcall hdl§/Pkt hdl mﬁ%gtlﬁoynsl NN

_ <l HTimeout hdl E)Ec ER

Hdl caller| Read_jiffies
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Implementation

* Prototype in Linux 4.4

* Lightweight recorder (packet stream mutations, 3 types of kernel non-determinism)

e Storage: 2.1%~3.1% compared to compressed packet header traces.
e CPU: <1.49%

e All data are recorded on end hosts.
* Just need 139 lines of changes to Linux TCP.

* Open source



An RTO problem in testbed

 Two senders to one receiver
e 2 long flows (20MB) and 1 short flow (30KB)

* The short flow experiences 49 ms delay (2 orders of magnitude higher
than expected)

* |n contrast, retransmission timeout (RTO) is 16ms
e TCP counters are not enough: they shows 2 RTO, but 2*16 < 49.



An RTO problem in testbed
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An RTO problem in testbed

Diagnosis Info:TCP : >
expert ma uess
Countermp « 2 RTO }p yg —
DETER+Tcpdump mp «  Exponential backoff { function call J
3 graph (Ftrace)

DETER+Ftrace » * Delayed ACK Enters delayed ACK function
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Case study in Spark

* Terasort 200 GB on 20 servers (4 cores each) on EC2, 6.2K connections
* Replay and collect trace for problematic flows
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The receiver explicitly delays the ACK, because the recv buffer is shrinking
Caused by the slow receiver 33



Case study in RPC

* An RPC application running empirical DC traffic on 20 servers (4 cores

Late Fast Retransmission: fast retransmit after 10s of dupACKs.
The threshold for dupACK increases, from 3 to 45.

each) on EC2, 280K requests

Due to reordering in the past

Flow size (MB) (<0.1|[0.1,1]|[1,10]|>10
Congestion | 149 | 35 25 2
Late FR 29 27 0 0
ACK drops 0 2 0 0
Tail drops - 1 0 0
RTO 2 1 2 0
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Other use cases

* We can diagnose many other problems in the TCP stack
* RTO caused by diff reasons: small messages, misconfiguration of recv buf size

* We can also diagnose problems in the switches
* Because we have traces, we can push packets into the network
* In simulation (requires modeling switch data plane accurately)
* Case study: A temporary blackhole caused by switch buffer sharing



Conclusion

* DETER enables deterministic TCP replay
* Lightweight: always on during runtime
* Detailed diagnosis during the replay

* Key challenge: butterfly effect

* Record & replay packet stream mutations to break the closed loop between TCP
and switches.



