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Abstract—Oblivious routing distributes traffic from sources to
destinations following predefined routes with rules independent
of traffic demands. While finding optimal oblivious routing is
intractable for general topologies, we show that it is tractable
for structured topologies often used in datacenter networks. To
achieve this, we apply graph automorphism and prove the exis-
tence of the optimal automorphism-invariant solution. This result
reduces the search space to targeting the optimal automorphism-
invariant solution. We design an iterative algorithm to obtain
such a solution by alternating between two linear programs. The
first program finds an automorphism-invariant solution based
on representative variables and constraints, making the problem
tractable. The second program generates adversarial demands to
ensure the final result satisfies all possible demands. Since, the
construction of the representative variables and constraints are
combinatorial problems, we design polynomial-time algorithms
for the construction. We evaluate proposed iterative algorithm
in terms of throughput performance, scalability, and generality
over three potential applications. The algorithm i) improves the
throughput up to 87.5% over a heuristic algorithm for partially
deployed FatTree, ii) scales for FatClique with a thousand
switches, iii) is applicable to a general structured topology with
non-uniform link capacity and server distribution.

I. INTRODUCTION

Topology design for datacenter networks has gained atten-
tion due to the need to construct high capacity datacenters at
low cost and low management complexity [1]–[12]. Although
several topologies have been proposed, only the folded-Clos
family of topologies [1]–[4] achieves designed capacity with
existing routing solutions including Equal-Cost Multi Path
(ECMP) [13] and Valiant Load-Balancing (VLB) [14], [15].
For topology designs that deviate from folded-Clos [6]–[11]
the design of scalable routing algorithms that can achieve their
designed capacity is an open question.

Routing inside datacenter networks can be categorized into
traffic-aware routing and oblivious routing. Traffic-aware rout-
ing reduces network congestion and improve overall through-
put by regularly adjusting routes and fractions of traffic
demands over the routes according to queue occupancy or
traffic demands [6], [7], [16]. These advantages come at a
cost of specialized hardware and routing complexity. Alter-
natively, oblivious routing is much simpler. Traffic demands
are distributed according to predefined routes and shares of
the demands over each route. In particular, the routing is
oblivious to the current traffic demand, so regular configuration
of routes is unnecessary [15]. Because of this simplicity,
oblivious routing, including ECMP and VLB, is deployed in
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Fig. 1. Examples of highly structured topologies

several large-scale datacenter networks [1]–[4]. A real-world
measurement at Facebook also suggests oblivious techniques
work well leaving little room for improvement using advanced
traffic-aware routing [17].

Although existing oblivious routing is widely deployed, it
achieves designed capacity only for the folded-Clos and clique
topologies. Specifically, ECMP can achieve the designed
capacity of folded-Clos topologies including FatTree [1],
Google’s Jupiter [3] and Facebook’s Fabric [4]. VLB achieves
designed capacity for a clique topology and works reasonably
well in Microsoft’s VL2 [2]. However, recent datacenter topol-
ogy designs have moved away from the folded-Clos family
[8]–[12] and, for these, existing oblivious routing approaches
cannot be used.

Of these new designs, highly structured topologies, such as
FatClique [11] and DRing [12] (Fig. 1), are more manageable
(i.e., they are easier to install and expand) than random
topologies [8], [9]. For these structured topologies, this paper
develops a general oblivious routing algorithm that relies
on hardware support for multi-path routing (WCMP) already
available in commodity switches.

For any network, oblivious routing can be formulated as a
robust multi-commodity flow problem in which the number
of constraints grows factorially with the number of switches
in the network. Even for a small network, the problem size,
in terms of numbers of variables and constraints, can easily
overwhelm an optimization solver’s memory and renders the
problem intractable.

For structured topologies, however, we show that we can use
the topological structure and graph automorphism to reduce
the problem size to the point that is tractable for any off-the-
shelf solver running on commodity hardware.

To do this, we first prove the existence of an optimal solu-
tion that is invariant to automorphism–the solution is a permu-
tation of itself. Based on this result, we reduce the search space
of an optimal solution to the solution that is automorphism-
invariant. Using graph automorphism, we formulate a robust
multi-commodity flow problem with significantly fewer vari-
ables and constraints to target this optimal solution. While the



formulation has robust constraints, we observe that the optimal
solution is in a much lower dimensional space compared to the
original robust formulation, due to the automorphism-invariant
property of the optimal solution. Therefore, we only need
to consider a smaller subset of traffic demands instead of
considering all possible demands.

This leads to the design of an iterative algorithm that
alternates between two linear programs. The first linear pro-
gram finds an automorphism-invariant routing solution. The
second linear program generates adversarial traffic demands to
make sure the end result of the iterative algorithm is optimal
and satisfies all possible traffic demands. The two linear
programs are based on representative variables and constraints,
which significantly reduce the problem sizes. However, the
construction of representative variables and constraints is
a combinatorial problem associated with the exponentially
large number of automorphisms. We design polynomial-time
algorithms to construct these representatives by utilizing the
generators of the automorphisms.

We evaluate our iterative algorithm in terms of throughput,
scalability, and generality over three potential applications. i)
The algorithm improves the throughput by up to 87.5% over a
heuristic algorithm for partially deployed FatTree topologies.
ii) The algorithm is scalable and provides the optimal oblivious
routing solution for a FatClique topology with a thousand
switches. iii) We demonstrate the generality of the algorithm
by considering a structured topology with non-uniform link
capacity and server distribution.

The contributions of this work are threefold.
• We prove the existence of an automorphism-invariant op-

timal solution in every structured topology. This reduces
the search space of optimal solutions.

• We design the iterative algorithm that targets the
automorphism-invariant optimal solution using graph au-
tomorphism. The algorithm is tractable in comparison to
solving the intractable oblivious routing formulation.

• We develop the polynomial-time construction of the al-
gorithm and illustrate three applications of the algorithm.

The paper is organized as follows. Section II models a data-
center network and formulates the oblivious routing problem.
Section III proves the existence of the optimal solution that
is automorphism invariant. Section IV uses this insight to
develop the iterative algorithm targeting the automorphism-
invariant optimal solution. Section V provides an efficient
construction of representative variables and constraints and
Section VI describes our evaluation.

II. SYSTEM MODEL

This section formally models a datacenter network, traffic
demands, and the oblivious routing formulation. These models
are general and should fit most practical datacenter networks.

A. Datacenter network model

A datacenter network is an interconnection of servers and
ethernet switches. Each server has a single full-duplex port for

Fig. 2. Aggregated link capacity in the physical network is normalized to the
number of physical links in the logical network. Switches are labeled by 0 to
5. Switches 0 to 3 are connected to 2, 2, 3, 3 servers respectively.

bi-directional communication and is connected to a switch1.
Each network switch has a finite number of full-duplex ports
for interconnection with servers and other switches. For ex-
ample, Broadcom’s Tomahawk 4 Ethernet switch chip can be
configured as 256 ports at 100Gbps [20]. Two devices are
physically connected by connecting ports from both ends.
In practice, there could be multiple physical links between
two devices to increase communication capacity. Our model
considers a logical link between any two devices, and the
logical capacity equals the combined capacity of all physical
links between the devices. Since the capacity of physical links
are identical, we normalize the logical link capacity by the
physical link capacity2, and we only consider the number of
physical links between devices. This model based on logical
links is illustrated in Fig. 2.

A datacenter network is a directed graph with the set of
switches S and the set of logical links L. Every logical link
connects two switches. The graph is assumed to be connected.
A directed link (i, j) connects switch i to switch j with
capacity Cij equaling the number of physical links between
the switches. Because of the full-duplex ports, link (i, j) ∈ L
if and only if (j, i) ∈ L, and both links have identical capacity,
i.e., Cij = Cji for every (i, j) ∈ L. To account for servers,
let Hs be the number of servers connected to switch s for
every s ∈ S. Then, we define Sk as the set of switches
with k servers attached, Sk = {s ∈ S : Hs = k} for every
non-negative integer k. The set S0 contains all switches with
no servers attached. We further define a set of switches with
server(s) attached as H = S\S0.

We adopt the multi-commodity model to directly measure
throughput between every pair of source and destination
switches with server(s) attached. Denote the set of commodi-
ties by C =

{
(u, v) ∈ H2 : u ̸= v

}
. This set is also used for

traffic demand modeling.

B. Traffic model

Traffic inside datacenter network is a combination of de-
mands generated by servers attached to different switches.
Since a commodity is defined at the switch level, the demand
from a switch is the aggregate demand from its attached
servers to servers on other switches. This demand is limited by

1When a server has multiple ports and routing capability, as in server-
centric topologies [18], [19], such a server can be viewed as an ethernet
switch attached with multiple servers.

2When the capacities of physical links are not identical, the normalization
uses the greatest common divisor.



the capacity of the server-facing links. From the normalization,
every switch can source and receive traffic demands at most the
number of servers attached it. We denote the traffic demand of
commodity (u, v) by tuv for every (u, v) ∈ C. A combination
of traffic demands from every commodity forms a traffic
matrix [tuv] ∈ R|H|2

+ where R+ is a set of non-negative reals.
The set of all possible traffic matrices is denoted by T where

T =

[tuv] ∈ R|H|2
+ :

∑
v∈H tuv ≤ Hu ∀u ∈ H∑
u∈H tuv ≤ Hv ∀v ∈ H

tuu = 0 ∀u ∈ H

 .

The first and second constraints ensure every switch can source
and receive traffic at most the total capacity of all server-
facing links. The last constraint ensures that a switch internally
forwards traffic between servers connected to it.

This traffic set is used to design optimal oblivious routes
between every commodity with predictable throughput per-
formance. For example, if all routes can deliver every traffic
matrix in T , no congestion from capacity violation will occur.

C. Oblivious routing formulation

Oblivious routing distributes traffic demand of every com-
modity over links in the network. We assume traffic can be
split arbitrary at any intermediate switch similar to [14], [15].
Every splitting proportion is independent of the traffic demand.
For example, with the 1 : 2 split proportion, 1 unit of traffic
demand is split to 1/3 and 2/3, and 2 units are split to 2/3 and
4/3. Hence, the routing is oblivious to traffic demands. Next,
we formulate an oblivious routing optimization problem.

Recall that we adopt the multi-commodity model with the
commodity set C where a commodity is a pair of source and
destination switches. For each commodity (u, v), we decouple
traffic demand tuv from routing and splitting by defining fuv

ij

as a share of the demand over a link (i, j) such that the actual
traffic over the link is tuvfuv

ij .
Since, in general, a datacenter’s traffic demand can be any

traffic matrix in T , we compute the worst-case throughput
as described in [10], [15], [21]. We denote the worst-case
throughput of commodity (u, v) by a factor θuv , and the
overall worst-case throughput is min(u,v)∈C θ

uv . For example,
the overall worst-case throughput equals 1/2 means any traffic
matrix T ∈ T /2 does not violate any link capacity. Our formu-
lation maximizes these throughput hierarchically: i) maximize
the overall worst-case throughput and then ii) maximize the
marginal throughput of each commodity as follows:

Maximize A min
(u,v)∈C

θuv +
∑

(u,v)∈C

θuv

Subject to
∑

j∈O(i)

fuv
ij −

∑
j∈I(i)

fuv
ji =

θuv {I [i = u]− I [i = v]} , ∀i ∈ S,∀(u, v) ∈ C∑
(u,v)∈C

tuvfuv
ij ≤ Cij , ∀(i, j) ∈ L,∀[tuv] ∈ T

fuv
ij , θuv ∈ R+, ∀(u, v) ∈ C,∀(i, j) ∈ L,

(1)

Fig. 3. The right network is an automorphism of the left network with ϕ (x) =
x+1 when x is even and ϕ (x) = x−1 when x is odd. Both networks have
the same adjacency and distributions of link capacities and servers.

where O(i) and I(i) are respectively the sets of switches that
switch i has out-going links to and in-coming links from,
and A is a sufficiently large constant. The first constraint is a
conservation of share at every switch. The second constraint
is a robust link capacity that considers all possible traffic
matrices.

Although the formulation can be transformed to a linear
program with the extreme points of the traffic set (similar to
the technique used in [22]), the sheer numbers of commodi-
ties O(|H|2), directed links O(|L|), and the extreme points
O(|H|!) at the scale of datacenter networks can easily over-
whelm the available memory of any off-the-shelf solver and its
ability to obtain optimal solutions. In particular, the numbers
of variables and constraints are respectively O(|H|2 |L|) and
O(|H|2 |S|+|L| |H|!). Another formulation in [23] can reduce
these numbers to polynomial; even so, the formulation can still
overwhelm available memory easily. In the next section, we
leverage topological structure in some datacenter networks to
achieve tractability.

III. CHARACTERIZATION OF OPTIMAL SOLUTIONS

This section first introduces graph automorphisms that iden-
tify “similar” structure in datacenter networks. We then prove
the existence of an optimal oblivious routing solution that also
has a “similar” structure.

A. Graph automorphism

Graph automorphism is a permutation of nodes in the graph
such that the adjacency between nodes before and after the
permutation is the same. For a datacenter network, we extend
the adjacency preservation of graph automorphism to include
the preservation of servers at a switch and link capacity as
illustrated in Fig. 3, and as defined formally below.

Definition 1 (Automorphism). Given a network topology with
switch set S, link set L, link capacities {Cij}, and the numbers
of servers at every switch {Hu}, an automorphism ϕ : S → S
preserves:

1) Adjacency: (ϕ (i) , ϕ (j)) ∈ L for every (i, j) ∈ L.
2) Link capacity: Cij = Cϕ(i)ϕ(j) for every (i, j) ∈ L.
3) Number of Servers: Hu = Hϕ(u) for every u ∈ S.

The set of all automorphisms is denoted by Φ. While the
size of this set could grow exponentially large, it is finite, i.e.,
|Φ| < ∞. Next, we use these automorphisms to reduce the
search space for an optimal solution of the formulation in (1).



Fig. 4. The share variables of commodities (0, 1) and (2, 3) in an
automorphism-invariant optimal solution are shown. Each arrow represents
a share variable. For each commodity, the shares having the same value
are assigned an identical color. They are automorphism invariant, e.g.,
f01∗
04 = f01∗

05 under the automorphism that permutes switches 4 and 5.
For commodity (2, 3), we have f23∗

40 = f23∗
41 under the automorphism that

permutes switches 0 and 1. For throughput variables, we have θ01∗ = θ10∗

and θ23∗ = θ32∗ under the automorphism that permutes switch pairs (0, 1)
and (2, 3).

B. Existence of an automorphism-invariant optimal solution

We will show the existence of an automorphism-
invariant optimal solution of the formulation in (1). In an
automorphism-invariant optimal solution, every decision vari-
ables in a group under automorphisms in Φ takes the same
value as shown in Fig. 4.

We first show that applying an automorphism to an optimal
solution results in another optimal solution.

Lemma 1. Suppose
{
fuv∗
ij , θuv∗

}
is an optimal solution of

the formulation in (1). Given any automorphism ϕ ∈ Φ, the
solution

{
fuv
ij , θuv

}
is also an optimal solution such that

fuv
ij = f

ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) and θuv = θϕ(u)ϕ(v)∗.

Proof. To show that the solution from an automorphism is
also an optimal solution, we show that the solution leads to
the optimal objective value and the feasibility of all constraints.

Proving the objective is optimal is straightforward as

A min
(u,v)∈C

θϕ(u)ϕ(v)∗ +
∑

(u,v)∈C

θϕ(u)ϕ(v)∗ =

A min
(u,v)∈C

θuv∗ +
∑

(u,v)∈C

θuv∗.

The equality follows the facts that the automorphism is a bijec-
tive mapping function and that the commodity set C contains
every commodity. More precisely, every (ϕ (u) , ϕ (v)) ∈ C
is mapped to every (u, v) ∈ C, so the minimum and the
summation are calculated over the same set of variables.
Therefore, the objective value under the solution equals to the
optimal value, which is the objective value under the optimal
solution. We then consider the feasibility of constraints.

From a share conservation constraint at switch i and com-
modity (u, v) in (1), the difference between the out-going
shares and the in-coming shares is

∆(u, v, i) =
∑

j∈O(i)

f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) −

∑
j∈I(i)

f
ϕ(u)ϕ(v)∗
ϕ(j)ϕ(i)

=
∑

j∈O(ϕ(i))

f
ϕ(u)ϕ(v)∗
ϕ(i)j −

∑
j∈I(ϕ(i))

f
ϕ(u)ϕ(v)∗
jϕ(i) . (2)

This is because the adjacency preservation of the automor-
phism in Definition 1. Since the share conservation holds true
for the optimal solution, the difference in (2) becomes:

∆(u, v, i) = θϕ(u)ϕ(v)∗ {I [ϕ (i) = ϕ (u)]− I [ϕ (i) = ϕ (v)]}
= θuv {I [i = u]− I [i = v]} .

This shows that the share conservation constraint at switch i
and commodity (u, v) under the solution from an automor-
phism is feasible. This holds true for every switch i ∈ S and
every commodity (u, v) ∈ C.

For the link capacity constraint at link (i, j) and traffic
matrix [tuv] in (1), the left-hand side under the solution from
an automorphism equals∑

(u,v)∈C

tuvf
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) =

∑
(u,v)∈C

tϕ
−1(u)ϕ−1(v)fuv∗

ϕ(i)ϕ(j)

≤ Cϕ(i)ϕ(j) = Cij .

The first equality follows from the re-indexing of terms in the
summation over the commodity set. The inequality uses the
fact that the capacity constraint of link (ϕ (i) , ϕ (j)) under
the optimal solution is feasible when the traffic matrix is
[tϕ

−1(u)ϕ−1(v)], which is a member of the traffic set T . The
last equality follows the capacity preservation in Definition 1.
Therefore, the link capacity constraint at link (i, j) and traffic
matrix T = [tuv] under the solution from an automorphism is
feasible. Again, this holds true for every link (i, j) ∈ L and
every traffic matrix [tuv] ∈ T .

In short, we have shown that the solution from an au-
tomorphism yields the optimal objective value and leads to
feasibility of all constraints. Thus, the solution is optimal.

Lemma 1 implies that the automorphism of an optimal
solution is another optimal solution. Next, we show that there
exists an optimal solution that is invariant to automorphism.

Theorem 1. There exists an automorphism-invariant optimal
solution

{
f̂uv∗
ij , θ̂uv∗

}
to the formulation in (1) such that

f̂uv∗
ij = f̂

ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) and θ̂uv∗ = θ̂ϕ(u)ϕ(v)∗ for every (u, v) ∈ C,

every (i, j) ∈ L, and every ϕ ∈ Φ.

Proof. The formulation in (1) always has an optimal solu-
tion since the feasible set is compact and non empty. Let{
fuv∗
ij , θuv∗

}
be such an optimal solution. From Lemma 1,

the solution
{
f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) , θϕ(u)ϕ(v)

}
is an optimal solution for

every automorphism ϕ ∈ Φ. We construct the automorphism-
invariant solution

{
f̂uv∗
ij , θ̂uv∗

}
as follows:

f̂uv∗
ij =

1

|Φ|
∑
ϕ∈Φ

f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) , ∀(u, v) ∈ C,∀(i, j) ∈ L

θ̂uv∗ =
1

|Φ|
∑
ϕ∈Φ

θϕ(u)ϕ(v)∗, ∀(u, v) ∈ C



We then show that this solution is automorphism-invariant.
Specifically, it holds for any ϕ′ ∈ Φ that

f̂
ϕ′(u)ϕ′(v)∗
ϕ′(i)ϕ′(j) =

1

|Φ|
∑
ϕ∈Φ

f
ϕ(ϕ′(u))ϕ(ϕ′(v))∗
ϕ(ϕ′(i))ϕ(ϕ′(j))

=
1

|Φ|
∑
ϕ∈Φ

f
ϕ(u)ϕ(v)∗
ϕ(i)ϕ(j) = f̂uv∗

ij .

The second equality holds because the automorphism set Φ is
a group, so i) the composition of two automorphism mapping
functions gives an automorphism in the group and ii) such
composition over Φ yields the same Φ. Similarly, the same
holds true for θ̂uv∗.

θ̂ϕ
′(u)ϕ′(v)∗ =

1

|Φ|
∑
ϕ∈Φ

θϕ(ϕ
′(u))ϕ(ϕ′(v))∗

=
1

|Φ|
∑
ϕ∈Φ

θϕ(u)ϕ(v)∗ = θ̂uv∗.

This construction proves the theorem.

Theorem 1 implies that there is an optimal solution whose
variables in the same group under automorphisms take the
same value. We use this insight to reduce the search space of
the optimal oblivious routing solution.

IV. FINDING AN AUTOMORPHISM-INVARIANT OPTIMAL
SOLUTION

We now formulate an optimization problem that targets
an automorphism-invariant solution. The formulation defines
a new set of representative variables representing groups of
variables under the automorphisms. Furthermore, unnecessary
constraints and traffic matrices are removed from the formu-
lation, resulting in a tractable iterative algorithm.

A. Representative variables

From Theorem 1, we observe that the optimal values of
throughput variables form groups under automorphisms. In
particular, the values are identical for every commodity in the
same group, whose members can be mapped to one another by
some automorphisms, i.e., a group of commodities containing
commodity (u, v) is {(ϕ (u) , ϕ (v)) : ∀ϕ ∈ Φ}. Therefore, we
can pick a commodity in each group as a representative
commodity for the group. We denote the set of all representa-
tive commodities by Ĉ and define a representative throughput
variable θ̂uv for every representative commodity (u, v) ∈ Ĉ.
Fig. 5 shows an example of representative commodities and
throughput variables. Further, we define a function π : C → Φ
such that the input commodity under the output automorphism
is the representative commodity of the input, i.e., ϕ = π(u, v)
and (ϕ (u) , ϕ (v)) ∈ Ĉ. Section V-B describes an efficient
algorithm to construct Ĉ and π.

The representative shares can be defined using the same
process. For each representative commodity (u, v) ∈ Ĉ, we
observe from Theorem 1 that the optimal values of share vari-
ables form groups under automorphisms. In particular, the val-
ues are identical for every link in the same group, whose mem-
bers can be mapped to one another by some automorphisms

Fig. 5. Throughput variables form four groups. Each group is represented by a
representative throughput variable and a corresponding commodity. The set of
representative commodities is Ĉ = {(0, 1), (0, 2), (2, 0), (2, 3)}. Commodity
(0, 1) has a representative throughput θ̂01 representing variables θ01, θ10.

Fig. 6. Representative share variables of each representative commodity. An
arrow represents a representative share variable in the direction of the arrow.
For example, with commodity (0, 1), the link (0, 4) has two representative
variables f̂01

04 , f̂
01
40 , and the link (2, 5) has only one representative variable

f̂01
25 . Representative share variables for each representative commodity de-

pends on the network structure and the commodity.

that does not affect (u, v), i.e., the group of links containing
link (i, j) is {(ϕ (i) , ϕ (j)) : (ϕ (u) , ϕ (v)) = (u, v) ∃ϕ ∈ Φ}.
Therefore, we can pick a link in each group as a representative
link for the group. We denote the set of all representative links
for a representative commodity (u, v) by L̂uv and define a
representative share variable f̂uv

ij for every (u, v) ∈ Ĉ and
every (i, j) ∈ L̂uv . Fig. 6 shows representative share variables
for a simple network. Further, we define a mapping function
σuv : L → Φ such that the input link under the output
automorphism is the representative link of the input, i.e.,
ϕ = σuv(i, j) and (ϕ (i) , ϕ (j)) ∈ L̂uv . Section V-C describes
an efficient algorithm to construct L̂uv and σuv .

Since the representative variables of throughput and share
have been defined, the last step is to map every variable in
(1) to these representatives. We define the mapping of share
variables in (1) to their representatives as follows:

φ
[
fuv
ij

]
= f̂

ϕ(u)ϕ(v)
ϕ′(ϕ(i)),ϕ′(ϕ(j)) ∀(u, v) ∈ C,∀(i, j) ∈ L

where ϕ = π(u, v) and ϕ′ = σϕ(u)ϕ(v)(i, j).

Using the above mapping and the representative variables, we
formulate an optimization problem targeting an automorphism-
invariant optimal solution in Theorem 1 as follows:

Maximize A min
(u,v)∈Ĉ

θ̂uv +
∑

(u,v)∈Ĉ

Nuv θ̂uv

Subject to
∑

j∈O(i)

φ
[
fuv
ij

]
−

∑
j∈I(i)

φ
[
fuv
ji

]
=

θ̂uv {I [i = u]− I [i = v]} , ∀i ∈ S,∀(u, v) ∈ Ĉ∑
(u,v)∈C

tuvφ
[
fuv
ij

]
≤ Cij , ∀(i, j) ∈ L,∀[tuv] ∈ T

f̂uv
ij , θ̂uv ∈ R+, ∀(u, v) ∈ Ĉ,∀(i, j) ∈ L̂uv,

(3)
where Nuv is the number of commodities represented by
representative commodity (u, v).



The total numbers of variables and constraints in (3) are sig-
nificantly reduced by considering the representative variables.
Notice that the share conservation constraints are defined over
representative commodities Ĉ instead of C. The next sections
address the challenging robust link capacity constraint.

B. Removing unnecessary link constraints
The number of link capacity constraints in (3) grows like

O(|L| |H|!). However, many constraints are unnecessary and
can be removed. We observe that traffic demands on link
(i′, j′) can be aggregated for each representative share.∑
(u,v)∈C

tuvφ
[
fuv
i′j′

]
=

∑
(u,v)∈Ĉ

∑
(i,j)∈L̂uv

f̂uv
ij

∑
(a,b)∈C:φ

[
fab
i′j′

]
=f̂uv

ij

tab

=
∑

(u,v)∈Ĉ

∑
(i,j)∈L̂uv

f̂uv
ij αuv

ij , (4)

where αuv
ij =

∑
(a,b)∈C:φ

[
fab
i′j′

]
=f̂uv

ij

tab.

Any two links that have the same set of coefficient alphas
under some automorphism are duplicate, and we only need to
consider one of them as a representative constraint. Let L̂ be
the set of representative link constraints. Section V-D provides
an efficient algorithm to construct this set. Therefore, the link
capacity constraint in (3) can be replaced by∑

(u,v)∈C

tuvφ
[
fuv
ij

]
≤ Cij , ∀(i, j) ∈ L̂,∀[tuv] ∈ T . (5)

Notice that the reduction from L to L̂ is by considering the
representative variables and traffic demands. Ignoring them
and only considering automorphisms of links can lead to an
under-constrained formulation and a sub-optimal solution.

C. Traffic matrix selection
Including the entire traffic set T into the link capacity

constraint is impractical due to the continuity of the set. While
it is possible to consider the set of extreme points, the number
of such points is O(|H|!) for a simple case of double stochastic
matrices when the number of servers per switch is identical.

To alleviate this issue, we construct the traffic set iteratively
based on two observations. First, the worst-case traffic load
on different representative link is caused by a different set of
traffic matrices. Therefore, we define a set of traffic matrices
Tij considered for representative link (i, j) ∈ L̂ and formulate
the optimization parameterized by these sets as follows.

R
(
{Tij}(i,j)∈L̂

)
:

Maximize A min
(u,v)∈Ĉ

θ̂uv +
∑

(u,v)∈Ĉ

Nuv θ̂uv

Subject to
∑

j∈O(i)

φ
[
fuv
ij

]
−

∑
j∈I(i)

φ
[
fuv
ji

]
=

θ̂uv {I [i = u]− I [i = v]} , ∀i ∈ S,∀(u, v) ∈ Ĉ∑
(u,v)∈C

tuvφ
[
fuv
ij

]
≤ Cij ,∀(i, j) ∈ L̂,∀[tuv] ∈ Tij

f̂uv
ij , θ̂uv ∈ R+, ∀(u, v) ∈ Ĉ,∀(i, j) ∈ L̂uv.

(6)

While solving the above formulation with insufficient traffic
matrices in the traffic sets {Tij} leads to a sub-optimal obliv-
ious routing solution, the sub-optimal solution can still guide
which traffic matrices should be included in the sets. This
leads to the second observation that traffic matrices also have
automorphisms, and one matrix can represent many matrices.
This observation can be seen from the coefficient alphas in
(4). The implication is that including only a small subset of
traffic matrices in each traffic set Tij is sufficient to achieve
an optimal oblivious routing solution. We therefore generate
representative traffic matrices based on a solution of (6) by
solving a simple linear program parameterized by the solution
for every link (i′, j′) ∈ L̂ as follows.

Ti′j′

({
f̂uv
ij

}(u,v)∈Ĉ

(i,j)∈L̂uv

)
:

Maximize
∑

(u,v)∈C

tuvφ
[
fuv
i′j′

]
Subject to

∑
v∈H\{u}

tuv ≤ Hu, ∀u ∈ H∑
u∈H\{v}

tuv ≤ Hv, ∀v ∈ H

tuv ∈ R+, ∀(u, v) ∈ C.

(7)

For every representative link (i′, j′), the optimization in (7)
finds the worst-case traffic matrix with respect to a given set of
representative shares. The obtained traffic matrix is added to
Tij , which is considered in (6) for later iterations. This process
is summarized next.

D. Iterative algorithm

Algorithm 1: Optimal oblivious routing

Initialize Dij ← {[tuv]init} for every (i, j) ∈ L̂
while

⋃
(i,j)∈L̂Dij ̸= ∅ do

Tij ← Tij ∪ Dij for every (i, j) ∈ L̂{
f̂uv
ij

}(u,v)∈Ĉ

(i,j)∈L̂uv
,
{
θ̂uv

}(u,v)∈Ĉ
← R

(
{Tij}(i,j)∈L̂

)
for (i′, j′) ∈ L̂ do

[tuv]← Ti′j′

({
f̂uv
ij

}(u,v)∈Ĉ

(i,j)∈L̂uv

)
if

∑
(u,v)∈C t

uvφ
[
fuv
i′j′

]
> Ci′j′ then

Di′j′ ← {[tuv]}
else
Di′j′ ← ∅

return
{
f̂uv
ij

}(u,v)∈Ĉ

(i,j)∈L̂uv
,
{
θ̂uv

}(u,v)∈Ĉ

In Algorithm 1, the traffic sets are initialized with an initial
traffic matrix. The algorithm iteratively finds a routing solution
according to these traffic sets. The routing solution is used to
generate more traffic matrices, which in turn help improving
the next routing solution, by including those that violate link



Fig. 7. A logical network is transformed to an undirected graph with colors.

capacity constraints into the traffic sets. This process continues
until no traffic matrices violating the link capacity constraints
are found. Thus, the final routing solution is optimal because
it is an automorphism-invariant solution that optimizes the
objective and satisfies all conservation constraints in (6) and
that no traffic matrices violates capacity under this solution.

The initial traffic matrix [tuv]init in Algorithm 1 can sig-
nificantly reduce the number of iterations required to obtain
the optimal solution. We set this matrix to the solution of
the weighted bipartite matching problem, where the node sets
are U = V = H, and the weight between any two nodes
(u, v) ∈ U × V equals the product of their minimum path
length in the network topology times their maximum traffic
load min(Hu, Hv). This initialization is inspired by the works
in [21], [24], [25], in which all switches have the same number
of servers.

V. EFFICIENT IMPLEMENTATION

Algorithm 1 and its sub-routines in the previous section rely
heavily on representative sets Ĉ, L̂uv, L̂, and the mapping func-
tions π and σuv . Constructing them from the automorphism
set Φ, whose size grows exponentially, is a combinatorial
problem. This section describes polynomial-time algorithms
for efficient construction, based on automorphism generators.

A. Generators of automorphisms

Generators are a smaller set of automorphisms that can
generate a whole set of automorphisms. Specifically, every
automorphism in the set is a combination of the generators.
This set can be obtained from off-the-shelf software, such as
nauty [26], for an undirected graph with vertices, edges, and
a set of colors assigned to the vertices.

Our datacenter network model with link capacities and
numbers of servers at each switch can be transformed to an
undirected graph with colors as shown in Fig. 7. Every switch
is translated to a vertex in the graph. To preserve the number
of servers at each switch under automorphism, an identical
color is assigned to the vertices whose number of servers are
the same, and different colors are assigned to vertices having
different numbers of servers. For links and capacities, each link
is transformed to an auxiliary vertex with two edges. One end
of both edges is connected to the auxiliary vertex, and the other
ends connect to the two switches to which the original link is
adjacent. To preserve link capacity under automorphism, the
auxiliary vertices of links with the same capacity are assigned
the same color, and auxiliary vertices of links with different
capacities are assigned different colors.

The above transformation yields an undirected graph with
a set of colors as an input to the off-the-shelf software that
outputs the generators. We denote the set of these generators
by Φ̂, whose generated automorphisms satisfy Definition 1. It
is used to efficiently generate representative sets and mapping
functions used extensively in the previous section.

B. Representative commodity

The representative commodity set Ĉ and the mapping func-
tions π defined in Section IV-A are constructed efficiently by
Algorithm 2.

Algorithm 2: Representative commodity construction

Initialize empty sets Q,P, Ĉ and dictionaries D,π
for (u, v) ∈ C do

if (u, v) ∈ P then
continue

Ĉ ← Ĉ ∪ {(u, v)}
D(u, v)← ϕidentity
Q ← Q∪ {(u, v)}
while Q is not empty do

Pop (a, b) from Q
P ← P ∪ {(a, b)}
for ϕ ∈ Φ̂ do

if (ϕ (a) , ϕ (b)) /∈ P then
Q ← Q∪ {(ϕ (a) , ϕ (b))}
D(ϕ (a) , ϕ (b))← ϕ (D(a, b))

for (u, v) ∈ C do
π(u, v)← (D(u, v))−1

return Representative set Ĉ and function π

Algorithm 2 searches over the commodity set. It picks a
commodity, assigns it as a representative commodity, and finds
all represented commodities. The search process utilizes the
generator set Φ̂, instead of the exponentially large automor-
phism set Φ, to find represented commodities. The algorithm
visits each commodity once, so the complexity is O

(
|C|

∣∣∣Φ̂∣∣∣).
Once all represented commodities of the picked representative
are found, the algorithm picks an unpicked commodity and
continues the process. In the process, the dictionary D keeps
track of automorphisms that map representatives to their repre-
sented commodities. The last step inverts each automorphism
in D and constructs the dictionary π storing automorphisms
that map represented commodities to their representatives.

C. Representative share

For each representative commodity (u, v), the set of repre-
sentative shares L̂uv and the mapping functions σuv defined
in Section IV-A are constructed efficiently by Algorithm 3.

Given a representative commodity (u, v), the algorithm
first constructs a commodity-preserved generator set Φ̂uv

containing all generators that have no effect on the given
commodity. The algorithm then searches over the links set
using these commodity-preserved generators. It picks a link as



Algorithm 3: Representative share construction

Initialize empty sets Q,P, L̂uv and dictionary D,σuv

Φ̂uv ←
{
ϕ ∈ Φ̂ : (u, v) = (ϕ (u) , ϕ (v))

}
for (i, j) ∈ L do

if (i, j) ∈ P then
continue

L̂uv ← L̂uv ∪ {(i, j)}
D(i, j)← ϕidentity
Q ← Q∪ {(i, j)}
while Q is not empty do

Pop (a, b) from Q
P ← P ∪ {(a, b)}
for ϕ ∈ Φ̂uv do

if (ϕ (a) , ϕ (b)) /∈ P then
Q ← Q∪ {(ϕ (a) , ϕ (b))}
D(ϕ (a) , ϕ (b))← ϕ (D(a, b))

for (i, j) ∈ L do
σuv(i, j)← (D(i, j))−1

return Representative set L̂uv and function σuv

a representative link and finds all corresponding represented
links. This process utilizes the generator set Φ̂uv to search
for represented links. The algorithm visits each link once, so
its complexity is O

(
|L|

∣∣∣Φ̂uv
∣∣∣). Once all represented links

of the picked representative are found, the algorithm picks
an unpicked link and continues the process. The dictionary D
keeps track of automorphisms that map representatives to their
represented links. The last step inverts each automorphism in
D and constructs the dictionary σuv storing automorphisms
that map represented links to their representatives.

D. Representative link capacity constraint

The set of representative links L̂ for the capacity constraints
in (6) can be constructed by removing redundant constraints
under automorphisms. More precisely, two constraints of links
(x, y) and (g, h) are redundant when 1) their link capacities
are identical, Cxy = Cgh, and 2) their traffic loads in (4)
are identical under the traffic set T . The former is easy to
identify, but the latter is challenging as the comparison is over
the whole traffic set. Theorem 2 simplifies this comparison.

Theorem 2. Given links (x, y) and (g, h), their capacity
constraints in terms of representative shares are∑
(u,v)∈Ĉ

∑
(i,j)∈L̂uv

f̂uv
ij

∑
(a,b)∈C:φ[fab

xy]=f̂uv
ij

tab ≤ Cxy ∀[tuv] ∈ T ,

∑
(u,v)∈Ĉ

∑
(i,j)∈L̂uv

f̂uv
ij

∑
(a,b)∈C:φ[fab

gh]=f̂uv
ij

tab ≤ Cgh ∀[tuv] ∈ T .

The two constraints are identical when 1) their link capacities
are identical, i.e., Cxy = Cgh, and 2) their numbers of traffic
demands associated with a representative share is identical

for every representative share such that the following holds
for every (u, v) ∈ Ĉ and every (i, j) ∈ L̂uv:∣∣∣{(a, b) ∈ C : φ [

fab
xy

]
= f̂uv

ij

}∣∣∣ =∣∣∣{(a, b) ∈ C : φ [
fab
gh

]
= f̂uv

ij

}∣∣∣ . (8)

Proof. The first condition is straightforward. We prove the
second condition as follows. Considering link (i′, j′), we ob-
serve that every commodity in

{
(a, b) ∈ C : φ

[
fab
i′j′

]
= f̂uv

ij

}
is represented by a common commodity (u, v) as they share
the same representative share variable f̂uv

ij . It follows that
these commodities generate an identical set of traffic demands,
so the set of aggregated traffic demands associated with the
representative share variable are identical if the numbers of
members in both sets are the same, i.e., when (8) holds, then

∑
(a,b)∈C:φ[fab

xy]=f̂uv
ij

tab : ∀[tab] ∈ T

 =


∑

(a,b)∈C:φ[fab
gh]=f̂uv

ij

tab : ∀[tab] ∈ T

 .

Therefore, comparing the number of traffic demands associ-
ated with each representative share is sufficient.

The implication of Theorem 2 is that we only need to
compare the number of traffic demand terms associated with
each representative share to determine whether two constraints
are identical under automorphism. This leads to a simpler
construction of the representative capacity constraints.

The set of representative capacity constraints is constructed
by computing the distribution of the numbers of traffic demand
terms associated with representative shares. Then, for every
group of links having the same distribution, we take one link
from the group and use it as the representative of the group.

VI. EVALUATION

The performance, scalability, and generality of Algorithm 1
is evaluated over three potential applications. The algorithm is
implemented in Python 3. The generators of automorphisms is
obtained from nauty [26]. All linear programs are solved by
Gurobi [27]. Further, all optimal routing solutions are double
checked for capacity violation using the method in [24].

A. Throughput performance under partially deployed FatTree

A fully deployed FatTree topology [1], constructed from 32-
port switches, can accommodate 8192 servers. In practice, this
topology is incrementally deployed in blocks when additional
servers are needed. However, the routing for the fully deployed
topology is not optimal for the partially deployed one due
to the imbalance at the core switches, i.e., each core switch
in Fig. 1 has two links to one block and a link to another
block. Therefore, we apply our algorithm to find the optimal
oblivious routing for partially deployed FatTree with different
numbers of aggregation blocks. Note that the fully deployed
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topology has 32 aggregation blocks. The result is shown in
Fig. 8 and is compared to a heuristic algorithm in [28], which
tries to balance the imbalance. Our algorithm yields 12.5%−
87.5% throughput improvement over the heuristic algorithm
when their throughput values are different.

B. Scalability under FatClique

The FatClique topology in [11] has been proposed for
high manageability datacenter networks without routing. Our
algorithm could provide this missing routing, which is optimal
according to the formulation in (1). The computation time of
Algorithm 1 at different sizes of FatClique is shown in Fig. 9.
We vary the sizes of FatClique from 8 to 1728 switches. While
finding the representative links is the most time consuming
part, it can be pre-computed before executing Algorithm 1.

Fig. 10 shows the sizes of the strawman formulation in (1)
and the automorphism-invariant formulation in (6) in terms of
numbers of variables and constraints assuming only one traffic
matrix is considered, |T | = 1. It is easy to see that the latter
formulation is much smaller than the former one. In addition,
Fig. 11 shows the numbers of traffic matrices required for
finding the optimal oblivious routing solutions in formulations
(1) and (6). Again, the numbers of required traffic matrices in
Algorithm 1 is much smaller than the set of all extreme points.

C. Structured topology with non-uniformity

Our algorithm is applicable for a more general structured
topology with non-uniform link capacities and server distribu-
tion as illustrated in Fig. 12. The top-left plot shows the net-
work with 4 groups of switches, {0, 1} , {2, 3, 4} , {5, 6, 7, 8} ,
{9, 10, 11}, where the first three groups have different numbers
of servers per switch and the last group has none. Logical
links with different thickness have different capacities. The
other plots show the optimal oblivious routing for different
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Fig. 10. The numbers of variables and constraints, assuming |T | = 1,
in formulations (1) and (6) are plotted at different sizes of FatClique. The
maximum numbers for formulation (6) are respectively 144 and 5185 when
topology has 1728 switches.
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Fig. 11. The numbers of traffic matrices per link capacity constraint in
formulations (1) and (6) are plotted at different sizes of FatClique. The
maximum number for formulation (6) is 81 when topology has 1331 switches,
while the numbers beyond 10308 are not plotted for formulation (1) with more
than 125 switches.

representative commodities. It is worth mentioning that the
optimal routing solution for each representative commodity
can be different. For example, commodities (0, 1) only uses
one-hop intermediate switches, while commodity (0, 2) dis-
perses traffic to all switches. This behavior differs from [15]
where traffic demands from every commodity are dispersed to
the same set of intermediate switches.

VII. CONCLUSION

This paper presents an iterative algorithm to find the optimal
oblivious routing for structured topologies. The algorithm
utilizes the insight that the optimal routing solution is auto-
morphism invarient in order to reduce the solution space and
complexity. This algorithm is applicable for designing obliv-
ious routing for existing datacenter network topologies and
future structured topologies with non-uniform link capacities
and server distribution.
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