DETER: Deterministic TCP Replay
for Performance Diagnosis

Yuliang Li, Rui Miao, Mohammad Alizadeh, Minlan Yu

Alibaba Group

TCP performance diagnosis is important

* Apps are more distributed

* Increasingly rely on the TCP performance

* Tail latency is impactful
* Asingle long latency slows down the entire task

* Need a diagnosis tool for TCP problems in large scale production networks

‘GRPC: + = v sk

Why diagnosing TCP is hard?

e What | learned in the textbook

{l Send
ACK

Receiver

TCP is complex!

* Reality...

Sender

Receiver

TCP is complex!

* Unexpected interactions between diff components

Loss recovery

Sender

No fast recovery

Receiver

Recv window manager

TCP is complex!

* Unexpected interactions between diff components

Send window manager

Sender

No response

Receiver

Attack mitigation

lgnore the packet

TCP is complex!

* Unexpected interactions between diff components

e 63 parameters in Linux TCP that tune the behaviors of diff components

e Continuous error-prone development:
* 16 bugs found in July & Aug of 2018 in Linux TCP

How do we diagnose TCP today?

Tcpdump

Detailed diagnosis is not scalable

Bandwidth

100Gbps |

10,000x

10Mbps

L

hosts

| 100,000s

10,000x

I 1990

Tcpdump

I 2000

Tcpdump

I 2010

Tcpdump

12019

J 10s

Tcpdump Too much overhead!

Tension between more details and low overhead

* Existing tools cannot achieve both Runtime record = Data for diagnosis

* DETER solves it, by introducing replay Runtime record < Data for diagnosis
* Lightweight recording during the runtime
* Replay every detail

O\ierhead i Lots of details,
'ep pro ‘e « but high overhead
Tcpdump ¢
All details,
Low overhead, »ebp‘f DETE% low overhead
but miss lots of details | ® Tcp counters

> Details for diagnosis 10

DETER overview

0.0.0.1:80->20.0.0.1:1234

1
L\@ng latency
Runtime

DETER 10.0.0.1:80 -> 20.0.0.1:1234
Recorder

Replay

Tcpdump

TCP Probe

20.0.0.1:1234 ->10.0.0.1:80

Lightweight record

Run continuously
On all hosts

> DETER
Replayer

o

Deterministic replay

Capture packets/counters
Trace executions
Iterative diagnosis

11

Lightweight record Deterministic replay

Intuition for being lightweight

N
‘ Lightweight record ‘ Dth replay

Record socket calls Automatically generate packets

cail| |TCPL TCP| [call
‘EERREREEREREEREREREER

13

Non-deterministic interactions w/ many parties

cail| |TCPL TCP| [call
‘EFEEREEREEREEERERE

14

Non-deterministic interactions w/ many parties

Key contribution:
* Identifying the minimum set of data that enables deterministic replay

Two challenges: fly offect
» . Network wide: nd BTt stic interactions across switches and TCP

e On host: non-determinisms within the kernel

Challenge 1: butterfly effect

* The closed loop between TCP and switches amplifies small noises

' TCP% - ﬂTCP
X - "
i E_ rne

~
—

AN TP

kernel

Challenge 1: butterfly effect

Sending time variation

Runtime

us-level:

Clock drift, context switching, }

kernel scheduling, cache state

ang win/=2

dro
C P

i I:II:II:I:I:II:I?

enqueue

» Switch action variation>

TCP behavior variation

Replay
Cong_win++

sockl.
call

sockl.
call

Cong_win/=2

enqueue

; 1 I:II:II:II:II:II:I?

‘.drop

\

1 us late

17

Challenge 1: butterfly effect

f

Sending time variation »_ Switch action variation
(Butterfly effect)
TCP behavior variation
Runtime Replay
Cong_win/=2 Cong_win++
sock] —s sock| .-
call call
sockl. f sockl. 1
call call
Cong_win++ Cong_win/=2

sockl.
call

sockl.
call

—

engueue

18

Challenge 1: butterfly effect

Sending time variation ~_ Switch action variation
(Butterfly effect)
What if we reduce it? TCP behavior variation

* To understand the impact of butterfly effect

* We try to replay a long latency problem in a 3-host testbed with 3
flows, by issuing the same set of socket calls as runtime

* Replay 100 times, but none of them reproduce the same problem.

19

Challenge 1: butterfly effect

Sending time variation ~_ Switch action variation
(Butterfly effect)
TCP behavior variation
* Run the s : tion,, on; ding
time varit [© ® Reducing sending time variation
/7~ \ cannot eliminate butterfly effect

60 -
40 |
20 -

0L

Even 1ns variation still cause butterfly effect

3

0 | 10 100 1000
Sending time variation (ns)

Reproduce R

20

Challenge 1: butterfly effect

™

o P oo _
LY 3 a9 P rlv g AR/ T

BN - - L}
A7 R U N - NP)

TCP behavior variation
‘ ‘ sock| | '(\ﬁ/\k | k _ [sock HH
call { 1 @ > m call

Record&replay

Sending time variation =(Switch action variation\

Record&replay

Challenge 1: butterfly effect

d
High overne?
* Directly borrow.ctassic kernel replay techniques?

]
“ sock
call >iiii4

__sock:HH
call

1

Record&replay

Record&replay

22

Challenge 1: butterfly effect

 Solution: record&replay packet stream mutations

Runtime

] [
sock . ,/(—ﬁ/_\;k | SOCk:
BENNNNN

Drop Mark ECN |, packet stream mutations

Replay Reordering
sock:
ﬁ‘ call

L[E%%E:::::L =
sock
call 1iii|{

HTER

23

Challenge 1: butterfly effect

 Solution: record&replay packet stream mutations

Runtime

—1 - I ! ,f\ﬁ/—\
sockl TCP Record
call mutations

Drops, ECN, reordering, etc.

/

/]
1

Replay

. Record ; i
a mutations [ff Tcp MRS HH
= X call

\

Drops, ECN, reordering, etc.

/

| J
I

| Replay

mutations

1 . / }
S o W Replay
call mutations

TCP _|sock HH
call

24

Challenge 1: butterfly effect

e Solution: record&replav packet stream mutations
+ Low overhead:

Drop rate < 10%;
ECN: 1 bit/packet;
Reordering is rare
+ Replaying each TCP connection is independent

Connections interact via drops and ECN, which we replay. | Resource-efficient replay:
- Just need two hosts

TCP _|sock HH
call

+ Need no switches for replay

/ /

1 . = X .
: ’ Replay
sockl_ TCP Replay e e d mutations
call mutations — M AP

25

Challenge 1: butterfly effect

* Solution: record&replay ps

ket stream mutations

Runtime
Record
sock- mutations
call
Drop:) :
IP_ID is consecutive
Replay
Repla
sock- mutgtioyns

call

Replay

TCP)H

mutations

Drop

1AE0s

26

Challenge 2: non-determinisms within the kernel

B TCP Replay

mutations

Repla
mutgtioyns TCP “Sc?a(ﬂ(

27

Handling non-determinisms within the kernel

» Other handler function calls (e.g., OS timer calls timeout handler) €@ Very few

* Thread scheduling ‘ 10s of consecutive locks by the same thread, compress a lot

* « ltrEERbY IGge SENAHIRHA P6E 8ifPEREdRI§0 record and replay

. ﬁe B FnTClljéj?re\S ?(}g 'lIOCEpOGSF eonnecif]pg to prevent race conditions
. go W recorg& rep?ay ﬁ1e or é’rJo locK acquisitions of diff threads

‘.‘ Value changes infrequently, only record new values
Correct input to TCP

Runtime Replay

w1 Sockcall hdl & Pkt hdl e IiESECH

<1l [Timeout hdl E)Ec ER

Read_jiffies

sock Sockcall hdl§/Pkt hdl mﬁ%gtlﬁoynsl NN

_ <l HTimeout hdl E)Ec ER

Hdl caller| Read_jiffies

28

Implementation

* Prototype in Linux 4.4

* Lightweight recorder (packet stream mutations, 3 types of kernel non-determinism)

e Storage: 2.1%~3.1% compared to compressed packet header traces.
e CPU: <1.49%

e All data are recorded on end hosts.
* Just need 139 lines of changes to Linux TCP.

* Open source

An RTO problem in testbed

 Two senders to one receiver
e 2 long flows (20MB) and 1 short flow (30KB)

* The short flow experiences 49 ms delay (2 orders of magnitude higher
than expected)

* |n contrast, retransmission timeout (RTO) is 16ms
e TCP counters are not enough: they shows 2 RTO, but 2*16 < 49.

An RTO problem in testbed

Diagnosis Info: >
« 2RTO ;
o . Why the receiver
Exponential backoff 2 @ACK? J
32ms
y 3
16ms
5
4
3
2 .
1 -

Sender Receiver
31

An RTO problem in testbed

Diagnosis Info:TCP : >
expert ma uess
Countermp « 2 RTO }p yg —
DETER+Tcpdump mp « Exponential backoff { function call J
3 graph (Ftrace)

DETER+Ftrace » * Delayed ACK Enters delayed ACK function

B~ o

e

Sender Receiver

R N WD U

32

Case study in Spark

* Terasort 200 GB on 20 servers (4 cores each) on EC2, 6.2K connections
* Replay and collect trace for problematic flows

6
5x10¢ [Burst_d0ms 00" Flow size (MB)[<0.1[[0.1, 11][1, 10][>10
+ 3x|02 - ,+.+m"’\’ RTO 8 3 4 10
¥ 25x10° | FR 74 0 | 0 [0
6 L
s | ACK for the burst Delayed ACK | 0 | 0 | 18 | 0
2 x10° Seq Rwnd=0 0 0 L |1
500000 | - Ack e | Slow start 0 0 1 0
00 200 400 600 800
Time (ms)

The receiver explicitly delays the ACK, because the recv buffer is shrinking
Caused by the slow receiver 33

Case study in RPC

* An RPC application running empirical DC traffic on 20 servers (4 cores

Late Fast Retransmission: fast retransmit after 10s of dupACKs.
The threshold for dupACK increases, from 3 to 45.

each) on EC2, 280K requests

Due to reordering in the past

Flow size (MB) (<0.1|[0.1,1]|[1,10]|>10
Congestion | 149 | 35 25 2
Late FR 29 27 0 0
ACK drops 0 2 0 0
Tail drops - 1 0 0
RTO 2 1 2 0

34

Other use cases

* We can diagnose many other problems in the TCP stack
* RTO caused by diff reasons: small messages, misconfiguration of recv buf size

* We can also diagnose problems in the switches
* Because we have traces, we can push packets into the network
* In simulation (requires modeling switch data plane accurately)
* Case study: A temporary blackhole caused by switch buffer sharing

Conclusion

* DETER enables deterministic TCP replay
* Lightweight: always on during runtime
* Detailed diagnosis during the replay

* Key challenge: butterfly effect

* Record & replay packet stream mutations to break the closed loop between TCP
and switches.

