USC Viterbi g Go 8[@

School of Engineerin,

Condor
Better Topologies through Declarative Design

Brandon Schlinker2
Radhika Niranjan Mysore?, Sean Smith?, Jeffrey C. Mogul?, Amin Vahdat?!, Minlan Yu?,
Ethan Katz-Bassett?, and Michael Rubin?

1Google Inc., ? University of Southern California

SIGCOMM 2015

Our Focus:

Designing Topologies for Large Datacenters

Our Focus:

Designing Topologies for Large Datacenters

(10k - 100k+ servers)

Designing Topologies for Large Datacenters

‘Why exploring the topology design space is hard

How today's ad-hoc approach leads to suboptimal deployments

How Condor's systematic approach helps architects
Enabling efficient exploration and evaluation of the design space

Designing Topologies for Large Datacenters

Why exploring the topology design space is hard

How today's ad-hoc approach leads to suboptimal deployments

How Condor's systematic approach helps architects
' Enabling efficient exploration and evaluation of the design space '

“We need a datacenter for 50k servers”

__ r__:
l

\/
Network

Architect

“We need a datacenter for 50k servers”

__ r__:
l

\/
Network

Architect

Let's use a Fat-tree topology!
(SIGCOMM 2008)

__

The Fat-tree Topology

__

Each fat-tree contains 2+ pods

The Fat-tree Topology

__

Each pod contains:
Servers

The Fat-tree Topology

__

 Podi | Pod2 Pod3 Pod4 |
Each pod contains:
Servers

Top of Rack Switches

The Fat-tree Topology

Each pod contains:
Servers
Top of Rack Switches
Aggregation Switches

11

ne Fat-tree Topology

Pods are connected by Spine Switches

12

The Fat-tree Topology

Done.
The topology Is deployed.

13

Up and Running...

Months go by..

The network runs fine most of the time..

14

Up and Running...

Months go by..

The network runs fine most of the time..

But when a failure happens
recovery takes longer than expected

15

Hindsight is 20/20

Fat-tree topology | SIGCOMM 2008

Architect goes back and reviews the design..

16

Hindsight is 20/20

Fat-tree topology | SIGCOMM 2008 | F10 topology | NSDI 2013 |

And discovers a small wiring change (F10)
that allows faster recovery from failures

17

DI 2013

~ F10 topology | NSDI 201

MM

‘Fat-tree topology | SIGCO

?

better

S wWiring

Why is F10

18

F10’s Hidden Advantage

Fat tree topology | SIGCOMM 2008 F10 topology | NSDI 2013

F10's small change improves
the connectivity between pods

19

F10’s Hidden Advantage

Fat-tree topology | SIGCOMM 2008

20

F10’s Hidden Advantage

Fat-tree topology | SIGCOMM 2008

21

F10’s Hidden Advantage

Fat-tree topology | SIGCOMM 2008 F10 topology | NSDI 2013

22

F10’s Hidden Advantage

Fat-tree topology | SIGCOMM 2008 F10 topology | NSDI 2013

23

F10’s Hidden Advantage

——

Resultmg Inter-Pod Connectlwty Resultmg Inter-Pod Connectlwty
1 : _____ — 4 1 e ; - _f
| Podz] Pod2 | _Podi] Pod 2 |
Standard wiring = one path F10's wiring = two paths
(via agg,) (via agg, and agg)

F10's simple wiring change provides
greater path diversity, faster recovery from failure

24

Oops.

These late realizations occur all too often

Why?

27

Architects make lots of decisions during design,
every decision can have substantial impact

28

Architects make lots of decisions during design,
every decision can have substantial impact

Y

But it's difficult to evaluate if a decision is good
so architects are often blind to design defects

29

One of architect’s primary concerns is
Service Level Objective (SLO) Compliance

examples:
> 100 Mbps throughput 99.09% of the time
<10 ms latency 99.99% of the time

30

One of architect’s primary concerns is
Service Level Objective (SLO) Compliance

examples:
> 100 Mbps throughput 99.09% of the time
<10 ms latency 99.99% of the time

Tough to estimate and compare SLO compliance

31

Challenge: Estimating SLO compliance of two designs

Example Topology:
Bunch of racks interconnected with big switches

1 1
1 1
1
1 1
2T~ ~"~ 2T~ ~"~] ! 2T~ ~"~] ! 2T~ ~"~]
— - | - 1 -
- ~ oS - ~ oS : 1 - ~ oS : 1 - ~ oS :
S ~ L z - ~ S L z - ~ .
1 1 1
1 1 1
1 1
1 1 1
s _C ‘——-——————-—-_——ﬁ-:--.:—|= ~-:¢_L———2 ————————————— b :—S—H_~—I—f——_—.—-f——‘—————-————\—u.-.-.:————:,-_.'— =I—=—-———£—':—_— ———————— 7 ——————]
— — S " - - =
P gl e _— e~ T~ —_—-—— = = ~ /
~
\ P - =T EEE = ==Z===T_ ~ ~ ’
-

32

Challenge: Estimating SLO compliance of two designs

Option A:
Connect each ToR to two linecards
INn each fabric switch

33

Challenge: Estimating SLO compliance of two designs

| Switch | | Switch |
I LC LC I : LC LC :
: < ~¢\"’:. S : I P /’N"A’:;\ - I
| ‘/r - =~ \\; | 1 4” - = \\; 1
: IC LC LC LC ! : LIC LC LC LC :
Lo D ! L AT |
: ERES _\ ________ : I _}__\ _________ I
I I I : NN :
: > | | o< |
N T - |
| : | |
| |
A Rack | | " B Rack | |
Option A: Option B:
Connect each ToR to two linecards Connect ToR to same linecard twice
in each fabric switch in each fabric switch

34

Challenge: Estimating SLO compliance of two designs

BTt e e (eI,
1 Switch | R Switch
: LC LC | : LC LC !
T I T In I
i e i i pove: i
i _ Rack ’ B Rk i
Linecard Failure Linecard Failure
Rack loses 1/8th of Rack loses 1/4th of
inter-rack throughput inter-rack throughput
(1 out of 8 links lost) (2 out of 8 links lost)

35

Challenge: Estimating SLO compliance of two designs

M Easasaaaanana, . . |
T Switeh ! ! Switch !
| = = | | e e |
. g B
| __Rack | | B Rack |
| Linecard Failure Linecard Failure
p Rack loses 1/8th of Rack loses 1/4th of
é inter-rack throughput inter-rack throughput
(1 out of 8 links lost) (2 out of 8 links lost)

36

Challenge: Estimating SLO compliance of two designs

i
)

>
b
_ -é_ o -
4

Link Failure Link Failure
Routing reconvergence Local failure handling
and packet loss and no packet loss

37

Challenge: Estimating SLO compliance of two designs

e ===
- Switch ! | Switch |
. e 1N | N
X | X :
A == ' B :
: i Rack | i RECE | |
Link Failure Link Failure
Routing reconvergence Local failure handling p
and packet loss and no packet loss £

38

Design A Design B

. . "’\\lg}’ﬁ
Line Card Failure 1 x
Link Failure X 1

s either desigh SLO compliant?
Which design is better?

39

Design A Design B
Line Card Failure Y X

|

Link Failure X Y

2

s either desigh SLO compliant?
Which design is better?

Depends on SLO, failure / recovery rates, routing protocols
cannot evaluate via simple calculations

40

Depends on SLOs, failure and recovery rates, protocols
cannot evaluate via simple calculations

41

Challenge: Designing Expandable Topologies

oo ERE cr R cru R ceu B 6D 6D 6D cru EE o EE oo HE cry

cru R cr R cru R cr R 6D :6D: 6D 6D

10k servers +10K servers +10K servers
Today Dec. 2015 June 2016

Large datacenters are expanded incrementally
Resources added as needed to reduce cost, depreciation

43

Challenge: Designing Expandable Topologies

Challenges of Incremental Expansions

Expansions often require rewiring existing connections
Rewiring operations must be performed on live network

44

Example: Expanding a Fat-tree Topology

Original link

Pod 1 Pod 2 Pod 3

1) Add new pods and spines

2) Redistribute links from existing pods across spines
3) Connect new pods to spines

45

Example: Expanding a Fat-tree Topology

s it possible to rewire this topology
without impacting production traffic?

46

Example: Expanding a Fat-tree Topology

Just rewire one cable at a timel
Little risk, easy to plan, but slow

47

Example: Expanding a Fat-tree Topology

Rewire multiple cables at a time!
faster, but more risk, difficult to plan

48

Rewire multiple cables at a time!

1

.cannot evaluate via simple calculations !

Architects need good tools to evaluate designs

49

But today, evaluating a design's utility
IS a human-intensive process

50

Today’s Design Cycle: Abstract to Concrete Model

e T
S e T

o . implement, debug \\ L;fiff::i;_ii
[t . complex algorithms | eEevae e ;“;i

P N e - eslissiselins
Abstract Q Ma nuall Topology
Design J Synthesis Model

Generating a concrete model of wiring requires
implementing algorithms

Today’s Design Cycle: Concrete Model to Utility

——

———

Dol zsesy 0L zses | : : ! . Cost

UL T UL L) | eveballin | | .
YV | Y 9 _ ; . Expandability |
| ad-hoc calculations ; . SLO Compliance
8888 88 88 ! ! !

Topology Manuall Utility
Model Analysis Evaluation

Evaluating utility of a design is often done by
eyeballing and ad-hoc calculations

52

Today’s Human-Intensive Design Cycle

Manual Manual
Synthesis Analysis

This human-intensive design cycle
leads to slow, cursory evaluations

Slow, cursory evaluation = big problem

54

Slow, cursory evaluation = big problem

Because to find the best design architects need.
- deep insight into design’s utility
- to be able to quickly explore variants...

95

But if we had better tools

We could explore the design space more efficiently

56

Condor

Enables rapid exploration of the design space

57

Condor’s Design Cycle: Abstract to Concrete Model

———————————————————————————

1 ‘4’ ####
| |——c—"| [|"~—.r"; 1

58

Condor’s Design Cycle: Abstract to Concrete Model

e | ittt tedetnteiuiptotututotel |

A
A =z s
S : |‘—c—‘|‘|:————| |————Z“|-—:,-—q :

architects describe
designs declaratively

Topology Description 3
Language

59

Condor’s Design Cycle: Abstract to Concrete Model

e | ittt tedetnteiuiptotututotel |

\
o .= <
o : |--c—"|‘|:-—-- |————1;"|~v:y-—-; :

__

converts TDL into
constraint satisfaction
problem, builds model

architects describe
designs declaratively

Topology Description | Synthesis Engine
Language

60

Condor’s Design Cycle: Concrete Model to Utility

———————————————————————————

--% E ,,:-><-\ E ——— i Cost
L LW L L% | . : | -
e . eyeballing / ad-hoc . Expandability

E‘q | . SLO Compliance '
/ Model /A | m?s = */ Utility /

61

Condor’s Design Cycle: Concrete Model to Utility

———————————————————————————

. automated utility analysis
against architect workload

Analysis Engine

Cost
Expandability

SLO Compliance

v

Utility

62

Condor Enables Aggressive Exploration

l > TDL l declarative design

automated synthesis

Condor pipeline enables
aggressive exploration of the design space

63

Designing a Fat-tree with Condor’s TDL

64

Describing Fat-tree Topology with Condor’s TDL

__

— Fat-tree

Abstract Design Hierarchical Building Blocks

Step 1: Define hierarchical building blocks
switches, linecards, racks, and parent-child relationships between them

65

Describing Fat-tree Building Blocks with Condor’s TDL

(switches, linecards, racks, and the relationships between them)

class

agg
tor

pod

pod.
pod.

Pod

FatTree extends TDLBuildingBlock:
— Switchl E " " agg/ToR
new SwitchlOGbE (num ports, "agg")]_ building

= new SwitchlOGbE (num ports, "tor") blocks

= new TDLBuildingBlock ("pod") pod

Contains (agg, num sw per tier) building

Contains (tor, num sw per tier) block

Fat-tree
— building
block

66

Describing Fat-tree Building Blocks with Condor’s TDL

(switches, linecards, racks, and the relationships between them)

== 5& Spines
_____________ Fat-tree
Pod Pod
class FatTree extends TDLBuildingBlock: _
spine
spine = new SwitchlOGbE (num ports, "spine")} building Fat-tree
- blocks o
— building
. : . block
Contains (spine, num spines) Fat-tree contains
Contains (pod, num pods) spines and pods

67

Describing Fat-tree Topology with Condor’s TDL

' agg = new SwitcthGbE(...)E
‘tor = new SwitchlOGbE(...) |

Epod = new Block ("pod")

Each pod contains:
Servers
Top of Rack Switches

ipod.Contains(agg, c..)
' pod.Contains (tor, ...)

—————————————————————————————

Building blocks are naturally defined

68

Describing FatTree Connectivity with Condor’s TDL

(constraints on connectivity between components)

2 S
3><: 2><: ~ Inevery pod, every agg . Abstract Design
| ' connects to every ToR ; :
Pod : .
___________________ - I
__ |
Pl , Y
' pod.ConnectPairsWithXLinks (agg, tor, 1) | TDL Constraint

Step 2: Define constraints on connectivity between building blocks

69

Describing FatTree Connectivity with Condor’s TDL

(constraints on connectivity between components)

>a e ,
T in every fat-tree, every spine |, -
I : - | stract Design
o e connects to every pod , J
. Pod 5 ;
__ i
e , \
' ConnectPairsWithXLinks (spine, pod, 1) . TDL Constraint

Step 2: Define constraints on connectivity between building blocks

70

Epod.ConnectPairsWithXLinks(agg, tor, 1)
' ConnectPairsWithXLinks (spine, pod, 1)

71

Epod.ConnectPairsWithXLinks(agg, tor, 1) E
. ConnectPairsWithXLinks (spine, pod, 1)

Just two TDL constraints gives us a
fat-tree's connectivity

72

Describing Fat-tree Topology with Condor’s TDL

QQQQ

<N Concrete fat-tree topology
g A

Benefit of Condor’'s TDL Constraints

Code for Single Design
Manual Synthesis

If we had written code to build a fat-tree,
it could only generate a single solution

74

Benefit of Condor’'s TDL Constraints

[> TDL] ______ > Mjggge S J_“

Fat-tree in Solution Space
Condor TDL

But the constraints we defined with TDL can
be satisfied by multiple solutions

75

Benefit of Condor’'s TDL Constraints

__

— —
~ ~I - - V4 S, T~ - e \ [P \
/ ~ -~ - ~ -~ - - -~
-~ - - = = e -
/ \\ o=~ - #___ NS - - __A ”5—\\ ’/ \
-
- - ~~,~ -—= —— -~ —’— \< \
—__h- q(_~~
—“- .—‘~~ -~
——_ -\
————————-—t ——— -\— ———————————————————————————

The canonical wiring meets the constraints..

76

Benefit of Condor’'s TDL Constraints

__

-
\ S S0 ~ - - T — -
SS~sI--=--_ D N I L 2 N T ’
\ S~J-- <7——~—\~—’><\ P Ll Sl /
-~ =] - o -
\ \‘ g ‘s—,—’—\ __;ﬁ".—s‘: L‘a—a’;_ - ,
— .-*-g ’— ————————— \

__-— - 5 - — o
—‘c——v - ,«_, ‘‘‘‘‘ ’~—~

el

This wiring also meets the constraints..

77

And F10 meets these constraints

To describe F10 with Condor's TDL,
we add constraints to reduce the solution space

78

Describing F10 with Condor’s TDL

Recall: F10 increases inter-pod path diversity
eg. # of paths from agg to pod,

———

__

1 —a g
Pod1 Pod2 | | Pod 1 | Pod2 |
Standard wiring = one path F10's wiring = two paths

(via agg,) (via agg, and agg,)

79

Describing F10 with Condor’s TDL

Recall: F10 increases inter-pod path diversity
eg. # of paths from agg to pod

———

__

W —— N 4 1 ""=‘: __________ {
Pod1 Pod2 | | Pod 1 | Pod2 |
Standard wiring = one path F10's wiring = two paths

(via agg.) (viaagg, and agg,)

Let's try using the following constraint:
Connect every agg sw to as many other agg sw as possible

80

We used this constraint to try to build F10

81

We used this constraint to try to build F10

But instead we ended up improving F10
Condor found better solutions than F10's algorithm

82

Limitations of F10’s Imperative Algorithm

|
' B Py Z==-" I
: :;;—;;—5-’—::::"—"'::-,—_—;————;—t—?——‘—»;————;— ————— i VTR ———
1 | 3 | 5 I 6
Pod 1 Pod 2 Pod 3
Pattern A Pattern B Pattern A

F10 generates and assigns two patterns of wiring: A and B
Only improves connectivity between pods with different patterns

83

Limitations of F10’s Imperative Algorithm

~

—

12 = 5 W 6
________ Pod1 __Pod2z __Pod3
Pattern A Pattern B Pattern A

t)

Different wiring pattern
improved path diversity

84

Limitations of F10’s Imperative Algorithm

= B o =

12 H A 5O .o

________ Pod1 __Pod2z __Pod3
Pattern A Pattern B Pattern A

t)

Same wiring pattern
no path diversity

85

Path diversity is limited by the number of wiring patterns
and F10's algorithm only produces two patterns

86

Path diversity is limited by the number of wiring patterns
and F10's algorithm only produces two patterns

Probability that a pair of pods has better path diversity is
limited to 50%

87

Improving F10 with Condor

H 3
________ Pod1 | __Podz __Pod3
Pattern A Pattern B Pattern C

A A A

Condor gives three wiring patterns =
maximum path diversity for 3 pod fat-tree

88

Improving F10 with Condor

= e o e e e R R M M R e M M M M R M e e e e e

F10 Algorithm

of # of
pods | patterns

probability of
path diversity

2 2

50%

o e e e e e e e R e e e R e e e e -

Condor’'s Solution

of # of probability of
pods | patterns path diversity
2 2 50%

And with our TDL constraint + Condor's synthesizer

path diversity increases as the topology grows

89

Improving F10 with Condor

= e o e e e R R M M R e M M M M R M e e e e e

F10 Algorithm
of # of probability of
pods | patterns path diversity
2 2 50%
4 2 50%

o e e e e e e e R e e e R e e e e -

Condor’'s Solution

of # of probability of
pods | patterns path diversity
2 2 50%
4 3 66%

And with our TDL constraint + Condor's synthesizer

path diversity increases as the topology grows

90

Improving F10 with Condor

= e o e e e R R M M R e M M M M R M e e e e e

F10 Algorithm
of # of probability of
pods | patterns path diversity
2 2 50%
4 2 50%
16 2 50%

o e e e e e e e R e e e R e e e e -

Condor’'s Solution

of # of probability of
pods | patterns path diversity
2 2 50%
4 3 66%
16 o) 88%

And with our TDL constraint + Condor's synthesizer

path diversity increases as the topology grows

91

With Condor, we improved F10
by systematically exploring
the design space

Could we have found these wirings by writing an algorithm?

93

Could we have found these wirings by writing an algorithm?

Very unlikely.

These patterns are instances of Balanced Incomplete Block Design (BIBD)

Why does BIBD matter?
1) Synthesis of BIBDs is known to be difficult
2) We didn't know about BIBD until after finding these solutions
3) Unlikely that architect alone could come up with these designs

94

What Topologies Does Condor's TDL Support?

TDL supports any topology that you can describe with
building blocks and connectivity constraints

95

Condor's TDL supports flattened-butterfly topologies

i

LTt
\.m

11d

Tt

AR

i

(]
-—

s
Ikl

R1

]

b0 60 00 b0 b0 02 89

\ m
\ 1)
\ L]

i1t

i1 11 4941

.

e g e A

!]
\]]

TELT 100 1D S0 BD b

I
o |
lis

T999 2 9% 9999 99 §7
S0 668 &8 &b &d bbb
% P9 P9 97 7 PP $9 99
DXL
oK][R
===
@@ 5656 6 do b bd &b

96

TDL supports recursive and random-graph topologies

Jellyfish

97

And Condor synthesizes topologies quickly..

Fat-tree with 128k hosts In < 2 minutes
DCell with 360k hosts In < 6 minutes

98

__

Kl\ automated analysis

/ ModelH Condor ﬁ/ Utility /

After we've described and built a design
Condor can help us evaluate its utility

99

Design’'s utility # how it performs in worst-case
In large networks, worst-case scenarios are unlikely

100

Design’'s utility # how it performs in worst-case
In large networks, worst-case scenarios are unlikely

Traditional worst-case metrics less useful
i oction banduwrdt

il £ "

101

Instead, to evaluate a design’s utility, we focus on

SLO Compliance

Particularly if it can carry an application’s traffic
(e.g.. > 100 Mbps throughput 99.99% of the time)

102

SLO Compliance is Evaluated over a

Topology's Lifecycle

103

SLO Compliance is Evaluated over a

Topology's Lifecycle

During failures and expansions
will this topology continue to meet its SLO?

104

Estimating SLO Compliance: Architect Inputs

Architect characterizes workload as
traffic matrixes

Workload
(Traffic Matrixes)

105

Estimating SLO Compliance: Architect Inputs

Architect characterizes reliability as
failure and recovery rates

Workload
(Traffic Matrixes)

————————————————————————————————

. MTBF + MTTR |

e 1> TDL

Reliability Info

106

Estimating SLO Compliance: Architect Inputs

Architect characterizes expansions as
rewiring / recabling plan

. Procedure for |

- adding / changing '

SOOOLOL + . MTBF + MTTR | + | cabling

- oo {> TDL
Workload Reliability Info Rewiring Plan

(Traffic Matrixes)

107

Estimating SLO Compliance: Failures

During failures

will this topology continue to meet its SLO?

--—

/

Topology /

Model

MTBEF + MTTR

Reliability Info |

Simulation of Failures *+ Recoveries

PRI

/ Topology /
States

108

Estimating SLO Compliance: Failures

Topolo S — |
/ I\/Icl)odegljy / ~ Reliability Info

Simulation of Failures + Recoveries (—I
|

| Z
Topology R '

| AlB|c|[D]E]|m '

! Alofofs[o]o]s |

S ta te S i B| 0|0 |60 |0 3| 1

' clo|o o 3|0 :

\Il | D200 |80 02| X

1 E| 0| 0|9 |10 |10 I

Throughput Simulation (— Traffic Matrixes

109

During expansions
will this topology continue to meet its SLO?

Almost identical process

110

Estimating SLO Compliance: Expansions

Topology
Model . Rewiring Plan

Simulation of Expansion Operations (—]
|

| Z
Topolo A R AL '

| AlB|c|[D]E]|m '

! Alofofs[o]o]s |

S ta te S i B| 0|0 |60 |0 3| 1

' clo|o o 3|0 :

I | D200 |80 02| X

1 E| 0| 0|9 |10 |10 I

Throughput Simulation (— Traffic Matrixes

111

Evaluating Online Expandability with Condor

Use Condor to evaluate tree expansion

[> TDL] Max size = ~50k servers
Each increment = +6k servers
\ Rewiring = 32 operations per increment

Simulate 225 stage expansion operation
(difficult without Condor)

In the Paper Example of Expansions
Expandability of two designs with a minor variation in TDL

Option A

113

Condor helped us evaluate SLO compliance
over the lifecycle of these topologies

114

Conclusion: The Condor Approach

Condor replaces a human-intensive design process
with a systematic approach to topology design

Condor’'s TDL makes it easier to design topologies
Condor's synthesizer quickly models topologies from TDL
Condor’s analysis engine provides insight into a design’s utility

115

Conclusion: The Condor Approach

Condor replaces a human-intensive design process
with a systematic approach to topology design

More Examples in Paper:
Evaluating SLO compliance of different designs
Other trade-offs in expansions (e.g.: imbalance in routing protocols)

TDL Source Code:
http.//nsl.cs.usc.edu/condor

116

http://nsl.cs.usc.edu/condor
http://nsl.cs.usc.edu/condor

