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TCP performance diagnosis is important

• Apps are more distributed
• Increasingly rely on the TCP performance
• Tail latency is impactful
• A single long latency slows down the entire task 

• Need a diagnosis tool for TCP problems in large scale production networks
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Why diagnosing TCP is hard?

• What I learned in the textbook
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TCP is complex!

• Reality…
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TCP is complex!

• Unexpected interactions between diff components

5

Congestion control

Loss recovery

Send buffer manager

Socket call manager

ACK
processor

Packet
generator

Sender

Timer manager

Send window manager

Pacing rate manager

Nagle test
TSO

Congestion control

Packet
processor

ACK
generator

Recv buffer manager

Attack mitigation

Socket call manager

Delayed ACK manager

Receiver

Recv window managerRecv window manager

Loss recovery

Sender

No fast recovery

Receiver



TCP is complex!

• Unexpected interactions between diff components
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TCP is complex!
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• Unexpected interactions between diff components

• 63 parameters in Linux TCP that tune the behaviors of diff components

• Continuous error-prone development:
• 16 bugs found in July & Aug of 2018 in Linux TCP
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How do we diagnose TCP today?
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Detailed diagnosis is not scalable
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Tension between more details and low overhead

• Existing tools cannot achieve both
• DETER solves it, by introducing replay
• Lightweight recording during the runtime
• Replay every detail
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DETER overview
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Lightweight record Deterministic replay



Intuition for being lightweight
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Non-deterministic interactions w/ many parties
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Non-deterministic interactions w/ many parties
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Key contribution: 
• Identifying the minimum set of data that enables deterministic replay

Two challenges:
• Network wide: non-deterministic interactions across switches and TCP
• On host: non-determinisms within the kernel

Butterfly effect



Challenge 1: butterfly effect

• The closed loop between TCP and switches amplifies small noises
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Challenge 1: butterfly effect
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Challenge 1: butterfly effect
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Challenge 1: butterfly effect

• To understand the impact of butterfly effect
• We try to replay a long latency problem in a 3-host testbed with 3 

flows, by issuing the same set of socket calls as runtime
• Replay 100 times, but none of them reproduce the same problem.
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Challenge 1: butterfly effect

• Run the same experiment in simulation, while controlling the sending 
time variation, from 0 to 1000ns
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Even 1ns variation still cause butterfly effect

What if we reduce it?

Reducing sending time variation 
cannot eliminate butterfly effect



Challenge 1: butterfly effect
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Challenge 1: butterfly effect
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Challenge 1: butterfly effect
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• Directly borrow classic kernel replay techniques?
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Challenge 1: butterfly effect

• Directly borrow classic kernel replay techniques?
• Solution: record&replay packet stream mutations
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Challenge 1: butterfly effect

• Solution: record&replay packet stream mutations
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+ Low overhead: 
Drop rate < 10-4; 
ECN: 1 bit/packet; 
Reordering is rare

+ Replaying each TCP connection is independent
Connections interact via drops and ECN, which we replay.

+ Need no switches for replay

Resource-efficient replay:
- Just need two hosts



Challenge 1: butterfly effect

• Solution: record&replay packet stream mutations
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Challenge 2: non-determinisms within the kernel
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Handling non-determinisms within the kernel

• Other handler function calls (e.g., OS timer calls timeout handler)

• Thread scheduling

• Order of lock acquisitions of diff threads

• Reading kernel variables (e.g., jiffies)
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• Normally race conditions are expensive to record and replay

• But TCP uses one lock per connection to prevent race conditions

• So we record & replay the order of lock acquisitions of diff threads



Implementation

• Prototype in Linux 4.4
• Lightweight recorder (packet stream mutations, 3 types of kernel non-determinism)
• Storage: 2.1%~3.1% compared to compressed packet header traces.
• CPU: < 1.49%

• All data are recorded on end hosts. 
• Just need 139 lines of changes to Linux TCP.

• Open source
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An RTO problem in testbed 

• Two senders to one receiver
• 2 long flows (20MB) and 1 short flow (30KB)

• The short flow experiences 49 ms delay (2 orders of magnitude higher 
than expected)
• In contrast, retransmission timeout (RTO) is 16ms

• TCP counters are not enough: they shows 2 RTO, but 2*16 < 49.
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An RTO problem in testbed 
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An RTO problem in testbed 
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Case study in Spark

• Terasort 200 GB on 20 servers (4 cores each) on EC2, 6.2K connections

• Replay and collect trace for problematic flows
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- The receiver explicitly delays the ACK, because the recv buffer is shrinking
- Caused by the slow receiver



Case study in RPC

• An RPC application running empirical DC traffic on 20 servers (4 cores 
each) on EC2, 280K requests
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Late Fast Retransmission: fast retransmit after 10s of dupACKs.
- The threshold for dupACK increases, from 3 to 45.
- Due to reordering in the past



Other use cases

• We can diagnose many other problems in the TCP stack
• RTO caused by diff reasons: small messages, misconfiguration of recv buf size

• We can also diagnose problems in the switches
• Because we have traces, we can push packets into the network
• In simulation (requires modeling switch data plane accurately)
• Case study: A temporary blackhole caused by switch buffer sharing
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Conclusion

• DETER enables deterministic TCP replay
• Lightweight: always on during runtime
• Detailed diagnosis during the replay

• Key challenge: butterfly effect
• Record & replay packet stream mutations to break the closed loop between TCP 

and switches.
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