
Zero-CPU Collection with Direct Telemetry Access
Jonatan Langlet

Queen Mary University
of London

Ran Ben-Basat
University College

London

Sivaramakrishnan
Ramanathan

University of Southern California

Gabriele Oliaro
Harvard University

Michael Mitzenmacher
Harvard University

Minlan Yu
Harvard University

Gianni Antichi
Queen Mary University of London

ABSTRACT
Programmable switches are driving a massive increase in
fine-grained measurements. This puts significant pressure on
telemetry collectors that have to process reports from many
switches. Past research acknowledged this problem by either
improving collectors’ stack performance or by limiting the
amount of data sent from switches. In this paper, we take
a different and radical approach: switches are responsible
for directly inserting queryable telemetry data into the col-
lectors’ memory, bypassing their CPU, and thereby improv-
ing their collection scalability. We propose to use a method
we call direct telemetry access, where switches jointly write
telemetry reports directly into the same collector’s memory
region, without coordination. Our solution, DART, is prob-
abilistic, trading memory redundancy and query success
probability for CPU resources at collectors. We prototype
DART using commodity hardware such as P4 switches and
RDMA NICs and show that we get high query success rates
with a reasonable memory overhead. For example, we can
collect INT path tracing information on a fat tree topology
without a collector’s CPU involvement while achieving 99.9%
query success probability and using just 300 bytes per flow.

ACM Reference Format:
Jonatan Langlet, Ran Ben-Basat, Sivaramakrishnan Ramanathan,
Gabriele Oliaro, Michael Mitzenmacher, Minlan Yu, and Gianni
Antichi. 2021. Zero-CPU Collection with Direct Telemetry Access.
In The Twentieth ACMWorkshop on Hot Topics in Networks (HotNets
’21), November 10–12, 2021, Virtual Event, United Kingdom. ACM,
NYC, NY, USA, 8 pages. https://doi.org/10.1145/3484266.3487366

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-9087-3/21/11. . . $15.00
https://doi.org/10.1145/3484266.3487366

1 INTRODUCTION
Network telemetry is an integral function in modern data
centers [7, 22, 27, 31, 32, 49, 54–56]. This is fostered by the
rise of programmable switches [9, 26, 42] that allowsmonitor-
ing of network traffic in real time at high granularities. Such
granular telemetry is essential both for advanced network
operations [1, 21, 36] and troubleshooting [16, 27, 46].

Telemetry systems are built around centralized collection
of network-wide reports [3, 11, 23, 27, 41]. However, the
growing telemetry volume poses a new challenge: it is in-
creasingly hard to build collectors that can process reports
(i.e., telemetry data) from many switches [31, 50]. For exam-
ple, production datacenter networks can comprise hundreds
of thousands of switches [16], each generating up to mil-
lions of reports per second [56], requiring thousands of CPU
cores just for real-time data collection (§2). Existing research
boosts collectors’ scalability by improving their network
stacks [31, 50] or by preprocessing [35] and filtering data at
the switches [25, 34, 51, 56]. Our insight, however, is that
the main bottleneck of collectors is their inability to quickly
insert incoming reports in queryable data structures (§2).

To overcome this issue, we propose a method we call direct
telemetry access where switches write their reports directly
into a collector’s memory. Our solution, DART (Distributed
Aggregation of Rich Telemetry), allows switches to jointly in-
sert queryable telemetry data without any involvement of the
collector’s CPU or inter-switch communication. DART uses
RDMA (Remote Direct Memory Access) [24], a technology
available on many network cards [28, 48, 52] that can per-
form hundreds of millions of memory writes per second [48],
which is significantly faster than what even the most high-
performing CPU-based telemetry collectors achieve [31].
Generating RDMA instructions directly from switches is pos-
sible [33], but it also raises several challenges when used for
telemetry collection: (1) how to directly write in the collector
memory in such a way that the data is then easily queryable?
(2) how to optimize data organization inside the collector in
the presence of hundreds of thousands concurrent telemetry
reporters? (3) how to make the system robust to telemetry
report losses while keeping limited statefulness at switches?

108

https://doi.org/10.1145/3484266.3487366
https://doi.org/10.1145/3484266.3487366

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Langlet et al.

To address these challenges, we designed a solution where
switches decide the location in collectors’ memory to write
the reports. This is achieved using global hash functions
that create a stateless mapping between the information to
be reported (i.e., telemetry keys and data), and the memory
addresses at collectors. Such a mapping allows collectors to
determinewhere the information relevant to a query is stored
as the same address mapping can be used to retrieve data.
However, different switches might write to the same mem-
ory location, thus potentially deleting useful telemetry data.
To overcome this, DART switches write the same report to
multiple memory addresses. This trades the amount of mem-
ory needed and the query success rate for CPU resources at
collectors (which are limited by the slowdown of Moore’s
law [12, 19]). These combined techniques manage to deliver
both coordination-free collection, and collision robustness.

We discuss DART’s design (§3), provide a theoretical anal-
ysis (§4), and confirm the efficiency with simulations (§5)
where we use INT path tracing carried on a 5-hop fat-tree
topology as an example. Here, DART requires as little as 300
bytes per flow to achieve a 99.9% success probability. We
show that DART is efficiently implementable in commodity
P4 switches (§6), and discuss future directions (§7).

Our main contributions are:
• Wemake the case for adopting a solution that does not use
CPU at collectors to handle incoming telemetry data (§2).

• We propose a method called direct telemetry access that
allows switches to jointly insert queryable telemetry data
into collectors’ memory (§3).

• We set the basis for direct telemetry access theory demon-
strating how it is possible to have provable query success
rate given collector’s memory availability (§4).

• We demonstrate the feasibility of our approach using state-
of-the-art programmable switches (§6).

2 MOTIVATION
Collectors play an important role in network telemetry sys-
tems: they receive telemetry reports and store the infor-
mation in internal data structures to answer network-wide
queries. One key challenge is to ensure that this process is
scalable as a datacenter network can comprise hundreds of
thousands of switches [16], some potentially handling up to
millions of traffic flows [44]. For example, a non-sampled INT
telemetry system requires the collection of telemetry data
from every single packet, which would result in an excessive
amount of reports. Because of this, event detection is typi-
cally implemented at switches in an effort to send reports to
a collector only when things change [25]. This helps in reduc-
ing the rate of switch-to-collector communication down to a
fewmillion telemetry reports per second per switch [56]. Still,
telemetry collection costs are high, and the main reason we
identified is that the collectors’ CPU is the main bottleneck.

1 10 100 1k 10k 100k
Telemetry-Enabled Switches

1
10

100
1K

10K
100K

1M

Re

qu
ire

d
Co

re
s

64B (i40e)
64B (ice)

Full (all packets)
Sampled (0.5%)

(a) Pure DPDK Packet I/O cost

Kafka Confluo
0

1T
2T
3T
4T
5T
6T
7T

CP
U

Cy
cle

s

I/O
Storage

I/O
Storage

(b) Storage overhead
Figure 1: Telemetry report packet I/O is already expen-
sive, and collector functionality requires significant
additional work. I/O performance and sampling in (a)
are based on official DPDK PMD performance num-
bers [47] and generated events per second in 6.5Tbps
switches [56]. (b) shows the CPU cycles breakdown to
storage and I/O in existing collectors.

CPU-based packet I/O is too slow. Figure 1(a) shows
the number of CPU cores required by a collector when using
the DPDK PMD (Poll Mode Driver), a state-of-the-art kernel
bypass approach, to just receive telemetry report packets at 64
and 128 bytes including the headers1 Even normal-sized data
centers, comprising 10K switches, would require a collection
cluster containing thousands of CPU cores dedicated to sim-
ple packet I/O. However, further processing is then essential
to ensure telemetry data insertion into queryable storage.

CPU-based telemetry storage is slower. Figure 1(b)
shows the number of CPU cycles required for packet I/O
and insertion of telemetry reports into storage. We used two
state-of-the-art solutions to store the contents of telemetry
reports: Apache Kafka [13] with socket-based packet I/O, and
Confluo [31] with DPDK-based packet I/O. We uniformly
generate two different report types that are 64 and 128 bytes2.
Socket-based packet I/O is inefficient, requiring 504 billion
CPU cycles for processing 100 million reports, with 11.5x as
many additional cycles required by Kafka. CPU overhead
from packet I/O is significantly reduced by the DPDK PMD,
which requires only 14 billion CPU cycles for the same num-
ber of reports (i.e. 2.7% as much work as sockets). However,
as visualized in Figure 1(a), this is still very expensive at
large scales. The actual insertion of the telemetry data into
queryable storage through Confluo requires an astounding
114x as many CPU cycles as the costly packet I/O.
Direct telemetry access to the rescue. To eliminate

the processing bottleneck at collectors, we designed a solu-
tion where switches are responsible for directly inserting

1We assume that reports are not batched together into fewer packets for re-
duced I/O overhead. However, this would not remove the cost of processing
the reports and inserting them into storage, which is the most costly step.
2A 64 or 128 bytes report would consist of 36 bytes and 100 bytes of report
data (without 28 bytes of header). For instance, a 64 bytes packet could
answer one INT query, storing 32-bits per hop across 9 hops in the network.

109

Zero-CPU Collection with Direct Telemetry Access HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

Collector

Memory

Switch

Telemetry
Data

Hash Key
to Storage

Craft
RDMA

ReportingQuerying

R
D

M
A

 N
IC

1

QUERY

WRITE

2

34

RESP

Operator

3
Hash Key
to Memory

Process
4

2
1

Figure 2: An architectural overview of DART.
queryable telemetry data into logically centralized memory.
We show how this can be achieved using commodity hard-
ware such as P4 programmable switches and RDMA NICs.
Current RDMA-capable network cards are capable of process-
ing more than 200 million messages per second [48], which is
significantly faster than CPU-based telemetry collectors [31].
Our solution is not restricted to the RDMA protocol, and
we discuss in Section 7 how smartNICs can be leveraged
to build a new protocol tailored to direct telemetry access
for significant optimizations.

3 DESIGN
In DART, switches insert telemetry data directly into the col-
lectors’ memory at a specific address using RDMA calls. In
Figure 2, we show the architectural overview of DART, con-
stituting two main components: telemetry reporting (§3.1),
shown on the right side of the figure, and querying (§3.2),
shown on the left side. The former is the process of pushing
the network state and measurements from switches directly
into collectors’ memory, organized as a key-value store. The
latter refers to the operator’s ability to run key-based queries
against the stored telemetry data. Both of these functions
are delivered without requiring any coordination or commu-
nication between individual switches or end-hosts, further
reducing the overall telemetry overhead and complexity.
DART assumes the telemetry data is readily available at

switches, and thus it does not place any specific restriction on
the underlyingmeasurement framework, as shown in Table 1.
Because of this, the key-value store semantics may depend
on the specific telemetry techniques used at switches. For
example, for INT [15], each switch writes its telemetry data
into packets and only the last hop pushes the information
to the collector. Here, the key will be the <Flow 5-tuple>. In
contrast, when DART is used with INT working in postcard
mode, where each switch reports data, the key will be the
concatenation of <Flow 5-tuple> and the <switchID>.

3.1 Reporting
Onemight be tempted to design collision-free key-to-address
mappings using on-switch memory, combined with dedi-
cated per-switch regions in the centralized telemetry storage.
We believe this approach is unfeasible due to the switches’

Backend Key(s) Data

In-band [7, 15, 30, 32] Flow 5-tuple Packet-carried data

Postcards [15, 18] SwitchID,
Flow 5-tuple

Local
measurement

Query-based
mirroring [57] QueryID Query answer

Trace analysis [43, 53] various Analysis output

Flow anomalies [56] Flow 5-tuple,
Anomaly ID Time, event-specific

Network failures [16] Failure ID, location Time, debug info

Table 1: Examples of measuring techniques mapped
into the DART key-value collection structure.

limited memory, unable to store the high number of new
telemetry keys constantly appearing across the entire net-
work, as old keys become irrelevant. Indeed, there is no sup-
port for dynamic memory allocations, which has led the com-
munity to adopt probabilistic data structures to approximate
per-key statefulness in switches [5, 6, 38]. Second, keeping
dedicated per-switch regions in the collector’s memory leads
to inefficiencies due to uneven switch telemetry data gener-
ation rates. Further, operators need to know which switch
wrote the telemetry data for it to be efficiently queryable.

DART uses global hash functions to create a stateless map-
ping between telemetry keys and memory addresses at one
ormore logically centralized collectors where the data should
be written. The same mapping can be calculated by the op-
erator for retrieving the results of a query. However, using
stateless mapping raises an important issue – different keys
can hash into the same memory address, resulting in over-
written telemetry data due to these collisions. To address this
challenge, DART uses N independent hash functions to map
each key into N different storage locations, where duplicate
entries of the corresponding telemetry data are stored.
Telemetry reports are sent from switches as one-sided

RDMA-WRITE packets towards one of the collectors, with
the chosen memory address in the RDMA header. Through
hashing, switches determine the collector and memory lo-
cation for N copies of the telemetry report. Switches craft
RDMA-based reports based on loaded lookup-table entries
that map the selected collector to essential RDMA infor-
mation. An RDMA-capable network card at the collector
parses the RDMA report and writes the payload directly
to memory, making it available for operator queries.
RDMA does not support writing a payload into several

memory addresses at once, instead requiring several packets
containing one memory instruction each. Currently, DART-
enabled switches rely multiple redundant telemetry reports
generated to fill all the N slots allocated to a key. However,
further research into SmartNIC-enabled RDMA extensions
could remove this requirement (§7).
At the collector, to reduce the memory occupied, instead

of storing the key, DART makes use of a small checksum

110

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Langlet et al.

of the key to simplify detection of overwritten data. While
querying, values from the N locations that do not match the
attached checksum can be discarded. The impact of check-
sum collisions is discussed in sections 4 and 5.3.

Distributing the N copies of per-key telemetry data across
N physical collectors could improve the system resiliency,
at the cost of potentially reduced querying speed. In DART’s
current design we ensure that data duplicates for any one
key are held at a single collector, thereby enabling operator
queries to be executed locally on the collector CPU without
requiring inter-collector communications for data transfer.

3.2 Querying
Queries are performed in four main steps, as seen in the left
side of Figure 2. First, an operator requests the results for a
telemetry query, which it forwards to the relevant collector.
DART hashes the query key to retrieve the collector ID, and
then uses a lookup table to convert the collector ID into the
collector which holds the telemetry data. DART then hashes
the key intoN memory addresses at the collectorwhich holds
the relevant telemetry data and extracts this data. Finally,
DART uses the key-checksum to discard the invalid telemetry
data and returns the result of the query to the operator.

4 THEORETICAL ANALYSIS
Because we treat the RDMA memory as a large key-value
hash table where only checksums of keys are stored and val-
ues may be overwritten over time, we must consider the pos-
sibility that when we make a query, we are unable to return
an answer, or we may return an incorrect answer. We call
the case where we have no answer to return an empty return,
and the case where we return an incorrect answer a return
error. The probability of an empty return or a return error de-
pends on the parameters of the system, and on themethodwe
choose to determine the return value. Belowwe present some
of the possible tradeoffs and some mathematical analysis;
we leave further results and discussions for the full paper.

Let us first consider a simple example.When awrite occurs
for a key-value pair, in the hash table N copies of the b-bit
key checksum and the value are stored at random locations.
We assume the checksum is uniformly distributed for any
given key throughout our analysis. When a read occurs, let
us suppose we return a value if there is only a single value
amongst the N memory locations matching that checksum.
(The value could occur multiple times, of course.)

An empty return can occur, for example, if whenwe search
the N locations for a key, none of them have the right check-
sum. That is, all N copies of the key have been overwritten,
and none of the N locations currently hold another key with
the same checksum. To analyze this case, let us consider the
following scenario. Suppose that we haveM memory cells

total, and that there are K = αM updates of distinct keys
between when our query key q was last written, and when
we are making a query for its values. We can use the Poisson
approximation for the binomial (as is standard in these types
of analyses and accurate for even reasonably largeM , N , K ;
see, for example, [10, 40]). Using such approximations, the
probability that any one of the N locations is overwritten is
given by (1−e−KN /M), and that all of them are overwritten is
(1−e−KN /M)N . The probability that all of them are overwrit-
ten and the key checksum is not found is approximated by

(1 − e−KN /M)N · (1 − 2−b)N = (1 − e−αN)N · (1 − 2−b)N .

Wewould also get an empty return if theN cells contained
two or more distinct values with the same correct checksum.
This probability is lower bounded by

N−1∑
j=1

(
N

j

)
(1 − e−αN)je−αN (N−j)(1 − (1 − 2−b)j) ,

and upper bounded by(N−1∑
j=1

(
N

j

)
(1 − e−αN)je−αN (N−j)(1 − (1 − 2−b)j)

)
+ (1−e−αN)N (1−(1−2−b)N −N · 2−b (1−2−b)N−1).

The first summation is the probability at least one of the
original N locations is not overwritten, but at least one over-
written location gets the same checksum. (We pessimisti-
cally assume it obtains a different value.) The second expres-
sion adds a term for when all original values are overwrit-
ten and two or more obtain the same checksum. Note that
we need to give bounds as values in overwritten locations
may or may not be the same.
We could have a return error if all N copies of the origi-

nal key are overwritten and one or more of those cells are
overwritten with the same checksum and same (incorrect)
value. This probability is lower bounded by

(1 − e−αN)NN 2−b (1 − 2−b)N−1,

which is the probability that all of the original locations
are overwritten and a single overwriting key obtains the
checksum, and upper bounded by

(1 − e−αN)N (1 − (1 − 2−b)N),

the probability that the original locations are overwritten
and at least one overwriting key obtains the checksum.
There are many ways to modify the configuration or re-

turn method to lower the empty returns and/or return errors,
at the cost of more computation and/or more memory. The
most natural is to simply use a larger checksum; we suggest
32 bits should be appropriate for many situations. However,
we note that at “Internet scale” rare events will occur, even

111

Zero-CPU Collection with Direct Telemetry Access HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

matching of 32-bit checksums, and so this should be con-
sidered when utilizing DART information. One can also use
a “plurality vote” if more than one value appears for the
queried checksum; additionally one can require that a check-
sum/value pair occur at least twice among the N values
before being returned. (Note that, for example, requiring
consensus of two values can be decided on a per query basis
without changing anything else; one can decide for specific
queries whether to trade off empty returns and return errors
this way.) Additional ideas from coding theory [14, 37], in-
cluding using different checksums for each location or XOR-
ing each value with a pseudorandom value, could also be ap-
plied. As a default, we suggest a 32-bit checksum and a “plu-
rality vote.”We describe related results in our evaluation (§5).

5 PRELIMINARY EVALUATION
RDMA is well known to deliver high throughput memory
operations, and this section focus on evaluating the DART
algorithm and data structure.We show through in-depth sim-
ulations that DART is effective with little redundancy of
N = 2 (§5.1) and has a high query success rate of 99.9% at
the collector (§5.2) with high accuracy (§5.3).

5.1 Effectiveness of DART Redundancy

0.1 0.2 0.4 0.6 0.8 1.0
Load Factor (keys / memory slots)

20%
40%
60%
80%

100%

Qu
er

y
su

cc
es

s r
at

e

N=1
N=2

N=4
N=8

Figure 3: Average query success rates in DART, de-
pending on the collector load and the number of ad-
dresses per key (N). The background color indicates
optimal N in each interval.

The probabilistic nature of DART cannot guarantee querya-
bility on a given reported key. We show in Figure 3 how the
query success rate depends on the load factor (i.e., the total
number of telemetry keys over available memory addresses),
and the number of memory addresses that each key can write
to. There is a clear efficiency improvement by having keys
write to N > 1 memory addresses when the storage load fac-
tor is in reasonable intervals. We also note how simulations
adhere to the aforementioned theory in Section 4 regarding
the impact of multiple addresses per key, and the background
color in Figure 3 indicate which number of addresses per key
(N) delivered the highest key queryability in each interval.

The RDMA standard requires multiple packets with a sin-
gle write instruction each, with SmartNICs showing promise
to circumvent this limitation (§7) by batching them together.
Thus, a practical RDMA-based DART implementation might

benefit from a reduction in N , balancing network overheads
against the marginal queryability improvements gained from
the increased data redundancy. N = 2 appears to be a gener-
ally good compromise, showing great queryability improve-
ments over N = 1. We conclude that dynamically adjusting
N as the load fluctuates could improve queryability and effi-
ciency, and leave finding a good mechanism as future work.

5.2 Data Queryability

New 20M 40M 60M 80M 100M
Age (# newer flows reported)

0%
20%
40%
60%
80%

100%

Qu
er

y
su

cc
es

s r
at

e

Storage: 1.0GB
Storage: 3.0GB
Storage: 5.0GB
Storage: 10.0GB
Storage: 30.0GB

Figure 4: Telemetry data aging in DART, showing INT
5-hop path tracing queryability of 100million flows at
various storage sizes, using 160-bit values with 32-bit
checksums, with redundancy N = 2.

The hash-based address selection in DART results in ad-
dress collisions between keys, as they compete over limited
allocated memory at various sizes of the DART data storage,
resulting in old data being aged out of memory.

Figure 4 shows the queryability of reported INT path trac-
ing data at various storage sizes and report ages. As expected,
allocating enough collector memory is essential for ensuring
a high data queryability, with smaller storage sizes resulting
in a faster aging-out of data. For example, when 100 mil-
lion flows share just 3GB (i.e., 30B storage per flow path),
we see how the average queryability is 71.4% across all 100
million flows; with a steep decline to 39.0% for the oldest
reports, which almost exactly matches the theoretically pre-
dicted 38.7% from Section 4. However raising the storage
capacity to 30GB significantly increases the average data
queryability to 99.3% across all 100 million flows; equiva-
lent experiments with redundancy N = 4 further improves
the data queryability to 99.9%. We also note how the num-
ber of tracked flow paths at a given probability increases
linearly alongside the amount of allocated storage memory.

5.2.1 Practical Considerations. The ability to run queries
on historical data, for example to troubleshoot a previous
outage, is important. Writing directly to memory is essential
for allowing line-rate report ingestion, but fails to scale to
the sizes that would be needed for storing historical network-
wide measurements. A solution can be to utilize DRAM for
temporary epoch-based storage of telemetry data, combined
with periodical transfer of data into a larger (and much
slower) persistent storage where historical queries can be
answered. We leave the design details as future work.

112

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Langlet et al.

5.3 Query Answer Correctness

0.1 0.2 0.4 0.6 0.8 1.0
Load Factor (keys / memory slots)

0.0001%
0.01%

1%
100%

Er
ro

r r
at

e No checksum
8 bits
16 bits
32 bits

Figure 5: The probability of returning the wrong
answer, due to address and checksum collisions.
There is a theoretical risk of DART returning incorrect

query results, as discussed in section 4. Figure 5 shows re-
sults after extensive tests, where multiple simulations of
100M keys have been performed at various storage sizes
in an attempt to recreate the theoretically predicted incor-
rectness. These results clearly show the impact from having
key-based checksums included in the DART data structure,
with increased lengths greatly reducing the risk of errors.
Our simulations with 32-bit key-checksums fail to reproduce
return-error cases, due to their very low probability.

6 PROTOTYPE IMPLEMENTATION
We implemented the switch component of DART in around
1K lines of P4_16 [8], compiled through P4 Studio [29] for the
Tofino ASIC [26], together with 150 lines of Python to handle
the switch control plane. The implementation is oblivious
to the specific monitoring technology. When telemetry data
has to be reported, an I2E mirror is triggered, injecting a
truncated packet clone into the egress pipeline. The packet
carries the raw telemetry data together with the correspond-
ing key, and is used as the base for crafting a DART report.
The Tofino-native random number generator calculates

n ∈ [0,N − 1] to determine which of the N per-key storage
locations to use during report generation. Then, the CRC
extern maps (n, key) into the corresponding collector ID and
memory address. The global collector lookup table is a match-
action table, and maps the collector ID to specific server in-
formation required for crafting RoCEv2 [4] headers. The Ro-
CEv2 invariant-CRC (iCRC) checksum is generated by the na-
tive CRC extern. A register array is used to store per-collector
RoCEv2 Packet Sequence Number (PSN) counters. Our proto-
type requires about 20 bytes of on-switch SRAMper-collector
for storing metadata, allowing support for tens of thousands
of collectors without impacting the pipeline complexity.

7 DISCUSSION
Using standard RDMA calls. We explored the benefits of
using just RDMA write calls. However, the RDMA protocol
supports additional operations: Fetch & Add, and Compare
& Swap. The former increments a value at a specified ad-
dress by a given amount. The latter compares a value at
a specified address with a given value: if they are equal,
another specified value will be stored at the address. Both
operations can enable more complex telemetry data struc-
tures, possibly improving on query richness and memory

efficiency. For example, Fetch & Add can be used to im-
plement flow-counters directly in collectors’ memory (sav-
ing resources at switches) or to perform network-wide ag-
gregation of sketches. Compare & Swap can be used to
create more complex storage methods. For example, for
N = 2 hashes and an initially empty table, we can use an
RDMA write with one hash and Compare & Swap with an-
other (writing to a second slot only if it is empty), which
simulations show can potentially improve queryability.

Building new direct telemetry access protocols. An
RDMA call is ultimately a DMA operation from the server’s
NIC to its main memory. Programmable NICs can enable new
RDMA primitives [2, 45], even requiring multiple DMA calls
per-packet [2]. Similarly, this can open new opportunities
to rethink how direct telemetry access is implemented. For
example, it would be possible to design a new primitive for
inserting the same data into multiple memory addresses.
This would significantly reduce the network overheads of
our current system which is restricted by RDMA and thus
allows only a single memory write per packet. Moreover,
it could be possible to design a new key-value store that
is more resilient to collisions, with the NIC preemptively
managing overwrites in some manner.

8 RELATEDWORKS
Telemetry. Traditional techniques have looked into periodi-
cally collecting telemetry data [16, 18, 20]. Even though these
techniques generate coarse-grained data, they can be signifi-
cant given the large scale of today’s networks. The rise in
programmable switches has enabled fine-grained telemetry
techniques that generate a lot more data [7, 15, 17, 46, 56, 57].
Irrespective of the techniques, collection is identified to be
the main bottleneck in network-wide telemetry, and pre-
vious works focus on either optimizing the collector stack
performance [31, 50], or reducing the load through offloaded
pre-processing [35] and in-network filtering [25, 34, 51, 56].
To our knowledge, all current collection solutions are CPU-
based and thus have the same fundamental performance bot-
tleneck. An alternative approach is letting end-hosts assist
in network-wide telemetry [22, 46], which unfortunately re-
quires significant investments and infrastructure changes.
Switch-generated RDMA calls Recent work has shown
that programmable switches can perform RDMA calls [33],
and that programmable network cards are capable of expand-
ing upon RDMA with new and customized primitives [2].
Especially FPGA network cards show great promise for high-
speed custom RDMA [39, 45].
Acknowledgments. We thank the anonymous reviewers.
This work is sponsored in part by the UK EPSRC project
EP/T007206/1 and NSF grants CNS-2107078, CCF-2101140,
CCF-1563710, and DMS-2023528.

113

Zero-CPU Collection with Direct Telemetry Access HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

REFERENCES
[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis
Matus, Rong Pan, Navindra Yadav, et al. 2014. CONGA: Distributed
congestion-aware load balancing for datacenters. In Proceedings of the
2014 ACM conference on SIGCOMM. 503–514.

[2] Emmanuel Amaro, Zhihong Luo, Amy Ousterhout, Arvind Krishna-
murthy, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. 2020.
Remote Memory Calls. In Proceedings of the 19th ACM Workshop on
Hot Topics in Networks. 38–44.

[3] Arista. [n. d.]. Telemetry and Analytics. https://www.arista.com/en/
solutions/telemetry-analytics. ([n. d.]). Accessed: 2021-06-24.

[4] Infiniband Trade Association. [n. d.]. RoCEv2. https://cw.infinibandta.
org/document/dl/7781. ([n. d.]). Accessed: 2021-05-12.

[5] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Shir Landau Feibish, Danny
Raz, and Minlan Yu. 2020. Routing Oblivious Measurement Analytics.
In 2020 IFIP Networking Conference (Networking). IEEE, 449–457.

[6] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich.
2020. Designing heavy-hitter detection algorithms for programmable
switches. IEEE/ACM Transactions on Networking 28, 3 (2020), 1172–
1185.

[7] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni
Antichi, Minian Yu, and Michael Mitzenmacher. 2020. PINT: proba-
bilistic in-band network telemetry. In Proceedings of the Annual con-
ference of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for computer
communication. 662–680.

[8] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87–95.

[9] BROADCOM. [n. d.]. Trident Programmable Switch.
https://www.broadcom.com/products/ethernet-connectivity/
switching/strataxgs/bcm56870-series. ([n. d.]).

[10] Andrei Broder and Michael Mitzenmacher. 2004. Network applications
of bloom filters: A survey. Internet mathematics 1, 4 (2004), 485–509.

[11] Cisco. [n. d.]. Explore Model-Driven Telemetry. https://blogs.cisco.
com/developer/model-driven-telemetry-sandbox. ([n. d.]). Accessed:
2021-06-24.

[12] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. 2011. Dark silicon and the end of multicore
scaling. In International Symposium on Computer Architecture (ISCA).
ACM.

[13] Nishant Garg. 2013. Apache kafka. Packt Publishing Ltd.
[14] Michael T Goodrich andMichael Mitzenmacher. 2011. Invertible bloom

lookup tables. In 2011 49th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton). IEEE, 792–799.

[15] The P4.org Applications Working Group. [n. d.]. Telemetry Report
Format Specification. https://github.com/p4lang/p4-applications/blob/
master/docs/telemetry_report_latest.pdf. ([n. d.]). Accessed: 2021-06-
23.

[16] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al.
2015. Pingmesh: A large-scale system for data center network latency
measurement and analysis. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication. 139–152.

[17] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. 2018. Sonata: Query-driven streaming
network telemetry. In Proceedings of the 2018 conference of the ACM
special interest group on data communication. 357–371.

[18] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maz-
ières, and Nick McKeown. 2014. I Know What Your Packet Did Last
Hop: Using Packet Histories to Troubleshoot Networks. In Networked
Systems Design and Implementation (NSDI). USENIX Association.

[19] Nikos Hardavellas. 2012. The rise and fall of dark silicon. In ;login:,
Volume: 37. USENIX.

[20] Chris Hare. 2011. Simple Network Management Protocol (SNMP).
(2011).

[21] Brandon Heller, Srinivasan Seetharaman, Priya Mahadevan, Yiannis
Yiakoumis, Puneet Sharma, Sujata Banerjee, and Nick McKeown. 2010.
Elastictree: Saving energy in data center networks.. In Nsdi, Vol. 10.
249–264.

[22] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng Zhu, and
Yungang Bao. 2020. Omnimon: Re-architecting network telemetry
with resource efficiency and full accuracy. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for computer
communication. 404–421.

[23] Huawei. [n. d.]. Overview of Telemetry. https://support.
huawei.com/enterprise/en/doc/EDOC1000173015/165fa2c8/
overview-of-telemetry. ([n. d.]). Accessed: 2021-06-24.

[24] Infiniband Trade Association. 2015. InfiniBandTM Architecture Speci-
fication. (2015). Volume 1 Release 1.3.

[25] Intel. [n. d.]. In-band Network Telemetry Detects Network Per-
formance Issues. https://builders.intel.com/docs/networkbuilders/
in-band-network-telemetry-detects-network-performance-issues.
pdf. ([n. d.]). Accessed: 2021-06-04.

[26] Intel. [n. d.]. Intel Tofino Series Programmable Ethernet Switch ASIC.
https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series/tofino.html. ([n. d.]).
Accessed: 2021-05-12.

[27] Intel. [n. d.]. Intel® Deep Insight Network Analytics Software.
https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/network-analytics/deep-insight.
html. ([n. d.]). Accessed: 2021-06-10.

[28] Intel. [n. d.]. Intel® Ethernet Network Adapter
E810-CQDA1/CQDA2. https://www.intel.com/
content/www/us/en/products/docs/network-io/ethernet/
network-adapters/ethernet-800-series-network-adapters/
e810-cqda1-cqda2-100gbe-brief.html. ([n. d.]). Accessed: 2021-06-11.

[29] Intel. [n. d.]. Intel® P4 Studio. https://www.intel.com/content/
www/us/en/products/network-io/programmable-ethernet-switch/
p4-suite/p4-studio.html. ([n. d.]). Accessed: 2021-06-08.

[30] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng,
Changhoon Kim, and David Mazières. 2014. Millions of little minions:
Using packets for low latency network programming and visibility.
ACM SIGCOMM Computer Communication Review 44, 4 (2014), 3–14.

[31] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. 2019. Confluo:
Distributed monitoring and diagnosis stack for high-speed networks.
In 16th {USENIX} Symposium on Networked Systems Design and Im-
plementation ({NSDI} 19). 421–436.

[32] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait
Dixit, and Lawrence J Wobker. 2015. In-band network telemetry via
programmable dataplanes. In ACM SIGCOMM.

[33] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun
Lee, Vyas Sekar, and Srinivasan Seshan. 2020. Tea: Enabling state-
intensive network functions on programmable switches. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication. 90–106.

[34] Jan Kučera, Diana Andreea Popescu, Han Wang, Andrew Moore, Jan
Kořenek, and Gianni Antichi. 2020. Enabling event-triggered data

114

https://www.arista.com/en/solutions/telemetry-analytics
https://www.arista.com/en/solutions/telemetry-analytics
https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/7781
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://blogs.cisco.com/developer/model-driven-telemetry-sandbox
https://blogs.cisco.com/developer/model-driven-telemetry-sandbox
https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report_latest.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report_latest.pdf
https://support.huawei.com/enterprise/en/doc/EDOC1000173015/165fa2c8/overview-of-telemetry
https://support.huawei.com/enterprise/en/doc/EDOC1000173015/165fa2c8/overview-of-telemetry
https://support.huawei.com/enterprise/en/doc/EDOC1000173015/165fa2c8/overview-of-telemetry
https://builders.intel.com/docs/networkbuilders/in-band-network-telemetry-detects-network-performance-issues.pdf
https://builders.intel.com/docs/networkbuilders/in-band-network-telemetry-detects-network-performance-issues.pdf
https://builders.intel.com/docs/networkbuilders/in-band-network-telemetry-detects-network-performance-issues.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/network-analytics/deep-insight.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/network-analytics/deep-insight.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/network-analytics/deep-insight.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-cqda2-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-cqda2-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-cqda2-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/docs/network-io/ethernet/network-adapters/ethernet-800-series-network-adapters/e810-cqda1-cqda2-100gbe-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Langlet et al.

plane monitoring. In Proceedings of the Symposium on SDN Research.
14–26.

[35] Yiran Li, Kevin Gao, Xin Jin, and Wei Xu. 2020. Concerto: cooperative
network-wide telemetry with controllable error rate. In Proceedings of
the 11th ACM SIGOPS Asia-Pacific Workshop on Systems. 114–121.

[36] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng,
Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Al-
izadeh, et al. 2019. HPCC: high precision congestion control. In
Proceedings of the ACM Special Interest Group on Data Communication.
44–58.

[37] Richard J Lipton. 1994. A new approach to information theory. In
Annual Symposium on Theoretical Aspects of Computer Science. Springer,
699–708.

[38] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One sketch to rule them all: Rethinking
network flow monitoring with univmon. In Proceedings of the 2016
ACM SIGCOMM Conference. 101–114.

[39] Wassim Mansour, Nicolas Janvier, and Pablo Fajardo. 2019. FPGA
implementation of RDMA-based data acquisition system over 100-Gb
ethernet. IEEE Transactions on Nuclear Science 66, 7 (2019), 1138–1143.

[40] Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing:
Randomization and probabilistic techniques in algorithms and data
analysis. Cambridge university press.

[41] Juniper Networks. [n. d.]. Overview of the Junos Teleme-
try Interface. https://www.juniper.net/documentation/
us/en/software/junos/interfaces-telemetry/topics/concept/
junos-telemetry-interface-oveview.html. ([n. d.]). Accessed:
2021-06-24.

[42] NVIDIA. [n. d.]. NVIDIA Mellanox Spectrum Switch. https://www.
mellanox.com/files/doc-2020/pb-spectrum-switch.pdf. ([n. d.]).

[43] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner,Wes Felter, Kanak
Agarwal, John Carter, and Rodrigo Fonseca. 2014. Planck: Millisecond-
scale monitoring and control for commodity networks. ACM SIG-
COMM Computer Communication Review 44, 4 (2014), 407–418.

[44] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C
Snoeren. 2015. Inside the social network’s (datacenter) network. In
Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication. 123–137.

[45] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo
Alonso. 2020. StRoM: smart remote memory. In Proceedings of the
Fifteenth European Conference on Computer Systems. 1–16.

[46] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2018. Dis-
tributed network monitoring and debugging with switchpointer. In
15th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 18). 453–456.

[47] Intel DPDK Validation team. [n. d.]. DPDK Intel NIC Performance
Report Release 20.11. https://fast.dpdk.org/doc/perf/DPDK_20_11_
Intel_NIC_performance_report.pdf. ([n. d.]). Accessed: 2021-05-07.

[48] Mellanox Technologies. [n. d.]. ConnectX®-6 VPI Card. https:
//www.mellanox.com/files/doc-2020/pb-connectx-6-vpi-card.pdf. ([n.
d.]). Accessed: 2021-05-12.

[49] Nguyen Van Tu, Jonghwan Hyun, and James Won-Ki Hong. 2017. To-
wards onos-based sdn monitoring using in-band network telemetry. In
2017 19th Asia-Pacific Network Operations and Management Symposium
(APNOMS). IEEE, 76–81.

[50] Nguyen Van Tu, Jonghwan Hyun, Ga Yeon Kim, Jae-Hyoung Yoo, and
James Won-Ki Hong. 2018. Intcollector: A high-performance collector
for in-band network telemetry. In 2018 14th International Conference
on Network and Service Management (CNSM). IEEE, 10–18.

[51] Jonathan Vestin, Andreas Kassler, Deval Bhamare, Karl-Johan Grin-
nemo, Jan-Olof Andersson, andGergely Pongracz. 2019. Programmable

event detection for in-band network telemetry. In 2019 IEEE 8th inter-
national conference on cloud networking (CloudNet). IEEE, 1–6.

[52] Xilinx. [n. d.]. Xilinx Embedded RDMA Enabled NIC.
https://www.xilinx.com/support/documentation/ip_documentation/
ernic/v3_0/pg332-ernic.pdf. ([n. d.]). Accessed: 2021-06-11.

[53] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang,
Karl Deng, and Lihua Yuan. 2019. dShark: A general, easy to program
and scalable framework for analyzing in-network packet traces. In
16th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 19). 207–220.

[54] Minlan Yu. 2019. Network telemetry: towards a top-down approach.
ACM SIGCOMM Computer Communication Review 49, 1 (2019), 11–17.

[55] Yu Zhou, Jun Bi, Tong Yang, Kai Gao, Jiamin Cao, Dai Zhang, Yangyang
Wang, and Cheng Zhang. 2020. Hypersight: Towards scalable, high-
coverage, and dynamic network monitoring queries. IEEE Journal on
Selected Areas in Communications 38, 6 (2020), 1147–1160.

[56] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li,
Zhilong Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, et al. 2020.
Flow event telemetry on programmable data plane. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication. 76–89.

[57] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu,
Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao,
et al. 2015. Packet-level telemetry in large datacenter networks. In
Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication. 479–491.

115

https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/concept/junos-telemetry-interface-oveview.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/concept/junos-telemetry-interface-oveview.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/concept/junos-telemetry-interface-oveview.html
https://www.mellanox.com/files/doc-2020/pb-spectrum-switch.pdf
https://www.mellanox.com/files/doc-2020/pb-spectrum-switch.pdf
https://fast.dpdk.org/doc/perf/DPDK_20_11_Intel_NIC_performance_report.pdf
https://fast.dpdk.org/doc/perf/DPDK_20_11_Intel_NIC_performance_report.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-6-vpi-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-6-vpi-card.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ernic/v3_0/pg332-ernic.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ernic/v3_0/pg332-ernic.pdf

	Abstract
	1 Introduction
	2 Motivation
	3 Design
	3.1 Reporting
	3.2 Querying

	4 Theoretical Analysis
	5 Preliminary Evaluation
	5.1 Effectiveness of DART Redundancy
	5.2 Data Queryability
	5.3 Query Answer Correctness

	6 Prototype Implementation
	7 Discussion
	8 Related Works
	References

