
Condor
Better Topologies through Declarative Design

Brandon Schlinker1,2

Radhika Niranjan Mysore1, Sean Smith1, Jeffrey C. Mogul1, Amin Vahdat1, Minlan Yu2,
Ethan Katz-Bassett2, and Michael Rubin1

1 Google Inc., 2 University of Southern California

SIGCOMM 2015

1

Our Focus:

Designing Topologies for Large Datacenters

2

Our Focus:

Designing Topologies for Large Datacenters

(10k - 100k+ servers)

3

Designing Topologies for Large Datacenters

Why exploring the topology design space is hard
How today’s ad-hoc approach leads to suboptimal deployments

How Condor’s systematic approach helps architects
Enabling efficient exploration and evaluation of the design space

4

Designing Topologies for Large Datacenters

Why exploring the topology design space is hard
How today’s ad-hoc approach leads to suboptimal deployments

How Condor’s systematic approach helps architects
Enabling efficient exploration and evaluation of the design space

5

6

Network
Architect

“We need a datacenter for 50k servers”

7

“We need a datacenter for 50k servers”

Network
Architect

Let’s use a Fat-tree topology!
(SIGCOMM 2008)

The Fat-tree Topology

8

Each fat-tree contains 2+ pods

Pod 2 Pod 3 Pod 4Pod 1

Pod PodPod Pod

The Fat-tree Topology

9

Pod 2 Pod 3 Pod 4Pod 1

Each pod contains:
Servers

CPU

The Fat-tree Topology

10

Pod 2 Pod 3 Pod 4Pod 1

ToRs

Each pod contains:
Servers

Top of Rack Switches

The Fat-tree Topology

11

Pod 2 Pod 3 Pod 4Pod 1

ToRs

Aggs

Each pod contains:
Servers

Top of Rack Switches
Aggregation Switches

The Fat-tree Topology

12

Pod 2 Pod 3 Pod 4Pod 1

ToRs

Aggs

Pods are connected by Spine Switches

Spines

The Fat-tree Topology

13

Pod 2 Pod 3 Pod 4Pod 1

ToRs

Aggs

Done.
The topology is deployed.

Spines

Up and Running...

14

Months go by…
The network runs fine most of the time…

Up and Running...

15

Months go by…
The network runs fine most of the time…

But when a failure happens
recovery takes longer than expected

Pod NPod N-1Pod 2Pod 1

Hindsight is 20/20

16

...

Architect goes back and reviews the design…

Fat-tree topology | SIGCOMM 2008

Pod NPod N-1Pod 2Pod 1

Hindsight is 20/20

17

...

Pod NPod N-1Pod 2Pod 1

...

Fat-tree topology | SIGCOMM 2008 F10 topology | NSDI 2013

And discovers a small wiring change (F10)
that allows faster recovery from failures

Pod NPod N-1Pod 2Pod 1

18

...

Pod NPod N-1Pod 2Pod 1

...

Fat-tree topology | SIGCOMM 2008 F10 topology | NSDI 2013

Why is F10’s wiring better?

Pod 2

43

F10’s Hidden Advantage

19

F10 topology | NSDI 2013

Pod 1

21

...

Pod 2

43

Pod 1

2

...

Fat-tree topology | SIGCOMM 2008

1

F10’s small change improves
the connectivity between pods

F10’s Hidden Advantage

20

Pod 2

43

Pod 1

21

...

Fat-tree topology | SIGCOMM 2008

F10’s Hidden Advantage

21

Pod 2

43

Pod 1

21

...

Pod 2

3
4

Pod 1

1

Resulting Inter-Pod Connectivity

Fat-tree topology | SIGCOMM 2008

F10’s Hidden Advantage

22

Pod 2

43

Pod 1

21

...

Pod 2

43

Pod 1

2

...

1

Pod 2

3
4

Pod 1

1

Resulting Inter-Pod Connectivity

F10 topology | NSDI 2013Fat-tree topology | SIGCOMM 2008

F10’s Hidden Advantage

23

Pod 2

43

Pod 1

21

...

Pod 2

43

Pod 1

2

...

1

Pod 2

3
4

Pod 1

1
Pod 2

3
4

Pod 1

Resulting Inter-Pod Connectivity Resulting Inter-Pod Connectivity

1

F10 topology | NSDI 2013Fat-tree topology | SIGCOMM 2008

F10’s Hidden Advantage

24

F10’s wiring = two paths
(via agg3 and agg4)

Standard wiring = one path
(via agg3)

Pod 2

3
4

Pod 1

1
Pod 2

3
4

Pod 1

Resulting Inter-Pod Connectivity Resulting Inter-Pod Connectivity

1

F10’s simple wiring change provides
greater path diversity, faster recovery from failure

25

Oops.

26

Oops.

27

These late realizations occur all too often

Why?

28

Architects make lots of decisions during design,
every decision can have substantial impact

29

But it’s difficult to evaluate if a decision is good
so architects are often blind to design defects

Architects make lots of decisions during design,
every decision can have substantial impact

30

examples:
≥ 100 Mbps throughput 99.99% of the time

≤ 10 ms latency 99.99% of the time

One of architect’s primary concerns is
Service Level Objective (SLO) Compliance

31

examples:
≥ 100 Mbps throughput 99.99% of the time

≤ 10 ms latency 99.99% of the time

One of architect’s primary concerns is
Service Level Objective (SLO) Compliance

Tough to estimate and compare SLO compliance

Challenge: Estimating SLO compliance of two designs

32

Rack

Switch

...
Rack Rack Rack

LC LC LC LC

LC LC

Switch

LC LC LC LC

LC LC

Switch

LC LC LC LC

LC LC

Switch

LC LC LC LC

LC LC

Example Topology:
Bunch of racks interconnected with big switches

Switch

LC LC LC LC

LC LC

Rack

Challenge: Estimating SLO compliance of two designs

33

A

Option A:
Connect each ToR to two linecards

in each fabric switch

Switch

LC LC LC LC

LC LC

Rack

Challenge: Estimating SLO compliance of two designs

34

A

Option A:
Connect each ToR to two linecards

in each fabric switch

LC LC LC

LC LC

RackB

LC

Option B:
Connect ToR to same linecard twice

in each fabric switch

Switch

Challenge: Estimating SLO compliance of two designs

35

Rack loses 1/8th of
inter-rack throughput
(1 out of 8 links lost)

Switch

LC LC LC LC

LC LC

Rack
A

Switch

LC LC LC

LC LC

RackB

LC

Rack loses 1/4th of
inter-rack throughput
(2 out of 8 links lost)

Linecard Failure Linecard Failure

Challenge: Estimating SLO compliance of two designs

36

Rack loses 1/8th of
inter-rack throughput
(1 out of 8 links lost)

Switch

LC LC LC LC

LC LC

Rack
A

LC LC LC

LC LC

RackB

LC

Rack loses 1/4th of
inter-rack throughput
(2 out of 8 links lost)

Linecard Failure Linecard Failure

Switch

Challenge: Estimating SLO compliance of two designs

37

Routing reconvergence
and packet loss

Switch

LC LC LC LC

LC LC

Rack
A

LC LC LC

LC LC

RackB

LC

Local failure handling
and no packet loss

Link Failure Link Failure

Switch

Challenge: Estimating SLO compliance of two designs

38

Routing reconvergence
and packet loss

Switch

LC LC LC LC

LC LC

Rack
A

LC LC LC

LC LC

RackB

LC

Local failure handling
and no packet loss

Link Failure Link Failure

Switch

Design A Design B

Line Card Failure

Link Failure

39

Is either design SLO compliant?
Which design is better?

Design A Design B

Line Card Failure

Link Failure

40

Is either design SLO compliant?
Which design is better?

Depends on SLO, failure / recovery rates, routing protocols
cannot evaluate via simple calculations

41

Depends on SLOs, failure and recovery rates, protocols

cannot evaluate via simple calculations

architects are often blind to design defects

42

Challenge: Designing Expandable Topologies

43

10k servers
Today

+10k servers
Dec. 2015

Large datacenters are expanded incrementally
Resources added as needed to reduce cost, depreciation

+10k servers
June 2016

Challenge: Designing Expandable Topologies

44

Challenges of Incremental Expansions

Expansions often require rewiring existing connections
Rewiring operations must be performed on live network

Example: Expanding a Fat-tree Topology

45

Pod 1 Pod 2 Pod 3 Pod 4

1) Add new pods and spines

Redistributed link Added linkOriginal link

2) Redistribute links from existing pods across spines
3) Connect new pods to spines

Example: Expanding a Fat-tree Topology

46

Is it possible to rewire this topology
without impacting production traffic?

Example: Expanding a Fat-tree Topology

47

Just rewire one cable at a time!
little risk, easy to plan, but slow

Example: Expanding a Fat-tree Topology

48

Rewire multiple cables at a time!
faster, but more risk, difficult to plan

49

Rewire multiple cables at a time!
faster, but more risk, difficult to plan

Which design is better for SLO compliance?
cannot evaluate via simple calculations

Architects need good tools to evaluate designs

50

But today, evaluating a design’s utility
is a human-intensive process

implement, debug
complex algorithms

Today’s Design Cycle: Abstract to Concrete Model

Abstract
Design

51

Manual
Synthesis

Topology
Model

Generating a concrete model of wiring requires

implementing algorithms

eyeballing
ad-hoc calculations

Today’s Design Cycle: Concrete Model to Utility

52

Manual
Analysis

Topology
Model

Evaluating utility of a design is often done by

eyeballing and ad-hoc calculations

Utility
Evaluation

Cost
Expandability

SLO Compliance

Today’s Human-Intensive Design Cycle

53

Utility

This human-intensive design cycle

Manual
Analysis

Design

leads to slow, cursory evaluations

Model
Manual

Synthesis

Slow, cursory evaluation = big problem

54

Slow, cursory evaluation = big problem

Because to find the best design architects need:
- deep insight into design’s utility

- to be able to quickly explore variants...

55

56

But if we had better tools

We could explore the design space more efficiently

57

Condor
Enables rapid exploration of the design space

Condor’s Design Cycle: Abstract to Concrete Model

Design

58

Model

write algorithms

Manual
Synthesis

Condor’s Design Cycle: Abstract to Concrete Model

Design

59

Model

Topology Description
Language

architects describe
designs declaratively

write algorithms

Manual
Synthesis

Condor’s Design Cycle: Abstract to Concrete Model

Design

60

Model

Topology Description
Language

architects describe
designs declaratively

Synthesis Engine

converts TDL into
constraint satisfaction
problem, builds model

write algorithms

Manual
Synthesis

Manual
Analysis

Condor’s Design Cycle: Concrete Model to Utility

61

Model Utility

Cost
Expandability

SLO Compliance
eyeballing / ad-hoc

Manual
Analysis

Condor’s Design Cycle: Concrete Model to Utility

62

Model Utility

Cost
Expandability

SLO Compliance
eyeballing / ad-hoc

Analysis Engine

automated utility analysis
against architect workload

Condor Enables Aggressive Exploration

63

Utility

Condor pipeline enables
aggressive exploration of the design space

CondorDesign

> TDL declarative design

automated synthesis

automated analysis

64

Designing a Fat-tree with Condor’s TDL

Describing Fat-tree Topology with Condor’s TDL

65

Step 1: Define hierarchical building blocks
switches, linecards, racks, and parent-child relationships between them

Spine

Pod
Agg

ToR

Fat-tree

Pod Pod

Hierarchical Building BlocksAbstract Design

class FatTree extends TDLBuildingBlock:
 agg = new Switch10GbE(num_ports, "agg")
 tor = new Switch10GbE(num_ports, "tor")

 pod = new TDLBuildingBlock("pod")
 pod.Contains(agg, num_sw_per_tier)
 pod.Contains(tor, num_sw_per_tier)
 ...

66

Fat-tree
building

blockpod
building

block

Describing Fat-tree Building Blocks with Condor’s TDL
(switches, linecards, racks, and the relationships between them)

agg/ToR
building
blocks

Pod
ToRs

Aggs

spine
building
blocks

class FatTree extends TDLBuildingBlock:
 ...
 spine = new Switch10GbE(num_ports, "spine")

 Contains(spine, num_spines)
 Contains(pod, num_pods)

67

Fat-tree
building

block

Describing Fat-tree Building Blocks with Condor’s TDL
(switches, linecards, racks, and the relationships between them)

Fat-tree contains
spines and pods

Fat-tree
Spines

Pod Pod

Describing Fat-tree Topology with Condor’s TDL

68

Pod 1

Each pod contains:
Servers

Top of Rack Switches
Aggregation Switches

Building blocks are naturally defined

Pod 2 Pod 3 Pod 4

agg = new Switch10GbE(...)
tor = new Switch10GbE(...)

pod = new Block("pod")
pod.Contains(agg, ...)
pod.Contains(tor, ...)

Describing FatTree Connectivity with Condor’s TDL
(constraints on connectivity between components)

69

Pod

Abstract Designin every pod, every agg
connects to every ToR

Step 2: Define constraints on connectivity between building blocks

pod.ConnectPairsWithXLinks(agg, tor, 1) TDL Constraint

Describing FatTree Connectivity with Condor’s TDL
(constraints on connectivity between components)

70

Abstract Design

Step 2: Define constraints on connectivity between building blocks

ConnectPairsWithXLinks(spine, pod, 1) TDL Constraint

Pod

in every fat-tree, every spine
connects to every pod

71

Done.

pod.ConnectPairsWithXLinks(agg, tor, 1)
ConnectPairsWithXLinks(spine, pod, 1)

72

Done.

pod.ConnectPairsWithXLinks(agg, tor, 1)
ConnectPairsWithXLinks(spine, pod, 1)

Just two TDL constraints gives us a

fat-tree’s connectivity

Describing Fat-tree Topology with Condor’s TDL

73

Fat-tree in < 15 lines of Condor’s TDL> TDL

Condor’s Automated Synthesizer

Concrete fat-tree topology
Model

Benefit of Condor’s TDL Constraints

Single Design

74

Code for
Manual Synthesis

If we had written code to build a fat-tree,
it could only generate a single solution

Benefit of Condor’s TDL Constraints

Solution Space

75

Fat-tree in
Condor TDL

But the constraints we defined with TDL can
be satisfied by multiple solutions

> TDL

Pod 4Pod 3Pod 2

Benefit of Condor’s TDL Constraints

76

Pod 1

The canonical wiring meets the constraints…

Pod 4Pod 3Pod 2

Benefit of Condor’s TDL Constraints

77

Pod 1

This wiring also meets the constraints…

78

And F10 meets these constraints

To describe F10 with Condor’s TDL,
we add constraints to reduce the solution space

Describing F10 with Condor’s TDL

79

Recall: F10 increases inter-pod path diversity
e.g.: # of paths from agg1 to pod2

F10’s wiring = two paths
(via agg3 and agg4)

Standard wiring = one path
(via agg3)

Pod 2

3
4

Pod 1

1
Pod 2

3
4

Pod 1

1

Describing F10 with Condor’s TDL

80

Let’s try using the following constraint:
Connect every agg sw to as many other agg sw as possible

Recall: F10 increases inter-pod path diversity
e.g.: # of paths from agg1 to pod2

F10’s wiring = two paths
(via agg3 and agg4)

Standard wiring = one path
(via agg3)

Pod 2

3
4

Pod 1

1
Pod 2

3
4

Pod 1

1

81

We used this constraint to try to build F10

82

We used this constraint to try to build F10

But instead we ended up improving F10
Condor found better solutions than F10’s algorithm

Limitations of F10’s Imperative Algorithm

83

Pod 2

43

Pod 1

21

Pod 3

65

Pattern A Pattern B Pattern A

F10 generates and assigns two patterns of wiring: A and B
Only improves connectivity between pods with different patterns

Limitations of F10’s Imperative Algorithm

84

Pod 2

43

Pod 1

21

Pod 3

65

Pattern A Pattern B Pattern A

Different wiring pattern
 improved path diversity

Limitations of F10’s Imperative Algorithm

85

Pod 2

43

Pod 1

21

Pod 3

65

Pattern A Pattern B Pattern A

Same wiring pattern
 no path diversity

86

Path diversity is limited by the number of wiring patterns
and F10’s algorithm only produces two patterns

87

Path diversity is limited by the number of wiring patterns
and F10’s algorithm only produces two patterns

Probability that a pair of pods has better path diversity is

limited to 50%

Improving F10 with Condor

88

Pod 2

43

Pod 1

21

Pod 3

65

Pattern A Pattern B Pattern C

Condor gives three wiring patterns =
 maximum path diversity for 3 pod fat-tree

F10 Algorithm

Improving F10 with Condor

89

of
pods

of
patterns

probability of
path diversity

2 2 50%

Condor’s Solution

of
pods

of
patterns

probability of
path diversity

2 2 50%

And with our TDL constraint + Condor’s synthesizer
path diversity increases as the topology grows

F10 Algorithm

Improving F10 with Condor

90

of
pods

of
patterns

probability of
path diversity

2 2 50%

4 2 50%

Condor’s Solution

of
pods

of
patterns

probability of
path diversity

2 2 50%

4 3 66%

And with our TDL constraint + Condor’s synthesizer
path diversity increases as the topology grows

F10 Algorithm

Improving F10 with Condor

91

of
pods

of
patterns

probability of
path diversity

2 2 50%

4 2 50%

16 2 50%

Condor’s Solution

of
pods

of
patterns

probability of
path diversity

2 2 50%

4 3 66%

16 9 88%

And with our TDL constraint + Condor’s synthesizer
path diversity increases as the topology grows

92

With Condor, we improved F10

by systematically exploring
the design space

93

Could we have found these wirings by writing an algorithm?

94

Could we have found these wirings by writing an algorithm?

Very unlikely.
These patterns are instances of Balanced Incomplete Block Design (BIBD)

Why does BIBD matter?
1) Synthesis of BIBDs is known to be difficult

2) We didn’t know about BIBD until after finding these solutions
3) Unlikely that architect alone could come up with these designs

95

What Topologies Does Condor’s TDL Support?

TDL supports any topology that you can describe with
building blocks and connectivity constraints

96

Condor’s TDL supports flattened-butterfly topologies

97

BCubeDCell

TDL supports recursive and random-graph topologies

Jellyfish

98

And Condor synthesizes topologies quickly…

Fat-tree with 128k hosts in < 2 minutes
DCell with 360k hosts in < 6 minutes

After we’ve described and built a design
Condor can help us evaluate its utility

99

UtilityCondor
automated analysis

Model

100

Design’s utility ≠ how it performs in worst-case
In large networks, worst-case scenarios are unlikely

101

Design’s utility ≠ how it performs in worst-case
In large networks, worst-case scenarios are unlikely

Traditional worst-case metrics less useful
bisection bandwidth

potential for partitions

102

Instead, to evaluate a design’s utility, we focus on
SLO Compliance

Particularly if it can carry an application’s traffic
(e.g.: ≥ 100 Mbps throughput 99.99% of the time)

103

SLO Compliance is Evaluated over a
Topology’s Lifecycle

104

SLO Compliance is Evaluated over a
Topology’s Lifecycle

During failures and expansions
will this topology continue to meet its SLO?

105

Estimating SLO Compliance: Architect Inputs

Architect characterizes workload as
traffic matrixes

Workload
(Traffic Matrixes)

106

Architect characterizes reliability as
failure and recovery rates

Estimating SLO Compliance: Architect Inputs

Workload
(Traffic Matrixes)

Reliability Info

+ MTBF + MTTR
> TDL

107

Architect characterizes expansions as
rewiring / recabling plan

Estimating SLO Compliance: Architect Inputs

Workload
(Traffic Matrixes)

Reliability Info

+ MTBF + MTTR
> TDL

+
Procedure for

adding / changing
cabling

Rewiring Plan

Estimating SLO Compliance: Failures

108

Topology
States

MTBF + MTTRTopology
Model

Simulation of Failures + Recoveries

Topology
States

Reliability Info

During failures
will this topology continue to meet its SLO?

Estimating SLO Compliance: Failures

109

Topology
States

Reliability Info
Topology

Model

Simulation of Failures + Recoveries

% of time traffic demand is satisfied

Topology
States

Traffic MatrixesThroughput Simulation

110

During expansions
will this topology continue to meet its SLO?

Almost identical process

Estimating SLO Compliance: Expansions

111

Topology
States

Traffic Matrixes

Topology
Model

Simulation of Expansion Operations

% of time traffic demand is satisfied

Topology
States

Throughput Simulation

Rewiring Plan

Evaluating Online Expandability with Condor

112

Use Condor to evaluate tree expansion
Max size = ~50k servers

Each increment = +6k servers
Rewiring = 32 operations per increment

> TDL

Check if design remained SLO compliant

Simulate 225 stage expansion operation
(difficult without Condor)

113

In the Paper Example of Expansions
Expandability of two designs with a minor variation in TDL

Option A> TDL

Not SLO Compliant Remains SLO Compliant

Option B> TDL

114

Condor helped us evaluate SLO compliance
over the lifecycle of these topologies

Conclusion: The Condor Approach

Condor replaces a human-intensive design process
with a systematic approach to topology design

Condor’s TDL makes it easier to design topologies
Condor’s synthesizer quickly models topologies from TDL

Condor’s analysis engine provides insight into a design’s utility

115

Conclusion: The Condor Approach

Condor replaces a human-intensive design process
with a systematic approach to topology design

More Examples in Paper:
Evaluating SLO compliance of different designs

Other trade-offs in expansions (e.g.: imbalance in routing protocols)

TDL Source Code:
http://nsl.cs.usc.edu/condor

116

http://nsl.cs.usc.edu/condor
http://nsl.cs.usc.edu/condor

