
Scalable Rule Management for Data Centers
Masoud Moshref† Minlan Yu† Abhishek Sharma†∗ Ramesh Govindan†

† University of Southern California ∗ NEC Labs America

Abstract

Cloud operators increasingly need more and more fine-
grained rules to better control individual network flows
for various traffic management policies. In this paper,
we explore automated rule management in the context of
a system called vCRIB (a virtual Cloud Rule Informa-
tion Base), which provides the abstraction of a central-
ized rule repository. The challenge in our approach is
the design of algorithms that automatically off-load rule
processing to overcome resource constraints on hypervi-
sors and/or switches, while minimizing redirection traf-
fic overhead and responding to system dynamics. vCRIB
contains novel algorithms for finding feasible rule place-
ments and adapting traffic overhead induced by rule
placement in the face of traffic changes and VM migra-
tion. We demonstrate that vCRIB can find feasible rule
placements with less than 10% traffic overhead even in
cases where the traffic-optimal rule placement may be in-
feasible with respect to hypervisor CPU or memory con-
straints.

1 Introduction
To improve network utilization, application perfor-
mance, fairness and cloud security among tenants in
multi-tenant data centers, recent research has proposed
many novel traffic management policies [8, 32, 28, 17].
These policies require fine-grained per-VM, per-VM-
pair, or per-flow rules. Given the scale of today’s data
centers, the total number of rules within a data center can
be hundreds of thousands or even millions (Section 2).
Given the expected scale in the number of rules, rule
processing in future data centers can hit CPU or mem-
ory resource constraints at servers (resulting in fewer re-
sources for revenue-generating tenant applications) and
rule memory constraints at the cheap, energy-hungry
switches.

In this paper, we argue that future data centers will re-
quire automated rule management in order to ensure rule
placement that respects resource constraints, minimizes
traffic overhead, and automatically adapts to dynamics.
We describe the design and implementation of a virtual
Cloud Rule Information Base (vCRIB), which provides
the abstraction of a centralized rule repository, and au-
tomatically manages rule placement without operator or

Figure 1: Virtualized Cloud Rule Information Base (vCRIB)

tenant intervention (Figure 1). vCRIB manages rules
for different policies in an integrated fashion even in the
presence of system dynamics such as traffic changes or
VM migration, and is able to manage a variety of data
center configurations in which rule processing may be
constrained either to switches or servers or may be per-
mitted on both types of devices, and where both CPU and
memory constraints may co-exist.

vCRIB’s rule placement algorithms achieve resource-
feasible, low-overhead rule placement by off-loading
rule processing to nearby devices, thus trading off some
traffic overhead to achieve resource feasibility. This
trade-off is managed through a combination of three
novel features (Section 3).

• Rule offloading is complicated by dependencies be-
tween rules caused by overlaps in the rule hyperspace.
vCRIB uses per-source rule partitioning with replica-
tion, where the partitions encapsulate the dependen-
cies, and replicating rules across partitions avoids rule
inflation caused by splitting rules.
• vCRIB uses a resource-aware placement algorithm

that offloads partitions to other devices in order to find
a feasible placement of partitions, while also trying to
co-locate partitions which share rules in order to op-
timize rule memory usage. This algorithm can deal
with data center configurations in which some devices
are constrained by memory and others by CPU.
• vCRIB also uses a traffic-aware refinement algorithm

that can, either online, or in batch mode, refine parti-
tion placements to reduce traffic overhead while still
preserving feasibility. This algorithm avoids local
minima by defining novel benefit functions that per-
turb partitions allowing quicker convergence to feasi-

ble low overhead placement.
We evaluate (Section 4) vCRIB through large-scale

simulations, as well as experiments on a prototype built
on Open vSwitch [4] and POX [1]. Our results demon-
strate that vCRIB is able to find feasible placements with
a few percent traffic overhead, even for a particularly
adversarial setting in which the current practice needs
more memory than the memory capacity of all the servers
combined. In this case, vCRIB is able to find a feasi-
ble placement, without relying on switch memory, albeit
with about 20% traffic overhead; with modest amounts
of switch memory, this overhead drops dramatically to
less than 3%. Finally, vCRIB correctly handles heteroge-
neous resource constraints, imposes minimal additional
traffic on core links, and converges within 5 seconds af-
ter VM migration or traffic changes.

2 Motivation and Challenges
Today, tenants in data centers operated by Amazon [5]
or whose servers run software from VMware place their
rules at the servers that source traffic. However, mul-
tiple tenants at a server may install too many rules at
the same server causing unpredictable failures [2]. Rules
consume resources at servers, which may otherwise be
used for revenue-generating applications, while leaving
many switch resources unused.

Motivated by this, we propose to automatically man-
age rules by offloading rule processing to other devices in
the data center. The following paragraphs highlight the
main design challenges in scalable automated rule man-
agement for data centers.

The need for many fine-grained rules. In this pa-
per, we consider the class of data centers that provide
computing as a service by allowing tenants to rent vir-
tual machines (VMs). In this setting, tenants and data
center operators need fine-grained control on VMs and
flows to achieve different management policies. Access
control policies either block unwanted traffic, or allocate
resources to a group of traffic (e.g., rate limiting [32],
fair sharing [29]). For example, to ensure each tenant
gets a fair share of the bandwidth, Seawall [32] installs
rules that match the source VM address and performs
rate limiting on the corresponding flows. Measurement
policies collect statistics of traffic at different places. For
example, to enable customized routing for traffic engi-
neering [8, 11] or energy efficiency [17], an operator may
need to get traffic statistics using rules that match each
flow (e.g., defined by five tuples) and count its number of
bytes or packets. Routing policies customize the routing
for some types of traffic. For example, Hedera [8] per-
forms specific traffic engineering for large flows, while
VLAN-based traffic management solutions [28] use dif-
ferent VLANs to route packets. Most of these policies,

(a) Wild card rules in a flow space (b) VM assignment

Figure 2: Sample ruleset (black is accept, white is deny) and
VM assignment (VM number is its IP)

expressed in high level languages [18, 37], can be trans-
lated into virtual rules at switches1.

A simple policy can result in a large number of fine-
grained rules, especially when operators wish to con-
trol individual virtual machines and flows. For exam-
ple, bandwidth allocation policies require one rule per
VM pair [29] or per VM [29], and access control policies
might require one rule per VM pair [30]. Data center traf-
fic measurement studies have shown that 11% of server
pairs in the same rack and 0.5% of inter-rack server
pairs exchange traffic [22], so in a data center with 100K
servers and 20 VMs per server, there can, be 1G to 20G
rules in total (200K per server) for access control or fair
bandwidth allocation. Furthermore, state-of-the-art solu-
tions for traffic engineering in data centers [8, 11, 17] are
most effective when per-flow statistics are available. In
today’s data centers, switches routinely handle between
1K to 10K active flows within a one-second interval [10].
Assume a rack with 20 servers and if each server is the
source of 50 to 500 active flows, then, for a data center
with 100K servers, we can have up to 50M active flows,
and need one measurement rule per-flow.

In addition, in a data center where multiple concurrent
policies might co-exist, rules may have dependencies be-
tween them, so may require carefully designed offload-
ing. For example, a rate-limiting rule at a source VM A
can overlap with the access control rule that blocks traf-
fic to destination VM B, because the packets from A to
B match both rules. These rules cannot be offloaded to
different devices.

Resource constraints. In modern data centers, rules
can be processed either at servers (hypervisors) or pro-
grammable network switches (e.g., OpenFlow switches).
Our focus in this paper is on flow-based rules that match
packets on one or more header fields (e.g., IP addresses,
MAC addresses, ports, VLAN tags) and perform various
actions on the matching packets (e.g., drop, rate limit,
count). Figure 2(a) shows a flow-space with source and

1Translating high-level policies to fine-grained rules is beyond the
scope of our work.

2

destination IP dimensions (in practice, the flow space
has 5 dimensions or more covering other packet header
fields). We show seven flow-based rules in the space;
for example, A1 represents a rule that blocks traffic from
source IP 2 (VM2) to destination IP 0-3 (VM 0-3).

While software-based hypervisors at servers can sup-
port complex rules and actions (e.g., dynamically calcu-
lating rates of each flow [32]), they may require commit-
ting an entire core or a substantial fraction of a core at
each server in the data center. Operators would prefer
to allocate as much CPU/memory as possible to client
VMs to maximize their revenue; e.g., RackSpace opera-
tors prefer not to dedicate even a portion of a server core
for rule processing [6]. Some hypervisors offload rule
processing to the NIC, which can only handle limited
number of rules due to memory constraints. As a result,
the number of rules the hypervisor can support is limited
by the available CPU/memory budget for rule processing
at the server.

We evaluate the numbers of rules and wildcard entries
that can be supported by Open vSwitch, for different val-
ues of flow arrival rates and CPU budgets in Figure 3.
With 50% of a core dedicated for rule processing and a
flow arrival rate of 1K flows per second, the hypervisor
can only support about 2K rules when there are 600 wild-
card entries. This limit can easily be reached for some of
the policies described above, so that manual placement of
rules at sources can result in infeasible rule placement.

To achieve feasible placement, it may be necessary to
offload rules from source hypervisors to other devices
and redirect traffic to these devices. For instance, sup-
pose VM2, and VM6 are located on S1 (Figure 2(b)).
If the hypervisor at S1 does not have enough resources
to process the deny rule A3 in Figure 2(a), we can in-
stall the rule at ToR1, introducing more traffic overhead.
Indeed, some commercial products already support of-
floading rule processing from hypervisors to ToRs [7].
Similarly, if we were to install a measurement rule that
counts traffic between S1 and S2 at Aggr1, it would cause
the traffic between S1 and S2 to traverse through Aggr1
and then back. The central challenge is to design a col-
lection of algorithms that manages this tradeoff — keeps
the traffic overhead induced by rule offloading low, while
respecting the resource constraint.

Offloading these rules to programmable switches,
which leverage custom silicon to provide more scalable
rule processing than hypervisors, is also subject to re-
source constraints. Handling the rules using expensive
power-hungry TCAMs limits the switch capacity to a few
thousand rules [15], and even if this number increases in
the future its power and silicon usage limits its applica-
bility. For example, the HP ProCurve 5406zl switch
hardware can support about 1500 OpenFlow wildcard
rules using TCAMs, and up to 64K Ethernet forwarding

0 250 500 750 1000
10

2

10
3

10
4

10
5

10
6

Wildcards

R
ul

es

25%_1K
50%_1K
75%_1K
100%_1K
100%_2K

Figure 3: Performance of openvswitch (The two numbers in
the legend mean CPU usage of one core in percent

and number of new flows per second.)

entries [15].

Heterogeneity and dynamics. Rule management is fur-
ther complicated by two other factors. Due to the differ-
ent design tradeoffs between switches and hypervisors,
in the future different data centers may choose to support
either programmable switches, hypervisors, or even, es-
pecially in data centers with large rule bases, a combi-
nation of the two. Moreover, existing data centers may
replace some existing devices with new models, result-
ing in device heterogeneity. Finding feasible placements
with low traffic overhead in a large data center with dif-
ferent types of devices and qualitatively different con-
straints is a significant challenge. For example, in the
topology of Figure 1, if rules were constrained by an op-
erator to be only on servers, we would need to automati-
cally determine whether to place a measurement rule for
tenant traffic between S1 and S2 at one of those servers,
but if the operator allowed rule placement at any device,
we could choose between S1, ToR1, or S2; in either case,
the tenant need not know the rule placement technology.

Today’s data centers are highly dynamic environments
with policy changes, VM migrations, and traffic changes.
For example, if VM2 moves from S1 to S3, the rules A0,
A1, A2 and A4 should me moved to S3 if there are enough
resources at S3’s hypervisor. (This decision is compli-
cated by the fact that A4 overlaps with A3.) When traffic
changes, rules may need to be re-placed in order to sat-
isfy resource constraints or reduce traffic overhead.

3 vCRIB Automated Rule Management
To address these challenges, we propose the design of
a system called vCRIB (virtual Cloud Rule Information
Base) (Figure 1). vCRIB provides the abstraction of a
centralized repository of rules for the cloud. Tenants and
operators simply install rules in this repository. Then
vCRIB uses network state information including network
topology and the traffic information to proactively place
rules in hypervisors and/or switches in a way that re-
spects resource constraints and minimizes the redirection
traffic. Proactive rule placement incurs less controller
overhead and lower data-path delays than a purely reac-

3

Figure 4: vCRIB controller architecture

tive approach, but needs sophisticated solutions to opti-
mize placement and to quickly adapt to cloud dynamics
(e.g., traffic changes and VM migrations), which is the
subject of this paper. A hybrid approach, where some
rules can be inserted reactively, is left to future work.

Challenges

Designs

Overlapping

rules

Resource

constraints

Traffic

overhead

Heterogeneity Dynamics

Partitioning

with replication

Per-source

partitions

Similarity

Resource usage

functions

Resource-aware

placement

Traffic-aware

refinement

Table 1: Design choices and challenges mapping

vCRIB makes several carefully chosen design deci-
sions (Figure 4) that help address the diverse challenges
discussed in Section 2 (Table 1). It partitions the rule
space to break dependencies between rules, where each
partition contains rules that can be co-located with each
other; thus, a partition is the unit of offloading decisions.
Rules that span multiple partitions are replicated, rather
than split; this reduces rule inflation. vCRIB uses per-
source partitions: within each partition, all rules have
the same VM as the source so only a single rule is re-
quired to redirect traffic when that partition is offloaded.
When there is similarity between co-located partitions
(i.e., when partitions share rules), vCRIB is careful not
to double resource usage (CPU/memory) for these rules,
thereby scaling rule processing better. To accommo-
date device heterogeneity, vCRIB defines resource us-
age functions that deal with different constraints (CPU,
memory etc.) in a uniform way. Finally, vCRIB splits
the task of finding “good” partition off-loading oppor-
tunities into two steps: a novel bin-packing heuristic
for resource-aware partition placement identifies feasi-
ble partition placements that respect resource constraints,
and leverage similarity; and a fast online traffic-aware
refinement algorithm which migrates partitions between

devices to explore only feasible solutions while reduc-
ing traffic overhead. The split enables vCRIB to quickly
adapt to small-scale dynamics (small traffic changes, or
migration of a few VMs) without the need to recompute
a feasible solution in some cases. These design decisions
are discussed below in greater detail.

3.1 Rule Partitioning with Replication

The basic idea in vCRIB is to offload the rule pro-
cessing from source hypervisors and allow more flexi-
ble and efficient placement of rules at both hypervisors
and switches, while respecting resource constraints at
devices and reducing the traffic overhead of offloading.
Different types of rules may be best placed at different
places. For instance, placing access control rules in the
hypervisor (or at least at the ToR switches) can avoid in-
jecting unwanted traffic into the network. In contrast, op-
erations on the aggregates of traffic (e.g., measuring the
traffic traversing the same link) can be easily performed
at switches inside the network. Similarly, operations on
inbound traffic from the Internet (e.g., load balancing)
should be performed at the core/aggregate routers. Rate
control is a task that can require cooperation between the
hypervisors and the switches. Hypervisors can achieve
end-to-end rate control by throttling individual flows or
VMs [32], but in-network rate control can directly avoid
buffer overflow at switches. Such flexibility can be used
to manage resource constraints by moving rules to other
devices.

However, rules cannot be moved unilaterally because
there can be dependencies among them. Rules can over-
lap with each other especially when they are derived
from different policies. For example, with respect to Fig-
ure 2, a flow from V M6 on server S1 to V M1 on server S2
matches both the rule A3 that blocks the source V M1 and
the rule A4 that accepts traffic to destination V M1. When
rules overlap, operators specify priorities so only the rule
with the highest priority takes effect. For example, op-
erators can set A4 to have higher priority. Overlapping
rules make automated rule management more challeng-
ing because they constrain rule placement. For example,
if we install A3 on S1 but A4 on ToR1, the traffic from
V M6 to V M1, which should be accepted, matches A3
first and gets blocked.

One way to handle overlapping rules is to divide the
flow space into multiple partitions and split the rule that
intersects multiple partitions into multiple independent
rules, partition-with-splitting [38]. Aggressive rule split-
ting can create many small partitions making it flexible
to place the partitions at different switches [26], but can
increase the number of rules, resulting in inflation. To
minimize splitting, one can define a few large partitions,
but these may reduce placement flexibility, since some
partitions may not “fit” on some of the devices.

4

(a) Ruleset (b) Partition-with-replication (c) P1 & P3 on a device (d) P2 & P3 on a device

Figure 5: Illustration of partition-with-replications (black is accept, white is deny)

To achieve the flexibility of small partitions while lim-
iting the effect of rule inflation, we propose a partition-
with-replication approach that replicates the rules across
multiple partitions instead of splitting them. Thus, in
our approach, each partition contains the original rules
that are covered partially or completely by that partition;
these rules are not modified (e.g., by splitting). For ex-
ample, considering the rule set in Figure 5(a), we can
form the three partitions shown in Figure 5(b). We in-
clude both A1 and A3 in P1, the left one, in their original
shape. The problem is that there are other rules (e.g., A2,
A7) that overlap with A1 and A3, so if a packet matches
A1 at the device where P1 is installed, it may take the
wrong action – A1’s action instead of A7’s or A2’s ac-
tion. To address this problem, we leverage redirection
rules R2 or R3 at the source of the packet to completely
cover the flow space of P2 or P3, respectively. In this
way, any packets that are outside P1’s scope will match
the redirection rules and get directed to the current host
of the right partition where the packet can match the right
rule. Notice that the other alternatives described above
also require the same number of redirection rules, but we
leverage high priority of the redirection rules to avoid in-
correct matches.

Partition-with-replication allows vCRIB to flexibly
manage partitions without rule inflation. For example,
in Figure 5(c), we can place partitions P1 and P3 on one
device; the same as in an approach that uses small parti-
tions with rule splitting. The difference is that since P1
and P3 both have rules A1, A3 and A0, we only need to
store 7 rules using partition-with-replication instead of
10 rules using small partitions. On the other hand, we
can prove that the total number of rules using partition-
with-replication is the same as placing one large partition
per device with rule splitting (proof omitted for brevity).

vCRIB generates per-source partitions by cutting the
flow space based on the source field according to the
source IP addresses of each virtual machine. For ex-
ample, Figure 6(a) presents eight per-source partitions
P0, · · · ,P7 in the flow space separated by the dotted
black lines.

Per-source partitions contain rules for traffic sourced
by a single VM. Per-source partitions make the place-
ment and refinement steps simpler. vCRIB only needs

(a) Per-source partitions (b) partition assignment

Figure 6: Rule partition example

one redirection rule installed at the source hypervisor to
direct the traffic to the place where the partition is stored.
Unlike per-source partitions, a partition that spans mul-
tiple source may need to be replicated; vCRIB does not
need to replicate partitions. Partitions are ordered in the
source dimension, making it easy to identify similar par-
titions to place on the same device.

3.2 Partition Assignment and Resource Usage

The central challenge in vCRIB design is the assign-
ment of partitions to devices. In general, we can for-
mulate this as an optimization problem, whose goal is
to minimize the total traffic overhead subject to the re-
source constraints at each device.2 This problem, even
for partition-with-splitting, is equivalent to the gener-
alized assignment problem, which is NP-hard and even
APX-hard to approximate [14]. Moreover, existing ap-
proximation algorithms for this problem are inefficient.
We refer the reader to a technical report which discusses
this in greater depth [27].

We propose a two-step heuristic algorithm to solve
this problem. First, we perform resource-aware place-
ment of partitions, a step which only considers resource
constraints; next, we perform traffic-aware refinement, a
step in which partitions reassigned from one device to
another to reduce traffic overhead. An alternative ap-
proach might have mapped partitions to devices first to
minimize traffic overhead (e.g., placing all the partitions
at the source), and then refined the assignments to fit
resource constraints. With this approach, however, we

2One may formulate other optimization problems such as minimiz-
ing the resource usage given the traffic usage budget. A similar greedy
heuristic can also be devised for these settings.

5

cannot guarantee that we can find a feasible solution
in the second stage. Similar two-step approaches have
also been used in the resource-aware placement of VMs
across servers [20]. However, placing partitions is more
difficult than placing VMs because it is important to co-
locate partitions which share rules, and placing partitions
at different devices incurs different resource usage.

Before discussing these algorithms, we describe
how vCRIB models resource usage in hypervisors and
switches in a uniform way. As discussed in Sec-
tion 2, CPU and memory constraints at hypervisors and
switches can impact rule placement decisions. We model
resource constraints using a function F (P,d); specif-
ically, F (P,d) is the percentage of the resource con-
sumed by placing partition P on a device d. F de-
termines how many rules a device can store, based on
the rule patterns (i.e., exact match, prefix-based match-
ing, and match based on wildcard ranges) and the re-
source constraints (i.e., CPU, memory). For example, for
a hardware OpenFlow switch d with sTCAM(d) TCAM
entries and sSRAM(d) SRAM entries, the resource con-
sumption F (P,d) = re(P)/sSRAM(d)+rw(P)/sTCAM(d),
where re and rw are the numbers of exact matching rules
and wildcard rules in P respectively.

The resource function for Open vSwitch is more com-
plicated and depends upon the number of rules r(P) in
the partition P, the number of wildcard patterns w(P) in
P, and the rate k(d) of new flow arriving at switch d.
Figure 3 shows the number of rules an Open vSwitch
can support for different number of wild card patterns.3

The number of rules it can support reduces exponentially
with the increase of the number of wild card patterns (the
y-axis in Figure 3 is in log-scale), because Open vSwitch
creates a hash table for each wild card pattern and goes
through these tables linearly. For a fixed number of wild
card patterns and the number of rules, to double the num-
ber of new flows that Open vSwitch can support, we must
double the CPU allocation.

We capture the CPU resource demand of Open
vSwitch as a function of the number of new flows per
second matching the rules in partition and the number of
rules and wild card patterns handled by it. Using non-
linear least squares regression, we achieved a good fit for
Open vSwitch performance in Figure 3 with the func-
tion F (P,d) = α(d)× k(d)×w(P)× log

(
β (d)r(P)

w(P)

)
, where

α = 1.3×10−5, β = 232, with R2 = 0.95.4

3The IP prefixes with different lengths 10.2.0.0/24 and 10.2.0.0/16
are two wildcard patterns. The number of wildcard patterns can be
large when the rules are defined on multiple tuples. For example, the
source and destination pairs can have at most 33*33 wildcard patterns.

4R2 is a measure of goodness of fit with a value of 1 denoting a
perfect fit.

3.3 Resource-aware Placement

Resource-aware partition placement where partitions do
not have rules in common can be formulated as a bin-
packing problem that minimizes the total number of de-
vices to fit all the partitions. This bin-packing problem
is NP-hard, but there exist approximation algorithms for
it [21]. However, resource-aware partition placement for
vCRIB is more challenging since partitions may have
rules in common and it is important to co-locate parti-
tions with shared rules in order to save resources.

Algorithm 1 First Fit Decreasing Similarity Algorithm

P= set of not placed partitions
while |P|> 0 do

Select a partition Pi randomly
Place Pi on an empty device Mk.
repeat

Select Pj ∈P with maximum similarity to Pi
until Placing Pj on Mk Fails

end while

We use a heuristic algorithm for bin-packing similar
partitions called First Fit Decreasing Similarity (FFDS)
(Algorithm 1) which extends the traditional FFD algo-
rithm [33] for bin packing to consider similarity between
partitions. One way to define similarity between two
partitions is as the number of rules they share. For ex-
ample, the similarity between P4 and P5 is |P4∩P5| =
|P4|+ |P5|− |P4∪P5| = 4. However, different devices
may have different resource constraints (one may be con-
strained by CPU, and another by memory). A more gen-
eral definition of similarity between partitions Pi and Pk
on device d is based on the resource consumption func-
tion F : our similarity function F (Pi,d) +F (Pk,d)−
F (Pi ∪ Pk,d) compares the network resource usage of
co-locating those partitions.

Given this similarity definition, FFDS first picks a par-
tition Pi randomly and stores it in a new device.5 Next,
we pick partitions similar to Pi until the device cannot fit
more. Finally, we repeat the first step till we go through
all the partitions.

For the memory usage model, since we use per-source
partitions, we can quickly find partitions similar to a
given partition, and improve the execution time of the
algorithm from a few minutes to a second. Since per-
source partitions are ordered in the source IP dimension
and the rules are always contiguous blocks crossing only

5As a greedy algorithm, one would expect to pick large partitions
first. However, since we have different resource functions for different
devices, it is hard to pick the large partitions based on different metrics.
Fortunately, in theory, picking partitions randomly or greedily do not
affect the approximation bound of the algorithm. As an optimization,
instead of picking a new device, we can pick the device whose existing
rules are most similar to the new partition.

6

neighboring partitions, we can prove that the most sim-
ilar partitions are always the ones adjacent to the parti-
tion [27]). For example, P4 has 4 common rules with
P5 but 3 common rules with P7 in Figure 6(a). So in
the third step of FFDS, we only need to compare left and
right unassigned partitions.

To illustrate the algorithm, suppose each server in the
topology of Figure 1 has a capacity of four rules to place
the partitions and switches have no capacity. Considering
the ruleset in Figure 2(a), we first pick a random partition
P4 and place it on an empty device. Then, we check P3
and P5 and pick P5 as it has more similar rules (4 vs 2).
Between P3 and P6, P6 is the most similar but the device
has no additional capacity for A3, so we stop. In the next
round, we place P2 on an empty device and bring P1, P0
and P3 but stop at P6 again. The last device will contain
P6 and P7.

We have proved that, FFDS algorithm is 2-
approximation for resource-aware placement in networks
with only memory-constrained devices [27]. Approxi-
mation bounds for CPU-constrained devices is left to fu-
ture work.

Our FFDS algorithm is inspired by the tree-based
placement algorithm proposed in [33], which minimizes
the number of servers to place VMs by putting VMs
with more common memory pages together. There are
three key differences: (1) since we use per-source parti-
tions, it is easier to find the most similar partitions than
memory pages; (2) instead of placing sub-trees of VMs
in the same device, we place a set of similar partitions
in the same device since these similar partitions are not
bounded by the boundaries of a sub-tree; and (3) we are
able to achieve a tighter approximation bound (2, instead
of 3). (The construction of sub-trees is discussed in a
technical report [27]).

Finally, it might seem that, because vCRIB uses per-
source partitions, it cannot efficiently handle a rule with
a wildcard on the source IP dimension. Such a rule
would have to be placed in every partition in the source
IP range specified by the wildcard. Interestingly, in this
case vCRIB works quite well: since all partitions on a
machine will have this rule, our similarity-based place-
ment will result in only one copy of this rule per device.

3.4 Traffic-aware Refinement

The resource-aware placement places partitions without
heed to traffic overhead since a partition may be placed
in a device other than the source, but the resulting assign-
ment is feasible in the sense that it respects resource con-
straints. We now describe an algorithm that refines this
initial placement to reduce traffic overhead, while still
maintaining feasibility. Having thus separated place-
ment and refinement, we can run the (usually) fast re-
finement after small-scale dynamics (some kinds of traf-

fic changes, VM migration, or rule changes) that do not
violate resource feasibility. Because each per-source par-
tition matches traffic from exactly one source, the refine-
ment algorithm only stores each partition once in the en-
tire network but tries to migrate it closer to its source.

Given per-source partitions, an overhead-greedy
heuristic would repeatedly pick the partition with the
largest traffic overhead, and place it on the device which
has enough resources to store the partition and the lowest
traffic overhead. However, this algorithm cannot handle
dynamics, such as traffic changes or VM migration. This
is because in the steady state many partitions are already
in their best locations, making it hard to rearrange other
partitions to reduce their traffic overhead. For example,
in Figure 6(a), assume the traffic for each rule (exclud-
ing A0) is proportional to the area it covers and gener-
ated from servers in topology of Figure 6(b). Suppose
each server has a capacity of 5 rules and we put P4 on
S4 which is the source of V M4, so it imposes no traffic
overhead. Now if V M2 migrates from S1 to S4, we can-
not save both P2 and P4 on S4 as it will need space for
6 rules, so one of them must reside on ToR2. As P2 has
3 units deny traffic overhead on A1 plus 2 units of accept
traffic overhead from local flows of S4, we need to bring
P4 out of its sweet spot and put P2 instead. However,
the overhead-greedy algorithm cannot move P4 as it is
already in its best location.

To get around this problem, it is important to choose
a potential refinement step that not only considers the
benefit of moving the selected partition, but also consid-
ers the other partitions that might take its place in future
refinement steps. We do this by calculating the bene-
fit of moving a partition Pi from its current device d(Pi)
to a new device j, M(Pi, j). The benefit comes from
two parts: (1) The reduction in traffic (the first term of
Equation 1); (2) The potential benefit of moving other
partitions to d(Pi) using the freed resources from Pi, ex-
cluding the lost benefit of moving these partitions to j
because Pi takes the resources at j (the second term of
Equation 1). We define the potential benefit of mov-
ing other partitions to a device j as the maximum ben-
efits of moving a partition Pk from a device d to j, i.e.,
Q j = maxk,d(T (Pk,d)−T (Pk, j)). We speed up the cal-
culation of Q j by only considering the current device of
Pk and the best device b(Pk) for Pk with the least traffic
overhead. (We omit the reasons for brevity.) In summary,
the benefit function is defined as:

M(Pi, j) = (T (Pi,d(Pi))−T (Pi, j))+(Qd(Pi)−Q j) (1)

Our traffic-aware refinement algorithm is benefit-
greedy, as described in Algorithm 2. The algorithm is
given a time budget (a “timeout”) to run; in practice, we

7

Algorithm 2 Benefit-Greedy algorithm

Update b(Pi) and Q(d)
while not timeout do

Update the benefit of moving every Pi to its best feasible
target device M(Pi,b(Pi))
Select Pi with the largest benefit M(Pi,b(Pi))
Select the target device j for Pi that maximizes the benefit
M(Pi, j)
Update best feasible target devices for partitions and Q’s

end while
return the best solution found

have found time budgets of a few seconds to be suffi-
cient to generate low traffic-overhead refinements. At
each step, it first picks that partition Pi that would bene-
fit the most by moving to its best feasible device b(Pi),
and then picks the most beneficial and feasible device j
to move Pi to.6

We now illustrate the benefit-greedy algorithm (Algo-
rithm 2) using our running example in Figure 6(b). The
best feasible target device for both P2 and P4 are ToR2.
P2 maximizes QS4 with value 5 because its deny traffic is
3 and has 1 unit of accept traffic to V M4 on S4. Also we
assume that Q j is zero for all other devices. In the first
step, the benefit of migrating P2 to ToR2 is larger than
moving P4 to ToR2, while the benefits of all the other
migration steps are negative. After moving P2 to ToR2
the only beneficial step is moving P4 out of S4. After
moving P4 to ToR2, migrating P2 to S4 become feasi-
ble, so QS4 will become 0 and as a result the benefit of
this migration step will be 5. So the last step is moving
P2 to S4.

An alternative to using a greedy approach would
have been to devise a randomized algorithm for perturb-
ing partitions. For example, a Markov approximation
method is used in [20] for VM placement. In this ap-
proach, checking feasibility of a partition movement to
create the links in the Markov chain turns out to be com-
putationally expensive. Moreover, a randomized iterative
refinement takes much longer to converge after a traffic
change or a VM migration.

4 Evaluation
We first use simulations on a large fat-tree topology with
many fine-grained rules to study vCRIB’s ability to min-
imize traffic overhead given resource constraints. Next,
we explore how the online benefit-greedy algorithm han-
dles rule re-placement as a result of VM migrations. Our
simulations are run on a machine with quad-core 3.4
GHz CPU and 16 GB Memory. Finally, we deploy our
prototype in a small testbed to understand the overhead

6By feasible device, we mean the device has enough resources to
store the partition according to the function F .

at the controller, and end-to-end delay between detecting
traffic changes and re-installing the rules.

4.1 Simulation Setup

Topology: Our simulations use a three-level fat-tree
topology with degree 16, containing 1024 servers in 128
racks connected by 320 switches. Since current hyper-
visor implementations can support multiple concurrent
VMs [31], we use 20 VMs per machine. We consider two
models of resource constraints at the servers: memory
constraints (e.g., when rules are offloaded to a NIC), and
CPU constraints (e.g., in Open vSwitch). For switches,
we only consider memory constraints.

Rules: Since we do not have access to realistic data
center rule bases, we use ClassBench [35] to create 200K
synthetic rules each having 5 fields. ClassBench has been
shown to generates rules representative of real-world ac-
cess control.

VM IP address assignment: The IP address assigned
to a VM determines the number of rules the VM matches.
A random address assignment that is oblivious to the
rules generated in the previous set may cause most of the
traffic to match the default rule. Instead, we use a heuris-
tic – we first segment the IP range with the boundaries
of rules on the source and destination IP dimensions and
pick random IP addresses from randomly chosen ranges.
We test two arrangements: Random allocation which as-
signs these IPs randomly to servers and Range allocation
which assigns a block of IPs to each server so the IP ad-
dresses of VMs on a server are in the same range.

Flow generation: Following prior work, we use
a staggered traffic distribution (ToRP=0.5, PodP=0.3,
CoreP=0.2) [8]. We assume that each machine has an av-
erage of 1K flows that are uniformly distributed among
hosted VMs; this represents larger traffic than has been
reported [10], and allows us to stress vCRIB. For each
server, we select the source IP of a flow randomly from
the VMs hosted on that machine and select the destina-
tion IP from one of the target machines matching the traf-
fic distribution specified above. The protocol and port
fields of flows also affect the distribution of used rules.
The source port is wildcarded for ClassBench rules so we
pick that randomly. We pick the destination port based
on the protocol fields and the port distributions for differ-
ent protocols (This helps us cover more rules and do not
dwell on different port values for ICMP protocol.). Flow
sizes are selected from a Pareto distribution [10]. Since
CPU processing is impacted by newly arriving flows, we
marked a subset of these flows as new flows in order to
exercise the CPU resource constraint [10]. We run each
experiment multiple times with different random seeds
to get a stable mean and standard deviation.

8

4k_0 4k_4k 4k_6k
0

0.1

0.2

0.3

Server memory_Switch memory

T
ra

ffi
c

ov
er

he
ad

 r
at

io

Range
Random

(a) Memory budget at servers

10_4K 10_6k 20_0 20_4K 20_6K 40_0
0

0.1

0.2

0.3

Server CPU core%_Switch memory

T
ra

ffi
c

ov
er

he
ad

 r
at

io

Range
Random

(b) CPU budget at servers

Figure 7: Traffic overhead and resource constraints tradeoffs

4.2 Resource Usage and Traffic Trade-off

The goal of vCRIB rule placement is to minimize the
traffic overhead given the resource constraints. To cali-
brate vCRIB’s performance, we compare it against Sour-
cePlacement, which stores the rules at the source hy-
pervisor. Our metric for the efficacy of vCRIB’s per-
formance is the ratio of traffic as a result of vCRIB’s
rule placement to the traffic incurred as a result of Sour-
cePlacement (regardless of whether SourcePlacement is
feasible or not). When all the servers have enough capac-
ity to process rules (i.e., SourcePlacement is feasible),
it incurs lowest traffic overhead; in these cases, vCRIB
automatically picks the same rule placement as Source-
Placement, so here we only evaluate cases that Source-
Placement is infeasible. We begin with memory resource
model at servers because of its simpler similarity model
and later compare it with CPU-constrained servers.

vCRIB uses similarity to find feasible solutions when
SourcePlacement is infeasible. With Range IP allo-
cation, partitions in the Source IP dimension which are
similar to each other are saved on one server, so the av-
erage load on machines is smaller for SourcePlacement.
However, there may still be a few overloaded machines
that result in an infeasible SourcePlacement. With Ran-
dom IP allocation, the partitions on a server have low
similarity and as a result the average load of machines
is larger and there are many overloaded ones. Having
the maximum load of machines above 5K in all runs for
both Range and Random cases, we set a capacity of 4K
for servers and 0 for switches (“4K 0” setting) to make
SourcePlacement infeasible. vCRIB could successfully
fit all the rules in the servers by leveraging the similarities
of partitions and balancing the rules. The power of lever-
aging similarity is evident when we observe that in the
Random case the average number of rules per machine
(4.2K) for SourcePlacement exceeds the server capacity,
yet vCRIB finds a feasible placement by saving similar
partitions on the same machine. Moreover, vCRIB finds
a feasible solution when we add switch capacity and uses
this capacity to optimize traffic (see below), yet Source-
Placement is unable to offload the load.

vCRIB finds a placement with low traffic overhead.
Figure 7(a) shows the traffic ratio between vCRIB and

SourcePlacement for the Range and Random cases with
error bars representing standard deviation for 10 runs.
For the Range IP assignment, vCRIB minimizes the traf-
fic overhead under 0.1%. The worst-case traffic over-
head for vCRIB is 21% when vCRIB cannot leverage
rule processing in switches to place rules and the VM IP
address allocation is random, an adversarial setting for
vCRIB. The reason is that in the Random case the ar-
rangement of the traffic sources is oblivious to the simi-
larity of partitions. So any feasible placement depending
on similarity puts partitions far from their sources and
incurs traffic overhead. When it is possible to process
rules on switches, vCRIB’s traffic overhead decreases
dramatically (6% (3%) for 4K (6K) rule capacity in in-
ternal switches); in these cases, to meet resource con-
straints, vCRIB places partitions on ToR switches on the
path of traffic, incurring minimal overhead. As an aside,
these results illustrate the potential for using vCRIB’s al-
gorithms for provisioning: a data center operator might
decide when, and how much, to add switch rule process-
ing resources by exploring the trade-off between traffic
and resource usage.

vCRIB can also optimize placement given CPU con-
straints. We now consider the case where servers
may be constrained by CPU allocated for rule process-
ing (Figure 7(b)). We vary the CPU budget allocated to
rule processing (10%, 20%, 40%) in combination with
zero, 4K or 6K memory at switches. For example in case
“40 0” (i.e., each server has 40% CPU budget, but there
is no capacity at switches), SourcePlacement results in
an infeasible solution, since the highest CPU usage is
56% for range IP allocation and 42% for random IP al-
location. In contrast, vCRIB can find feasible solutions
in all the cases except “10 0” case. When we have only
10% CPU budget at servers, vCRIB needs some mem-
ory space at the switches (e.g., 4K rules) to find a fea-
sible solution. With a 20% CPU budget, vCRIB can
find a feasible solution even without any switch capacity
(“20 0”). With higher CPU budgets, or with additional
switch memory, vCRIB’s traffic overhead becomes neg-
ligible. Thus, vCRIB can effectively manage heteroge-
neous resource constraints and find low traffic-overhead
placement in these settings. Unlike with memory con-
straints, Range IP assignment with CPU constraints does
not have a lower average load on servers for Source-
Placement, nor does it have a feasible solution with lower
traffic overhead, since with the CPU resource usage func-
tion closer partitions in the source IP dimension are no
longer the most similar.

4.3 Resource Usage and Traffic Spatial Distribution

We now study how resource usage and traffic overhead
are spatially distributed across a data center for the Ran-
dom case.

9

(a) Traffic overhead for different rules

4k_0 4k_4k 4k_6k
0

0.1

0.2

0.3

T
ra

ffi
c

ov
er

he
ad

 r
at

io

ToR
Pod
Core

(b) Traffic overhead on different links

4k_0 4k_4k 4k_6k
0

1000

2000

3000

4000

5000

M
em

or
y

us
ag

e

Server
ToR
Pod
Core

(c) Memory usage on different devices

Figure 8: Spatial distribution of traffic and resource usage

vCRIB is effective in leveraging on-path and nearby
devices. Figure 8(a) shows the case where servers
have a capacity of 4K and switches have none. We clas-
sify the rules into deny rules, accept rules whose traf-
fic stays within the rack (labelled as “ToR”), within the
Pod (“Pod”), or goes through the core routers (“Core”).
In general, vCRIB may redirect traffic to other loca-
tions away from the original paths, causing traffic over-
head. We thus classify the traffic overhead based on the
hops the traffic incurs, and then normalize the overhead
based on the traffic volume in the SourcePlacement ap-
proach. Adding the percentage of traffic that is handled
in the same rack of the source for deny traffic (8.8%) and
source or destination for accept traffic (1.8% ToR, 2.2%
POD, and 1.6% Core), shows that out of 21% traffic over-
head, about 14.4% is handled in nearby servers.

Most traffic overhead vCRIB introduces is within the
rack. Figure 8(b) classifies the locations of the ex-
tra traffic vCRIB introduces. vCRIB does not require
additional bandwidth resources at the core links; this is
advantageous, since core links can limit bisection band-
width. In part, this can be explained by the fact that only
20% of our traffic traverses core links. However, it can
also be explained by the fact that vCRIB places parti-
tions only on ToRs or servers close to the source or des-
tination. For example, in the “4K 0” case, there is 29%
traffic overhead in the rack, 11% in the Pod and 2% in
the core routers, and based on Figure 8(c) all partitions
are saved on servers. However, if we add 4K capacity to
internal switches, vCRIB will offload some partitions to
switches close to the traffic path to lower the traffic over-
head. In this case, for accept rules, the ToR switch is on
the path of traffic and does not increase traffic overhead.
Note that the servers are always full as they are the best
place for saving partitions.

4.4 Parameter Sensitivity Analysis

The IP assignment method, traffic locality and rules in
partitions can affect vCRIB performance in finding a fea-
sible solution with low traffic. Our previous evaluations
have explored uniform IP assignment for two extreme
cases Range and Random above. We have also evaluated
a skewed distribution of the number of IPs/VMs per ma-

chine but have not seen major changes in the traffic over-
head. In this case, vCRIB was still able to find a nearby
machine with lower load. We also conducted another
experiment with different traffic locality patterns, which
showed that having more non-local flows gives vCRIB
more choices to offload rule processing and reach feasi-
ble solutions with lower traffic overhead. Finally, exper-
iments on FFDS performance for different machine ca-
pacities [27] also validates its superior performance com-
paring to the tree-based placement [33]. Beyond these
kinds of analyses, we have also explored the parameter
space of similarity and partition size, which we discuss
next.

0 1 2 3
0

1

2

3

Partition Size (K)

S
im

ila
rit

y
(K

)

(a) Feasibility region

0 1 2 3
0

1

2

3

Partition Size (K)

S
im

ila
rit

y
(K

)

(b) 10% traffic overhead

Figure 9: vCRIB working region and ruleset properties

vCRIB uses similarity to accommodate larger parti-
tions. We have explored two properties of the rules in
partitions by changing the ruleset. In Figure 9, we de-
fine a two dimensional space: one dimension measures
the average similarity between partitions and the other
the average size of partitions. Intuitively, the size of par-
titions is a measure of the difficulty in finding a feasible
solution and similarity is the property of a ruleset that
vCRIB exploits to find solutions. To generate this fig-
ure, we start from an infeasible setting for SourcePlace-
ment with a maximum of 5.7K rules for “4k 0” setting
and then change the ruleset without changing the load on
the maximum loaded server. We then explore the two
dimensions as follows. Starting from the ClassBench
ruleset and Range IP assignment, we split rules into half
in the source IP dimension to decrease similarity with-
out changing partition sizes. To increase similarity, we
extend a rule in source IP dimension and remove rules
in the extended area to maintain the same partition size.

10

Adding or removing rules matching only one VM (micro
rules), also help us change average partitions size with-
out changing the similarity. Unfortunately, removing just
micro rules is not enough to explore the entire range of
partition sizes, so we also remove rules randomly.

Figure 9(a) presents the feasibility region for vCRIB
regardless of traffic overhead. Since average similarity
cannot be more than the average partition size, the in-
teresting part of the space is below the 45◦. Note that
vCRIB is able to cover a large part of the space. More-
over, the shape of the feasibility region shows that for
a fixed average partition size, vCRIB works better for
partitions with larger similarity. This means that to han-
dle larger partitions, vCRIB needs more similarity be-
tween partitions; however, this relation is not linear since
vCRIB may not be able to utilize the available similarity
given limits on server capacity. When considering only
solutions with less than 10% traffic overhead, vCRIB’s
feasibility region (Figure 9(b)) is only slightly smaller.
This figure demonstrates vCRIB’s utility: for a small
additional traffic overhead, vCRIB can find many ad-
ditional operating points in a data center that, in many
cases, might have otherwise been infeasible.

We also tried a different method for exploring the
space, by tuning the IP selection method on a fixed rule-
set, and obtained qualitatively similar results [27].

4.5 Reaction to Cloud Dynamics

Figure 10 compares benefit-greedy (with timeout 10
seconds) with overhead-greedy and a randomized algo-
rithm7 after a single VM migration for the 4K 0 case.
Each point in Figure 10 shows a step in which one parti-
tion is moved, and the horizontal axis is time in log scale.
At time A, we migrate a VM from its current server Sold
to a new one Snew, but Snew does not have any space for
the partition of the VM, P. As a result, P remains on
Sold and the traffic overhead increases by 40MBps. Both
benefit-greedy and overhead-greedy move the partition
P for the migrated VM to a server in the rack containing
Snew at time B and reduce traffic by 20Mbps. At time B,
benefit-greedy brings out two partitions from their cur-
rent host Snew to free up the memory for P while impos-
ing a little traffic overhead. At time C, benefit-greedy
moves P to Snew and reduces traffic further by 15Mbps.
The entire process takes only 5 seconds. In contrast, the
randomized algorithm takes 100 seconds to find the right
partitions and thus is not useful with these dynamics.

We then run multiple VM migrations to study the av-
erage behavior of benefit-greedy with 5 and 10 seconds
timeout. In each 20 seconds interval, we randomly pick
a VM and move it to another random server. Our sim-
ulations last for 30 minutes. The trend of data cen-

7Markov Approximation [20] with target switch selection probabil-
ity ∝ exp(traffic reduction of migration step)

0

10

20

30

40

T
ra

ffi
c

O
ve

rh
ea

d
(M

B
ps

)

Time (s)

0
A

0.01
B

0.1
C

1 5 10 100

Benefit Greedy
Overhead Greedy
Markov Approx.

Figure 10: Traffic refinement for one VM migration

ter traffic in Figure 11 shows that benefit-greedy main-
tains traffic levels, while overhead-greedy is unable to
do so. Over time, benefit-greedy (both configurations)
reduces the average traffic overhead around 34 MBps,
while overhead-greedy algorithm increases the overhead
by 117.3 MBps. Besides, this difference increases as the
interval between two VM migration increases.

0 500 1000 1500 2000
49

49.1

49.2

49.3

49.4

49.5

Time (s)

T
ra

ffi
c

(G
B

)

 Overhead Greedy
Benefit Greedy(10)
Benefit Greedy(5)

Figure 11: The trend of traffic during multiple VM migration

4.6 Prototype Evaluation

We built vCRIB prototype using Open vSwitch [4] as
servers and switches, and POX [1] as the platform for
vCRIB controller for micro-benchmarking.

Overhead of collecting traffic information: In our
prototype, we send traffic information collected from
each server’s Open vSwitch kernel module to the con-
troller. Each piece of information requires 13 Bytes for
5 tuples8 and 2 Bytes for the traffic change volume.

Since we only need to detect traffic changes at the rule-
level, we can more aggressively filter the traffic infor-
mation than traditional traffic engineering solutions [11].
The vCRIB controller sets a threshold δ (F) for traffic
changes of a set of flows F and sends the threshold to
the servers. The servers then only report traffic changes
above δ (F). We set the threshold δ for two different
granularities of flow sets F . A larger set F makes vCRIB
less sensitive to individual flow changes and leads to less
reporting overhead but incurs less accuracy. (1) We set
F as the volume each rule for each destination server in

8Some rules may have more packet header fields and thus require
more bytes. In this cases, we can compress these information using
fingerprints to reduce the overhead.

11

each per-source partition. (2) We assume all the rules in
a partition have accept actions (as the worst case for traf-
fic). Thus, the vCRIB controller sets the threshold that
affects the size of traffic to each destination server for
each per-source partition (summing up all the rules). If
there are 20 flow changes above the threshold, we need
to send 260B/s per server, which means 20Mbps for 10K
servers in the data center. For VM migrations and rule
insertion/deletion, the vCRIB controller can be notified
directly by the the data center management system.

Controller overhead: We measure the delay of pro-
cessing 200K ClassBench rules. Initially, the vCRIB
controller partitions these rules, runs the resource-aware
placement algorithm and the traffic-aware refinement to
derive an initial placement; this takes up to five minutes.
However, these recomputations are triggered only when
a placement becomes infeasible; this can happen after a
long sequence of rule changes or VM add/remove.

The traffic overhead of rule installation and removal
depends on the number of refinement steps and the num-
ber of rules per partition. The size of OpenFlow com-
mand for a rule entry is 100 Bytes, so if a partition
has 1K rules, the overhead of removing it from one
device and installing at another device is 200KB. For
each VM migration, which needs an average of 11 par-
titions, the bandwidth overhead of moving the rules is
11×200KB=2.2MB.

Reaction to cloud dynamics: We evaluate the latency
of handling traffic changes by deploying our prototype in
a topology with five switches and six servers as shown in
Figure 1. We deploy a vCRIB controller that connects
with all the devices with an RTT of 20 ms. We set the
capacity of each server/switch as large enough to store at
most one partition. We then inject a traffic change pattern
that causes vCRIB to swap two partitions and add a redi-
rection rule at a VM. It takes vCRIB 30ms to detect the
traffic changes, and move the rules to the new locations.

5 Related Work
Our work is inspired by several different strands of re-
search, each of which we cover briefly.

Policies and rules in the cloud: Recent proposals
for new policies often propose customized systems to
manage rules on either hypervisors [4, 13, 32, 30]) or
switches [3, 8, 29]. vCRIB proposes an abstraction of
a centralized rule repository for all the policies, frees
these systems from the complexity inherent in the rule
management, and handles heterogeneous resource con-
straints at devices while minimizing the traffic overhead.

Rule management in software-defined networks
(SDNs): Recent work on SDNs provides rule reposi-
tory abstractions and some rule management capabili-

ties [12, 23, 38, 13]. vCRIB focuses on data centers,
which are more dynamic, more sensitive to traffic over-
head, and face heterogeneous resource constraints.

Distributed firewall: Distributed firewalls [9, 19], of-
ten used in enterprises, leverage a centralized manager
to deploy security policies on edge machines. vCRIB
manages more fine-grained rules on flows and VMs for
various policies including firewalls in the cloud. Rather
than placing these rules at the edge, vCRIB places these
rules taking into account the rule processing constraints,
while minimizing traffic overhead.

Rule partition and placement solutions: The problem
of partitioning and placing multi-dimensional data at dif-
ferent locations also appears in other contexts. Unlike
traditional partitioning algorithms [36, 34, 16, 25, 24]
which divide rules into partitions using a top-down ap-
proach, vCRIB uses per-source partitions to place the
partitions close to the source with low traffic overhead.
Compared with DIFANE [38], which randomly places
a single partition of rules at each switch, vCRIB takes
the partitions-with-replication approach to flexibly place
multiple per-source partitions at one device. In prelim-
inary work [26], we proposed an offline placement so-
lution which works only for the TCAM resource model.
The paper has a top-down heuristic partition-with-split
algorithm which cannot limit the overhead of redirec-
tion rules and is not optimized for CPU-based resource
model. Besides, having partitions with traffic from mul-
tiple sources requires complicated partition replication to
minimize traffic overhead. In contrast, vCRIB uses fast
per-source partition-with-replication algorithm which re-
duces TCAM-usage by leveraging similarity of partitions
and restricts the resource usage of redirection by using
limited number of equal shaped redirection rules. Our
preliminary work used an unscalable DFS branch-and-
bound approach to find a feasible solution and optimized
the traffic in one step. vCRIB scales better using a two-
phase solution where the first phase has an approxima-
tion bound in finding a feasible solution and the second
can be run separately when the placement is still feasible.

6 Conclusion
vCRIB, is a system for automatically managing the fine-
grained rules for various management policies in data
centers. It jointly optimizes resource usage at both
switches and hypervisors while minimizing traffic over-
head and quickly adapts to cloud dynamics such as traffic
changes and VM migrations. We have validated its de-
sign using simulations for large ClassBench rulesets and
evaluation on a vCRIB prototype built on Open vSwitch.
Our results show that vCRIB can find feasible place-
ments in most cases with very low additional traffic over-
head, and its algorithms react quickly to dynamics.

12

References
[1] http://www.noxrepo.org/pox/about-

pox.

[2] http://www.praxicom.com/2008/04/
the-amazon-ec2.html.

[3] Big Switch Networks. http://www.
bigswitch.com/.

[4] Open vSwitch. http://openvswitch.org/.

[5] Private conversation with Amazon.

[6] Private conversation with rackspace operators.

[7] Virtual networking technologies at the server-
network edge. http://h20000.www2.hp.
com/bc/docs/support/SupportManual/
c02044591/c02044591.pdf.

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat. Hedera: Dynamic Flow
Scheduling for Data Center Networks. In NSDI,
2010.

[9] S. M. Bellovin. Distributed Firewalls. ;login:,
November 1999.

[10] T. Benson, A. Akella, and D. A. Maltz. Network
Traffic Characteristics of Data Centers in the Wild.
In IMC, 2010.

[11] T. Benson, A. Anand, A. Akella, and M. Zhang.
MicroTE: Fine Grained Traffic Engineering for
Data Centers. In ACM CoNEXT, 2011.

[12] M. Casado, M. Freedman, J. Pettit, J. Luo, N. Gude,
N. McKeown, and S. Shenker. Rethinking Enter-
prise Network Control. IEEE/ACM Transactions
on Networking, 17(4), 2009.

[13] M. Casado, T. Koponen, R. Ramanathan, and
S. Shenker. Virtualizing the Network Forwarding
Plane. In PRESTO, 2010.

[14] C. Chekuri and S. Khanna. A PTAS for the Multiple
Knapsack Problem. In SODA, 2001.

[15] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee. DevoFlow: Scal-
ing Flow Management for High-Performance Net-
works. In SIGCOMM, 2011.

[16] P. Gupta and N. McKeown. Packet Classification
using Hierarchical Intelligent Cuttings. In Hot In-
terconnects VII, 1999.

[17] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yi-
akoumis, P. Sharma, S. Bannerjee, and N. McKe-
own. ElasticTree: Saving Energy in Data Center
Networks. In NSDI, 2010.

[18] T. L. Hinrichs, N. S. Gude, M. Casado, J. C.
Mitchell, and S. Shenker. Practical Declarative Net-
work Management. In WREN, 2009.

[19] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and
J. M. Smith. Implementing a Distributed Firewall.
In CCS, 2000.

[20] J. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang.
Joint VM Placement and Routing for Data Center
Traffic Engineering. In INFOCOM, 2012.

[21] E. G. C. Jr., M. R. Carey, and D. S. Johnson.
Approximation Algorithms for NP-hard Problems.
chapter Approximation Algorithms for Bin Pack-
ing: A Survey. PWS Publishing Co., Boston, MA,
USA, 1997.

[22] S. Kandula, S. Sengupta, A. Greenberg, P. Patel,
and R. Chaiken. The Nature of Datacenter Traffic:
Measurements and Analysis. In IMC, 2009.

[23] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A Dis-
tributed Control Platform for Large-scale Produc-
tion Networks. In OSDI, 2010.

[24] V. Kriakov, A. Delis, and G. Kollios. Manage-
ment of Highly Dynamic Multidimensional Data in
a Cluster of Workstations. Advances in Database
Technology-EDBT, 2004.

[25] A. Mondal, M. Kitsuregawa, B. C. Ooi, and K. L.
Tan. R-tree-based Data Migration and Self-Tuning
Strategies in Shared-Nothing Spatial Databases. In
GIS, 2001.

[26] M. Moshref, M. Yu, A. Sharma, and R. Govin-
dan. vCRIB: Virtualized Rule Management in the
Cloud. In HotCloud, 2012.

[27] M. Moshref, M. Yu, A. Sharma, and R. Govin-
dan. vCRIB: Virtualized Rule Management in the
Cloud. Technical Report 12-930, Computer Sci-
ence, USC, 2012. http://www.cs.usc.edu/
assets/004/83467.pdf.

[28] J. Mudigonda, P. Yalagandula, J. Mogul, and
B. Stiekes. NetLord: A Scalable Multi-Tenant Net-
work Architecture for Virtualized Datacenters. In
SIGCOMM, 2011.

13

http://www.noxrepo.org/pox/about-pox
http://www.noxrepo.org/pox/about-pox
http://www.praxicom.com/2008/04/the-amazon-ec2.html
http://www.praxicom.com/2008/04/the-amazon-ec2.html
http://www.bigswitch.com/
http://www.bigswitch.com/
http://openvswitch.org/
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c02044591/c02044591.pdf
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c02044591/c02044591.pdf
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c02044591/c02044591.pdf
http://www.cs.usc.edu/assets/004/83467.pdf
http://www.cs.usc.edu/assets/004/83467.pdf

[29] L. Popa, A. Krishnamurthy, S. Ratnasamy, and
I. Stoica. FairCloud: Sharing The Network In
Cloud Computing. In HotNets, 2011.

[30] L. Popa, M. Yu, S. Y. Ko, I. Stoica, and S. Rat-
nasamy. CloudPolice: Taking Access Control out
of the Network. In HotNets, 2010.

[31] S. Rupley. Eyeing the Cloud, VMware Looks
to Double Down On Virtualization Efficiency,
2010. http://gigaom.com/2010/01/
27/eyeing-the-cloud-vmware-looks-
to-double-down-on-virtualization-
efficiency.

[32] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and
B. Saha. Sharing the Datacenter Networks. In
NSDI, 2011.

[33] M. Sindelar, R. K. Sitaram, and P. Shenoy. Sharing-
Aware Algorithms for Virtual Machine Colocation.
In SPAA, 2011.

[34] S. Singh, F. Baboescu, G. Varghese, and J. Wang.
Packet Classification Using Multidimensional Cut-
ting. In SIGCOMM, 2003.

[35] D. E. Taylor and J. S. Turner. ClassBench: A Packet
Classification Benchmark. IEEE/ACM Transac-
tions on Networking, 15(3), 2007.

[36] B. Vamanan, G. Voskuilen, and T. N. Vijayku-
mar. Efficuts: Optimizing Packet Classification for
Memory and Throughput. In SIGCOMM, 2010.

[37] A. Voellmy, H. Kim, and N. Feamster. Procera: A
Language for High-Level Reactive Network Con-
trol. In HotSDN, 2010.

[38] M. Yu, J. Rexford, M. J. Freedman, and J. Wang.
Scalable Flow-Based Networking with DIFANE. In
SIGCOMM, 2010.

14

http://gigaom.com/2010/01/27/eyeing-the-cloud-vmware-looks-to-double-down-on-virtualization-efficiency
http://gigaom.com/2010/01/27/eyeing-the-cloud-vmware-looks-to-double-down-on-virtualization-efficiency
http://gigaom.com/2010/01/27/eyeing-the-cloud-vmware-looks-to-double-down-on-virtualization-efficiency
http://gigaom.com/2010/01/27/eyeing-the-cloud-vmware-looks-to-double-down-on-virtualization-efficiency

	Introduction
	Motivation and Challenges
	vCRIB Automated Rule Management
	Rule Partitioning with Replication
	Partition Assignment and Resource Usage
	Resource-aware Placement
	Traffic-aware Refinement

	Evaluation
	Simulation Setup
	Resource Usage and Traffic Trade-off
	Resource Usage and Traffic Spatial Distribution
	Parameter Sensitivity Analysis
	Reaction to Cloud Dynamics
	Prototype Evaluation

	Related Work
	Conclusion

