
DETER: Deterministic TCP Replay
for Performance Diagnosis

Yuliang Li, Rui Miao, Mohammad Alizadeh, Minlan Yu

1

TCP performance diagnosis is important

• Apps are more distributed
• Increasingly rely on the TCP performance
• Tail latency is impactful
• A single long latency slows down the entire task

• Need a diagnosis tool for TCP problems in large scale production networks

2

Why diagnosing TCP is hard?

• What I learned in the textbook

3

Slow
start

Cong.
Avoid.

Fast
recoverySender

Receiver

Send
ACK

TCP is complex!

• Reality…

4

Congestion control

Loss recovery

Send buffer manager

Socket call manager

ACK
processor

Packet
generator

Sender

Timer manager

Send window manager

Pacing rate manager

Nagle test
TSO

Congestion control

Packet
processor

ACK
generator

Recv buffer manager

Attack mitigation

Socket call manager

Delayed ACK manager

Receiver

Recv window manager

Sender

Receiver

TCP is complex!

• Unexpected interactions between diff components

5

Congestion control

Loss recovery

Send buffer manager

Socket call manager

ACK
processor

Packet
generator

Sender

Timer manager

Send window manager

Pacing rate manager

Nagle test
TSO

Congestion control

Packet
processor

ACK
generator

Recv buffer manager

Attack mitigation

Socket call manager

Delayed ACK manager

Receiver

Recv window managerRecv window manager

Loss recovery

Sender

No fast recovery

Receiver

TCP is complex!

• Unexpected interactions between diff components

6

Congestion control

Loss recovery

Send buffer manager

Socket call manager

ACK
processor

Packet
generator

Sender

Timer manager

Send window manager

Pacing rate manager

Nagle test
TSO

Congestion control

Packet
processor

ACK
generator

Recv buffer manager

Attack mitigation

Socket call manager

Delayed ACK manager

Receiver

Recv window manager

Sender

Receiver

Ignore the packet

No response

Send window manager

Attack mitigation

TCP is complex!

Congestion control

Loss recovery

Send buffer manager

Socket call manager

ACK
processor

Packet
generator

Sender

Timer manager

Send window manager

Pacing rate manager

Nagle test

TSO

Congestion control

Packet
processor

ACK
generator

Recv buffer manager

Attack mitigation

Socket call manager

Delayed ACK manager

Receiver

Recv window manager

• Unexpected interactions between diff components

• 63 parameters in Linux TCP that tune the behaviors of diff components

• Continuous error-prone development:
• 16 bugs found in July & Aug of 2018 in Linux TCP

7

How do we diagnose TCP today?

8

Tcpdump

Detailed diagnosis is not scalable

9

1990 2000 2010 2019

Tcpdump Tcpdump Tcpdump

10,000x

Tcpdump

Bandwidth

Too much overhead!

10,000x

hosts

10Mbps

100Gbps

10s

100,000s

Tension between more details and low overhead

• Existing tools cannot achieve both
• DETER solves it, by introducing replay
• Lightweight recording during the runtime
• Replay every detail

10Details for diagnosis

Overhead

Tcpdump

Tcp probe

Tcp counters

DETERebpf

Lots of details,
but high overhead

Low overhead,
but miss lots of details

All details,
low overhead

Runtime record = Data for diagnosis
Runtime record < Data for diagnosis

DETER overview

11

DETER
Recorder

Runtime Replay

10.0.0.1:80->20.0.0.1:1234
has long latency

10.0.0.1:80 -> 20.0.0.1:1234
DETER

Replayer

Lightweight record
Run continuously
On all hosts

Deterministic replay
Capture packets/counters
Trace executions
Iterative diagnosis

Tcpdump

TCP Probe

20.0.0.1:1234 -> 10.0.0.1:80

× N

12

Lightweight record Deterministic replay

Intuition for being lightweight

13

TCPsock
call TCP sock

call

Lightweight record Deterministic replayFAIL!

Record socket calls Automatically generate packets

Non-deterministic interactions w/ many parties

14

TCPsock
call TCP sock

call

Non-deterministic interactions w/ many parties

15

kernel
TCPsock

call kernel
TCP sock

call

kernel
TCPsock

call kernel
TCP sock

call

kernel
TCPsock

call kernel
TCP sock

call

Key contribution:
• Identifying the minimum set of data that enables deterministic replay

Two challenges:
• Network wide: non-deterministic interactions across switches and TCP
• On host: non-determinisms within the kernel

Butterfly effect

Challenge 1: butterfly effect

• The closed loop between TCP and switches amplifies small noises

1616

kernel
TCPsock

call kernel
TCP sock

call

kernel
TCPsock

call kernel
TCP sock

call

kernel
TCPsock

call kernel
TCP sock

call

TCP TCP

TCP TCP

TCP TCP

Challenge 1: butterfly effect

17

enqueue

drop

drop

enqueue
Cong_win/=2

Cong_win++ Cong_win/=2

Cong_win++

Sending time variation Switch action variation

TCP behavior variation
Runtime Replay

1 us late

µs-level:
Clock drift, context switching,
kernel scheduling, cache state

TCP
sock
call

TCP
sock
call

TCP
sock
call

TCP
sock
call

Challenge 1: butterfly effect

18

drop enqueue

Sending time variation Switch action variation

TCP behavior variation
Runtime

TCPsock
call

TCPsock
call

TCPsock
call

Cong_win/=2

Cong_win++

Replay

Cong_win/=2

Cong_win++

TCPsock
call

TCPsock
call

TCPsock
call

Butterfly effect

Challenge 1: butterfly effect

• To understand the impact of butterfly effect
• We try to replay a long latency problem in a 3-host testbed with 3

flows, by issuing the same set of socket calls as runtime
• Replay 100 times, but none of them reproduce the same problem.

19

Sending time variation Switch action variation

TCP behavior variation
Butterfly effect

What if we reduce it?

Challenge 1: butterfly effect

• Run the same experiment in simulation, while controlling the sending
time variation, from 0 to 1000ns

20

0
20
40
60
80
100

0 1 10 100 1000R
ep
ro
du
ce
R
at
e
(%
)

Sending time variation (ns)

Sending time variation Switch action variation

TCP behavior variation
Butterfly effect

Even 1ns variation still cause butterfly effect

What if we reduce it?

Reducing sending time variation
cannot eliminate butterfly effect

Challenge 1: butterfly effect

21

Sending time variation Switch action variation

TCP behavior variation
Butterfly effect

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Record&replay
Record&replay

Butterfly effect

Challenge 1: butterfly effect

22

• Directly borrow classic kernel replay techniques?

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Record&replay
Record&replay

High overhead

Challenge 1: butterfly effect

23

• Directly borrow classic kernel replay techniques?
• Solution: record&replay packet stream mutations
Runtime

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Replay

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Drop Mark ECN Packet stream mutations
Reordering

Challenge 1: butterfly effect

• Directly borrow classic kernel replay techniques?
• Solution: record&replay packet stream mutations

24

Runtime

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Replay

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Record
mutations

Record
mutations

Drops, ECN, reordering, etc. Drops, ECN, reordering, etc.

Replay
mutations

Replay
mutations

Challenge 1: butterfly effect

• Solution: record&replay packet stream mutations

25

Runtime

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Replay

TCPTCP sock
call

sock
call TCPTCPsock
call

sock
callTCPsock

call TCP sock
call

Record
mutations

Record
mutations

Drops, ECN, reordering, etc. Drops, ECN, reordering, etc.

Replay
mutations

Replay
mutations

+ Low overhead:
Drop rate < 10-4;
ECN: 1 bit/packet;
Reordering is rare

+ Replaying each TCP connection is independent
Connections interact via drops and ECN, which we replay.

+ Need no switches for replay

Resource-efficient replay:
- Just need two hosts

Challenge 1: butterfly effect

• Solution: record&replay packet stream mutations

26

TCPsock
call TCP sock

callReplay
mutations

Replay
mutations

TCPsock
call TCP sock

callRecord
mutations

Record
mutations

Drop:
Drop

4

54321
Drop

54321

Runtime

Replay

Only record on hosts

IP_ID is consecutive

Challenge 2: non-determinisms within the kernel

27

kernel kernel
TCPsock

call TCP sock
callReplay

mutations

Replay
mutations

Handling non-determinisms within the kernel

• Other handler function calls (e.g., OS timer calls timeout handler)

• Thread scheduling

• Order of lock acquisitions of diff threads

• Reading kernel variables (e.g., jiffies)

28

kernel

TCP

sock

call

Record

mutations

timer

Sockcall hdl

Timeout hdl

Pkt hdl

lock

jiffies

Runtime

DETER

lock

kernel

TCP

sock

call

Replay

mutations

Hdl caller

Sockcall hdl

Timeout hdl

Pkt hdl

Replay

DETER

lock

Read_jiffies Read_jiffies

Very few

10s of consecutive locks by the same thread, compress a lot

Value changes infrequently, only record new values

Correct input to TCP

• Normally race conditions are expensive to record and replay

• But TCP uses one lock per connection to prevent race conditions

• So we record & replay the order of lock acquisitions of diff threads

Implementation

• Prototype in Linux 4.4
• Lightweight recorder (packet stream mutations, 3 types of kernel non-determinism)
• Storage: 2.1%~3.1% compared to compressed packet header traces.
• CPU: < 1.49%

• All data are recorded on end hosts.
• Just need 139 lines of changes to Linux TCP.

• Open source

29

An RTO problem in testbed

• Two senders to one receiver
• 2 long flows (20MB) and 1 short flow (30KB)

• The short flow experiences 49 ms delay (2 orders of magnitude higher
than expected)
• In contrast, retransmission timeout (RTO) is 16ms

• TCP counters are not enough: they shows 2 RTO, but 2*16 < 49.

30

An RTO problem in testbed

31

1
2
3
4
5

3

3

16ms

32ms

4
5

Diagnosis Info:
• 2 RTO
• Exponential backoff

Sender Receiver

Why the receiver
doesn’t ACK?

An RTO problem in testbed

32

1
2
3
4
5

3

3

4
5

Diagnosis Info:
• 2 RTO
• Exponential backoff
• Delayed ACK

Counter

Sender Receiver

DETER+Tcpdump
Monitor

function call
graph (Ftrace)

Enters delayed ACK function
DETER+Ftrace

TCP expert may guess

Case study in Spark

• Terasort 200 GB on 20 servers (4 cores each) on EC2, 6.2K connections

• Replay and collect trace for problematic flows

33

- The receiver explicitly delays the ACK, because the recv buffer is shrinking
- Caused by the slow receiver

Case study in RPC

• An RPC application running empirical DC traffic on 20 servers (4 cores
each) on EC2, 280K requests

34

Late Fast Retransmission: fast retransmit after 10s of dupACKs.
- The threshold for dupACK increases, from 3 to 45.
- Due to reordering in the past

Other use cases

• We can diagnose many other problems in the TCP stack
• RTO caused by diff reasons: small messages, misconfiguration of recv buf size

• We can also diagnose problems in the switches
• Because we have traces, we can push packets into the network
• In simulation (requires modeling switch data plane accurately)
• Case study: A temporary blackhole caused by switch buffer sharing

35

Conclusion

• DETER enables deterministic TCP replay
• Lightweight: always on during runtime
• Detailed diagnosis during the replay

• Key challenge: butterfly effect
• Record & replay packet stream mutations to break the closed loop between TCP

and switches.

36

