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Our Focus:

Designing Topologies for Large Datacenters
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Our Focus:

Designing Topologies for Large Datacenters

(10k - 100k+ servers)
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Designing Topologies for Large Datacenters

Why exploring the topology design space is hard
How today’s ad-hoc approach leads to suboptimal deployments

How Condor’s systematic approach helps architects
Enabling efficient exploration and evaluation of the design space
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Network
Architect

“We need a datacenter for 50k servers”
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“We need a datacenter for 50k servers”

Network
Architect

Let’s use a Fat-tree topology!
(SIGCOMM 2008)



The Fat-tree Topology
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Each fat-tree contains 2+ pods

Pod 2 Pod 3 Pod 4Pod 1

Pod PodPod Pod



The Fat-tree Topology
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Pod 2 Pod 3 Pod 4Pod 1

Each pod contains:
Servers

CPU 



The Fat-tree Topology
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Pod 2 Pod 3 Pod 4Pod 1

ToRs 

Each pod contains:
Servers

Top of Rack Switches



The Fat-tree Topology
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Pod 2 Pod 3 Pod 4Pod 1

ToRs 

Aggs

Each pod contains:
Servers

Top of Rack Switches
Aggregation Switches



The Fat-tree Topology
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Pod 2 Pod 3 Pod 4Pod 1

ToRs 

Aggs

Pods are connected by Spine Switches

Spines



The Fat-tree Topology
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Pod 2 Pod 3 Pod 4Pod 1

ToRs 

Aggs

Done.
The topology is deployed.

Spines



Up and Running...
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Months go by…
The network runs fine most of the time…



Up and Running...
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Months go by…
The network runs fine most of the time…

But when a failure happens
recovery takes longer than expected



Pod NPod N-1Pod 2Pod 1

Hindsight is 20/20

16

...

Architect goes back and reviews the design…

Fat-tree topology | SIGCOMM 2008



Pod NPod N-1Pod 2Pod 1

Hindsight is 20/20
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...

Pod NPod N-1Pod 2Pod 1

...

Fat-tree topology | SIGCOMM 2008 F10 topology | NSDI 2013

And discovers a small wiring change (F10)
that allows faster recovery from failures



Pod NPod N-1Pod 2Pod 1
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...

Pod NPod N-1Pod 2Pod 1

...

Fat-tree topology | SIGCOMM 2008 F10 topology | NSDI 2013

Why is F10’s wiring better?



Pod 2

43

F10’s Hidden Advantage
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F10 topology | NSDI 2013

Pod 1

21

...

Pod 2

43

Pod 1

2

...

Fat-tree topology | SIGCOMM 2008

1

F10’s small change improves 
the connectivity between pods



F10’s Hidden Advantage
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Pod 2

43

Pod 1

21

...

Fat-tree topology | SIGCOMM 2008



F10’s Hidden Advantage

21

Pod 2

43

Pod 1

21

...

Pod 2

3
4

Pod 1

1

Resulting Inter-Pod Connectivity

Fat-tree topology | SIGCOMM 2008



F10’s Hidden Advantage
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Pod 2

43

Pod 1

21

...

Pod 2

43

Pod 1

2

...

1

Pod 2

3
4

Pod 1

1

Resulting Inter-Pod Connectivity

F10 topology | NSDI 2013Fat-tree topology | SIGCOMM 2008



F10’s Hidden Advantage
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Pod 2

43

Pod 1

21

...

Pod 2

43

Pod 1

2

...

1

Pod 2

3
4

Pod 1

1
Pod 2

3
4

Pod 1

Resulting Inter-Pod Connectivity Resulting Inter-Pod Connectivity

1

F10 topology | NSDI 2013Fat-tree topology | SIGCOMM 2008



F10’s Hidden Advantage
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F10’s wiring = two paths
(via agg3 and agg4)

Standard wiring = one path
(via agg3)

Pod 2

3
4

Pod 1

1
Pod 2

3
4

Pod 1

Resulting Inter-Pod Connectivity Resulting Inter-Pod Connectivity

1

F10’s simple wiring change provides
greater path diversity, faster recovery from failure
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Oops.
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Oops.
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These late realizations occur all too often

Why?
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Architects make lots of decisions during design,
every decision can have substantial impact
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But it’s difficult to evaluate if a decision is good
so architects are often blind to design defects

Architects make lots of decisions during design,
every decision can have substantial impact
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examples:
≥ 100 Mbps throughput 99.99% of the time

≤ 10 ms latency 99.99% of the time

One of architect’s primary concerns is
Service Level Objective (SLO) Compliance
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examples:
≥ 100 Mbps throughput 99.99% of the time

≤ 10 ms latency 99.99% of the time

One of architect’s primary concerns is
Service Level Objective (SLO) Compliance

Tough to estimate and compare SLO compliance



Challenge: Estimating SLO compliance of two designs
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Rack

Switch

...
Rack Rack Rack

LC LC LC LC

LC LC

Switch

LC LC LC LC

LC LC

Switch

LC LC LC LC

LC LC

Switch

LC LC LC LC

LC LC

Example Topology:
Bunch of racks interconnected with big switches



Switch

LC LC LC LC

LC LC

Rack

Challenge: Estimating SLO compliance of two designs
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A

Option A:
Connect each ToR to two linecards

in each fabric switch



Switch

LC LC LC LC

LC LC

Rack

Challenge: Estimating SLO compliance of two designs
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A

Option A:
Connect each ToR to two linecards

in each fabric switch

LC LC LC

LC LC

RackB

LC

Option B:
Connect ToR to same linecard twice

in each fabric switch

Switch



Challenge: Estimating SLO compliance of two designs
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Rack loses 1/8th of 
inter-rack throughput
(1 out of 8 links lost)

Switch

LC LC LC LC

LC LC

Rack
A

Switch

LC LC LC

LC LC

RackB

LC

Rack loses 1/4th of 
inter-rack throughput
(2 out of 8 links lost)

Linecard Failure Linecard Failure



Challenge: Estimating SLO compliance of two designs
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Rack loses 1/8th of 
inter-rack throughput
(1 out of 8 links lost)

Switch

LC LC LC LC

LC LC

Rack
A

LC LC LC

LC LC

RackB

LC

Rack loses 1/4th of 
inter-rack throughput
(2 out of 8 links lost)

Linecard Failure Linecard Failure

Switch



Challenge: Estimating SLO compliance of two designs
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Routing reconvergence
and packet loss

Switch

LC LC LC LC

LC LC

Rack
A

LC LC LC

LC LC

RackB

LC

Local failure handling
and no packet loss

Link Failure Link Failure

Switch



Challenge: Estimating SLO compliance of two designs
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Routing reconvergence
and packet loss

Switch

LC LC LC LC

LC LC

Rack
A

LC LC LC

LC LC

RackB

LC

Local failure handling
and no packet loss

Link Failure Link Failure

Switch



Design A Design B

Line Card Failure

Link Failure

39

Is either design SLO compliant?
Which design is better?



Design A Design B

Line Card Failure

Link Failure

40

Is either design SLO compliant?
Which design is better?

Depends on SLO, failure / recovery rates, routing protocols
cannot evaluate via simple calculations
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Depends on SLOs, failure and recovery rates, protocols

cannot evaluate via simple calculations

architects are often blind to design defects
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Challenge: Designing Expandable Topologies
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10k servers
Today

+10k servers
Dec. 2015

Large datacenters are expanded incrementally
Resources added as needed to reduce cost, depreciation

+10k servers
June 2016



Challenge: Designing Expandable Topologies
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Challenges of Incremental Expansions

Expansions often require rewiring existing connections
Rewiring operations must be performed on live network



Example: Expanding a Fat-tree Topology
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Pod 1 Pod 2 Pod 3 Pod 4

1) Add new pods and spines

Redistributed link Added linkOriginal link

2) Redistribute links from existing pods across spines
3) Connect new pods to spines



Example: Expanding a Fat-tree Topology
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Is it possible to rewire this topology
without impacting production traffic?



Example: Expanding a Fat-tree Topology
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Just rewire one cable at a time!
little risk, easy to plan, but slow



Example: Expanding a Fat-tree Topology
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Rewire multiple cables at a time!
faster, but more risk, difficult to plan
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Rewire multiple cables at a time!
faster, but more risk, difficult to plan

Which design is better for SLO compliance?
cannot evaluate via simple calculations

Architects need good tools to evaluate designs
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But today, evaluating a design’s utility
is a human-intensive process



implement, debug
complex algorithms

Today’s Design Cycle: Abstract to Concrete Model

Abstract
Design

51

Manual
Synthesis

Topology
Model

Generating a concrete model of wiring requires

implementing algorithms



eyeballing
ad-hoc calculations

Today’s Design Cycle: Concrete Model to Utility
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Manual
Analysis

Topology
Model

Evaluating utility of a design is often done by

eyeballing and ad-hoc calculations

Utility
Evaluation

Cost
Expandability

SLO Compliance



Today’s Human-Intensive Design Cycle
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Utility

This human-intensive design cycle

Manual
Analysis

Design

leads to slow, cursory evaluations

Model
Manual

Synthesis



Slow, cursory evaluation = big problem

54



Slow, cursory evaluation = big problem

Because to find the best design architects need:
- deep insight into design’s utility

- to be able to quickly explore variants...

55
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But if we had better tools

We could explore the design space more efficiently
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Condor
Enables rapid exploration of the design space



Condor’s Design Cycle: Abstract to Concrete Model

Design

58

Model

write algorithms

Manual
Synthesis



Condor’s Design Cycle: Abstract to Concrete Model

Design
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Model

Topology Description 
Language

architects describe 
designs declaratively

write algorithms

Manual
Synthesis



Condor’s Design Cycle: Abstract to Concrete Model

Design
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Model

Topology Description 
Language

architects describe 
designs declaratively

Synthesis Engine

converts TDL into 
constraint satisfaction 
problem, builds model

write algorithms

Manual
Synthesis



Manual
Analysis

Condor’s Design Cycle: Concrete Model to Utility
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Model Utility

Cost
Expandability

SLO Compliance
eyeballing / ad-hoc



Manual
Analysis

Condor’s Design Cycle: Concrete Model to Utility
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Model Utility

Cost
Expandability

SLO Compliance
eyeballing / ad-hoc

Analysis Engine

automated utility analysis
against architect workload



Condor Enables Aggressive Exploration
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Utility

Condor pipeline enables 
aggressive exploration of the design space

CondorDesign

> TDL declarative design

automated synthesis

automated analysis
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Designing a Fat-tree with Condor’s TDL



Describing Fat-tree Topology with Condor’s TDL
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Step 1: Define hierarchical building blocks
switches, linecards, racks, and parent-child relationships between them

Spine

Pod
Agg

ToR

Fat-tree

Pod Pod

Hierarchical Building BlocksAbstract Design



class FatTree extends TDLBuildingBlock:
  agg = new Switch10GbE(num_ports, "agg")
  tor = new Switch10GbE(num_ports, "tor")

  pod = new TDLBuildingBlock("pod")
  pod.Contains(agg, num_sw_per_tier)
  pod.Contains(tor, num_sw_per_tier)
  ...

66

Fat-tree
building 

blockpod
building

block 

Describing Fat-tree Building Blocks with Condor’s TDL
(switches, linecards, racks, and the relationships between them)

agg/ToR
building
blocks

Pod
ToRs 

Aggs



spine
building
blocks

class FatTree extends TDLBuildingBlock:
  ...
  spine = new Switch10GbE(num_ports, "spine")

  Contains(spine, num_spines)
  Contains(pod, num_pods)
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Fat-tree
building 

block

Describing Fat-tree Building Blocks with Condor’s TDL
(switches, linecards, racks, and the relationships between them)

Fat-tree contains
spines and pods

Fat-tree
Spines

Pod Pod



Describing Fat-tree Topology with Condor’s TDL
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Pod 1

Each pod contains:
Servers

Top of Rack Switches
Aggregation Switches

Building blocks are naturally defined

Pod 2 Pod 3 Pod 4

agg = new Switch10GbE(...)
tor = new Switch10GbE(...)

pod = new Block("pod")
pod.Contains(agg, ...)
pod.Contains(tor, ...)



Describing FatTree Connectivity with Condor’s TDL
(constraints on connectivity between components)
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Pod

Abstract Designin every pod, every agg 
connects to every ToR

Step 2: Define constraints on connectivity between building blocks

pod.ConnectPairsWithXLinks(agg, tor, 1) TDL Constraint



Describing FatTree Connectivity with Condor’s TDL
(constraints on connectivity between components)
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Abstract Design

Step 2: Define constraints on connectivity between building blocks

ConnectPairsWithXLinks(spine, pod, 1) TDL Constraint

Pod

in every fat-tree, every spine 
connects to every pod
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Done.

pod.ConnectPairsWithXLinks(agg, tor, 1)
ConnectPairsWithXLinks(spine, pod, 1)



72

Done.

pod.ConnectPairsWithXLinks(agg, tor, 1)
ConnectPairsWithXLinks(spine, pod, 1)

Just two TDL constraints gives us a

fat-tree’s connectivity



Describing Fat-tree Topology with Condor’s TDL
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Fat-tree in < 15 lines of Condor’s TDL> TDL

Condor’s Automated Synthesizer

Concrete fat-tree topology
Model



Benefit of Condor’s TDL Constraints

Single Design
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Code for 
Manual Synthesis

If we had written code to build a fat-tree,
it could only generate a single solution



Benefit of Condor’s TDL Constraints

Solution Space
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Fat-tree  in
Condor TDL

But the constraints we defined with TDL can
be satisfied by multiple solutions

> TDL



Pod 4Pod 3Pod 2

Benefit of Condor’s TDL Constraints

76

Pod 1

The canonical wiring meets the constraints… 



Pod 4Pod 3Pod 2

Benefit of Condor’s TDL Constraints
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Pod 1

This wiring also meets the constraints…
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And F10 meets these constraints

To describe F10 with Condor’s TDL,
we add constraints to reduce the solution space



Describing F10 with Condor’s TDL

79

Recall: F10 increases inter-pod path diversity
e.g.: # of paths from agg1 to pod2

F10’s wiring = two paths
(via agg3 and agg4)

Standard wiring = one path
(via agg3)

Pod 2

3
4

Pod 1

1
Pod 2

3
4

Pod 1

1



Describing F10 with Condor’s TDL
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Let’s try using the following constraint:
Connect every agg sw to as many other agg sw as possible

Recall: F10 increases inter-pod path diversity
e.g.: # of paths from agg1 to pod2

F10’s wiring = two paths
(via agg3 and agg4)

Standard wiring = one path
(via agg3)

Pod 2

3
4

Pod 1

1
Pod 2

3
4

Pod 1

1
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We used this constraint to try to build F10
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We used this constraint to try to build F10

But instead we ended up improving F10
Condor found better solutions than F10’s algorithm



Limitations of F10’s Imperative Algorithm
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Pod 2

43

Pod 1

21

Pod 3

65

Pattern A Pattern B Pattern A

F10 generates and assigns two patterns of wiring: A and B
Only improves connectivity between pods with different patterns



Limitations of F10’s Imperative Algorithm
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Pod 2

43

Pod 1

21

Pod 3

65

Pattern A Pattern B Pattern A

Different wiring pattern
 improved path diversity



Limitations of F10’s Imperative Algorithm
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Pod 2

43

Pod 1

21

Pod 3

65

Pattern A Pattern B Pattern A

Same wiring pattern
 no path diversity
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Path diversity is limited by the number of wiring patterns
and F10’s algorithm only produces two patterns
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Path diversity is limited by the number of wiring patterns
and F10’s algorithm only produces two patterns

Probability that a pair of pods has better path diversity is 

limited to 50%



Improving F10 with Condor
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Pod 2

43

Pod 1

21

Pod 3

65

Pattern A Pattern B Pattern C

Condor gives three wiring patterns =
 maximum path diversity for 3 pod fat-tree



F10 Algorithm

Improving F10 with Condor
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# of 
pods

# of 
patterns

probability of
path diversity

2 2 50%

Condor’s Solution

# of 
pods

# of 
patterns

probability of
path diversity

2 2 50%

And with our TDL constraint + Condor’s synthesizer
path diversity increases as the topology grows



F10 Algorithm

Improving F10 with Condor
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# of 
pods

# of 
patterns

probability of
path diversity

2 2 50%

4 2 50%

Condor’s Solution

# of 
pods

# of 
patterns

probability of
path diversity

2 2 50%

4 3 66%

And with our TDL constraint + Condor’s synthesizer
path diversity increases as the topology grows



F10 Algorithm

Improving F10 with Condor
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# of 
pods

# of 
patterns

probability of
path diversity

2 2 50%

4 2 50%

16 2 50%

Condor’s Solution

# of 
pods

# of 
patterns

probability of
path diversity

2 2 50%

4 3 66%

16 9 88%

And with our TDL constraint + Condor’s synthesizer
path diversity increases as the topology grows
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With Condor, we improved F10

by systematically exploring 
the design space
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Could we have found these wirings by writing an algorithm?
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Could we have found these wirings by writing an algorithm?

Very unlikely.
These patterns are instances of Balanced Incomplete Block Design (BIBD)

Why does BIBD matter?
1) Synthesis of BIBDs is known to be difficult

2) We didn’t know about BIBD until after finding these solutions
3) Unlikely that architect alone could come up with these designs
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What Topologies Does Condor’s TDL Support?

TDL supports any topology that you can describe with
building blocks and connectivity constraints
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Condor’s TDL supports flattened-butterfly topologies
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BCubeDCell

TDL supports recursive and random-graph topologies

Jellyfish
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And Condor synthesizes topologies quickly…

Fat-tree with 128k hosts in < 2 minutes
DCell with 360k hosts in < 6 minutes



After we’ve described and built a design
Condor can help us evaluate its utility
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UtilityCondor
automated analysis

Model



100

Design’s utility ≠ how it performs in worst-case
In large networks, worst-case scenarios are unlikely
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Design’s utility ≠ how it performs in worst-case
In large networks, worst-case scenarios are unlikely

Traditional worst-case metrics less useful
bisection bandwidth

potential for partitions
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Instead, to evaluate a design’s utility, we focus on
SLO Compliance

Particularly if it can carry an application’s traffic
(e.g.: ≥ 100 Mbps throughput 99.99% of the time)
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SLO Compliance is Evaluated over a
Topology’s Lifecycle
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SLO Compliance is Evaluated over a
Topology’s Lifecycle

During failures and expansions
will this topology continue to meet its SLO?
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Estimating SLO Compliance: Architect Inputs

Architect characterizes workload as 
traffic matrixes

Workload
(Traffic Matrixes)
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Architect characterizes reliability as 
failure and recovery rates

Estimating SLO Compliance: Architect Inputs

Workload
(Traffic Matrixes)

Reliability Info

+ MTBF + MTTR
> TDL
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Architect characterizes expansions as 
rewiring / recabling plan

Estimating SLO Compliance: Architect Inputs

Workload
(Traffic Matrixes)

Reliability Info

+ MTBF + MTTR
> TDL

+
Procedure for 

adding / changing 
cabling

Rewiring Plan



Estimating SLO Compliance: Failures
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Topology
States

MTBF + MTTRTopology
Model

Simulation of Failures + Recoveries

Topology
States

Reliability Info

During failures
will this topology continue to meet its SLO?



Estimating SLO Compliance: Failures

109

Topology
States

Reliability Info
Topology

Model

Simulation of Failures + Recoveries

% of time traffic demand is satisfied

Topology
States

Traffic MatrixesThroughput Simulation
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During expansions
will this topology continue to meet its SLO?

Almost identical process



Estimating SLO Compliance: Expansions
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Topology
States

Traffic Matrixes

Topology
Model

Simulation of Expansion Operations

% of time traffic demand is satisfied

Topology
States

Throughput Simulation

Rewiring Plan



Evaluating Online Expandability with Condor

112

Use Condor to evaluate tree expansion 
Max size = ~50k servers

Each increment = +6k servers
Rewiring = 32 operations per increment

> TDL

Check if design remained SLO compliant

Simulate 225 stage expansion operation
(difficult without Condor)
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In the Paper Example of Expansions
Expandability of two designs with a minor variation in TDL

Option A> TDL

Not SLO Compliant Remains SLO Compliant

Option B> TDL
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Condor helped us evaluate SLO compliance 
over the lifecycle of these topologies



Conclusion: The Condor Approach

Condor replaces a human-intensive design process
with a systematic approach to topology design

Condor’s TDL makes it easier to design topologies
Condor’s synthesizer quickly models topologies from TDL

Condor’s analysis engine provides insight into a design’s utility
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Conclusion: The Condor Approach

Condor replaces a human-intensive design process
with a systematic approach to topology design

More Examples in Paper:
Evaluating SLO compliance of different designs

Other trade-offs in expansions (e.g.: imbalance in routing protocols)

TDL Source Code:
http://nsl.cs.usc.edu/condor
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http://nsl.cs.usc.edu/condor
http://nsl.cs.usc.edu/condor

