
FlowRadar: A Better NetFlow for Data Centers

Yuliang Li∗ Rui Miao∗ Changhoon Kim† Minlan Yu∗
∗University of Southern California †Barefoot Networks

Abstract

NetFlow has been a widely used monitoring tool with
a variety of applications. NetFlow maintains an active
working set of flows in a hash table that supports flow
insertion, collision resolution, and flow removing. This
is hard to implement in merchant silicon at data cen-
ter switches, which has limited per-packet processing
time. Therefore, many NetFlow implementations and
other monitoring solutions have to sample or select a
subset of packets to monitor. In this paper, we observe
the need to monitor all the flows without sampling in
short time scales. Thus, we design FlowRadar, a new
way to maintain flows and their counters that scales to a
large number of flows with small memory and bandwidth
overhead. The key idea of FlowRadar is to encode per-
flow counters with a small memory and constant inser-
tion time at switches, and then to leverage the computing
power at the remote collector to perform network-wide
decoding and analysis of the flow counters. Our eval-
uation shows that the memory usage of FlowRadar is
close to traditional NetFlow with perfect hashing. With
FlowRadar, operators can get better views into their net-
works as demonstrated by two new monitoring applica-
tions we build on top of FlowRadar.

1 Introduction

NetFlow [4] is a widely used monitoring tool for over 20
years, which records the flows (e.g., source IP, destina-
tion IP, source port, destination port, and protocol) and
their properties (e.g., packet counters, and the flow start-
ing and finish times). When a flow finishes after the in-
active timeout, NetFlow exports the corresponding flow
records to a remote collector. NetFlow has been used for
a variety of monitoring applications such as accounting
network usage, capacity planning, troubleshooting, and
attack detection.

Despite its wide applications, the key problem to im-

plement NetFlow in hardware is how to maintain an ac-
tive working set of flows using a data structure with low
time and space complexity. We need to handle collisions
during flow insertion and remove old flows to make room
for new ones. These tasks are challenging given the lim-
ited per-packet processing time at merchant silicon.

To handle this challenge, today’s NetFlow is imple-
mented in two ways: (1) Using complex custom silicon
that is only available at high-end routers, which is too
expensive for data centers; (2) Using software to count
sampled packets from hardware, which takes too much
CPU resources at switches. Because of the lack of us-
able NetFlow in data centers, operators have to mirror
packets based on sampling or matching rules and ana-
lyze these packets in a remote collector [26, 40, 44, 34].
It is impossible to mirror all the packets because it takes
too much bandwidth to mirror the traffic, and too many
storage and computing resources at the remote collector
to analyze every packet. (Section 2)

However, in data centers, there is an increasing need
to have visibility of the counters for all the flows all the
time. We need to cover all the flows to capture those tran-
sient loops, blackholes, and switch faults that only hap-
pen to a few flows in the Network and to perform fine-
grained traffic analysis (e.g., anomaly detection). We
need to cover these flows all the time to identify transient
losses, bursts, and attacks in a timely fashion. (Section 3)

In this paper, we propose FlowRadar, which keeps
counters for all the flows with low memory overhead
and exports the flow counters in short time scales (e.g.,
10 ms). The key design of FlowRadar is to identify the
best division of labor between cheap switches with lim-
ited per-packet processing time and the remote collector
with plenty of computing resources. We introduce en-
coded flowsets that only require simple constant-time in-
structions for each packet and thus are easy to implement
with merchant silicon at cheap switches. We then decode
these flowsets and perform network-wide analysis across
time and switches all at the remote collector. We make



the following key contributions in building FlowRadar:

Capture encoded flow counters with constant time
for each packet at switches: We introduce encoded
flowsets, which is an array of cells that encode the flows
(5 tuples) and their counters. Encoded flowsets ensure
constant per-packet processing time by embracing rather
than handling hash collisions. It maps one flow to many
cells, allows flows to collide in one cell, but ensure each
cell has constant memory usage. Since encoded flowsets
are small, we can afford to periodically export the en-
tire flowsets to the remote collector in short time scales.
Our encoded flowset data structure is an extension of In-
vertible Bloom filter Lookup Table (IBLT), but provides
better support for counter updates.

Network-wide decoding and analysis at a remote col-
lector: While each switch independently encodes the
flows and counters, we observe that most flows tra-
verse multiple switches. By leveraging the redundan-
cies across switches, we make the encoded flowsets more
compact. We then propose a network-wide decoding
scheme to decode the flows and counters across switches.
With the network-wide decoding, our encoded flowsets
can reduce the amount of memory needed to track 100K
flows by 5.6% compared to an ideal (and hence imprac-
tical) implementation of NetFlow with perfect hashing
(i.e., no collisions) while providing 99% decoding suc-
cess rate1. (Section 4 and 5)

FlowRadar can support a wide range of monitoring
applications including both existing monitoring applica-
tions on NetFlow, and new ones that require monitoring
all the flows all the time. As demonstrations, we design
and build two systems on top of FlowRadar: one that
detects transient loops and blackholes using a network-
wide flow analysis and another that provides a per-flow
loss map using temporal analysis (Section 6).

We discuss the implementation issues in Section 7,
compare with related work in Section 8, and conclude
in Section 9.

2 Motivation

In this section, we discuss the key challenges of im-
plementing NetFlow. We then describe three alterna-
tive monitoring solutions (Table 1): NetFlow in high-end
routers with custom silicon, NetFlow in cheap switches
with merchant silicon, and selective mirroring. To ad-
dress the limitations of these approaches, we present
FlowRadar architecture, which identifies a good division
of labor between the switches and the remote collector.

1The decode success rate is defined as the probability of success-
fully decoding all the flows.

2.1 Key challenges of supporting NetFlow
Since NetFlow has been developed for over 20 years,
there have been many implementations and extensions of
NetFlow in routers and switches. We cannot capture all
the NetFlow solutions here, and in fact many solutions
are proprietary information. Instead, we focus on the ba-
sic function of NetFlow: storing the flow fields (e.g., 5
tuples) and the records (e.g., packet counter, flow start-
ing time, the time that the flow is last seen, etc.) in a hash
table. The key challenge is how to maintain the active
working set of flows in the hash table given the limited
packet processing time.

Maintain the active working set of flows: There are
two key tasks in maintaining the active working set of
flows:

(1) How to handle hash collisions during flow insertion?
When we insert a new flow, it may experience collisions
with existing flows. One solution is to store multiple
flows in each cell in the hash table to reduce the chances
of overflow (e.g., d-left hashing [14, 38]), which requires
atomic many-byte memory accesses. Another solution
to move existing flows around to make room for new
flows (e.g., Cuckoo hashing [33]), which requires mul-
tiple, non-constant memory accesses per packet in the
worst case. Both are very challenging to implement on
merchant silicon with high line rate. The detailed chal-
lenges are discussed in Section 8.

(2) How to remove an old flow? We need to periodi-
cally remove old flows to make room for new flows in
the hash table. If a TCP flow receives a FIN, we can re-
move it from the table. However, in data centers there
are many persistent connections reused by multiple re-
quests/responses or messages. To identify idle flows,
NetFlow keeps the time a flow is last seen and period-
ically scan the entire hash table to check the inactive
time of each flow. If a flow is inactive for more than
the inactive timeout, NetFlow removes the flow and ex-
ports its counters. The inactive timeout can only be set
between 10 and 600 seconds with a default value of 15
seconds [1]. When the hash table is large, it takes a sig-
nificant time and switch CPU resources to scan the table
and clean up the table entries.

Limited per-packet processing time at merchant sil-
icon: It is hard to maintain the active working set of
flows at the merchant silicon—the commodity switch
design in data centers. The key constraint of the mer-
chant silicon is the limited time we can spend on each
packet. Suppose a switch has 40Gbps per port, which
means 12ns per packet processing time for 64 Byte pack-
ets2. Let’s assume the entire 12 ns can be dedicated
to NetFlow by performing perfect packet pipelining and

2This becomes worse when datacenters move to 100Gbps.



Hardware-based NetFlow Sampled software-based sFlow [40], FlowRadar
in custom silicon NetFlow in merchant silicon EverFlow [44]

Division of labor
state in switch hardware active working set of flows none none encoded flows and counters
state in switch software none (or some active flows) active working set of flows none none
data exported to collector flow records after termination flow records after termination Selected pkts and timestamps periodic encoded flow records
Coverage of traffic info
Temporal coverage No No No (if select control packets) Yes (milliseconds)
Flow coverage All or sampled packets sampled packets sampled or selected packets All

Table 1: Comparing FlowRadar with hardware-based NetFlow in custom silicon, sampling-based software NetFlow in merchant
silicon, and sFlow/EverFlow

allocating all other packet processing functions (packet
header parsing, Layer 2/3 forwarding, ACLs, etc.) to
other stages. Yet inside NetFlow, one needs to calcu-
late the hash functions, look up SRAM, run a few ALU
operations, and write back to the SRAM. Even with on-
chip SRAM which has roughly 1 ns access time, to fin-
ish all these actions in 12 ns is still a challenge. (Similar
arguments are made in [23] about the difficulties of im-
plementing data streaming at routers.)

2.2 Alternative monitoring solutions
Due to the limited per-packet time in merchant silicon,
one cannot process complex and non-constant time inser-
tion and deletion actions as required in NetFlow. There-
fore, there are three alternatives (Table 1):

Hardware-based NetFlow in custom silicon: One so-
lution is to design custom silicon to maintain the active
working set of flows in switch hardware. We can cache
popular flow entries in on-chip SRAM, but the rest in
off-chip SRAM or DRAM. We can also combine SRAM
with expensive and power-hungry TCAM to support par-
allel lookup. Even with the expensive custom silicon, the
test of Cisco high-end routers (Catalyst series) [18, 12]
shows that there is still around 16% switch CPU over-
head for storing 65K flow entries in hardware. Cisco
highly recommends NetFlow users to choose sampling
to reduce the NetFlow overhead on these routers [18].

Sampled software-based NetFlow in merchant sili-
con: Another solution is to sample packets and mir-
ror them to the switch software, and maintain the ac-
tive working set of flows in software. This solution
works with cheap merchant silicon, but takes even more
CPU overhead than hardware-based NetFlow in high-end
routers. To reduce the switch CPU overhead of NetFlow
and avoid interrupting other processes (e.g., OSPF, rule
updates) in CPU, operators have to set sampling rate low
enough (e.g., down to 1 in 4K). With such low sampling
rate, operators cannot use NetFlow for fine-grained traf-
fic analysis (e.g., anomaly detection) or capturing those
events that only happen to some flows (e.g., transient
loops or blackholes).

Selective mirroring (sFlow [40], EverFlow [44]): The

Decode analyzers

Encoded	
Flowsets

Flows & 
Counters

Encoded	
Flowsets

Encoded	
Flowsets

Periodic report

Figure 1: FlowRadar architecture

final solution data center operators take today is to only
sample packets or select packets based on match-action
rules, and then mirror these packets to a remote collec-
tor. The remote collector extracts per flow information
and performs detailed analysis. This solution works with
existing merchant silicon, and best leverages the comput-
ing resources in the cloud. However, it takes too much
bandwidth overhead to transfer all the packets to the col-
lector and too much storage and computing overhead at
the collector [44]. Therefore, operators can only get a
partial view from the selected packets.

2.3 FlowRadar architecture

Instead of falling back to sampling in existing monitor-
ing solutions, we aim at providing full visibility to all the
flows all the time (see example use cases in Section 3).
To achieve this, we propose to best leverage the capa-
bilities at both the merchant silicon at switches and the
computing power at the remote collector (Figure 1).

Capturing encoded flow counters at switches:
FlowRadar chooses to encode flows and their counters
into small fixed memory size that can be implemented in
merchant silicon with constant flow insertion time. In
this way, we can afford to capture all the flows with-
out sampling, and periodically export these encoded flow
counters to the remote collector in short time scales.

Decoding and analyzing flow counters at a remote
collector: Given the encoded flows and counters ex-
ported from many switches, we can leverage the com-
puting power at the remote collector to perform network-
wide decoding of the flows, and temporal and flow space
analysis for different monitoring applications.



3 Use cases

Since FlowRadar provides per flow counters, it can easily
inherit many monitoring applications built on NetFlow
such as accounting, capacity planning, application mon-
itoring and profiling, and security analysis. In this sec-
tion, we show that FlowRadar provides better monitoring
support than sampled NetFlow and sFlow/EverFlow in
two aspects: (1) Flow coverage: count all the flows with-
out sampling; and (2) Temporal coverage: export these
counters for each short time slot (e.g., 10 ms).

3.1 Flow coverage

Transient loop/blackhole detection: Transient loops
and blackholes are important to detect, as they could
cause packet loss. Just a few packet losses can cause sig-
nificant tail-latency increase and throughput drops (es-
pecially because TCP treats losses as congestion sig-
nals) [31, 10], leading to violations of service level agree-
ments (SLAs) and even a decrease of revenue [19, 39].
However, transient loops and blackholes are difficult to
detect, as they may only affect a few packets during
a very short time period. EverFlow or sampled Net-
Flow only select a few packets to monitor, and thus may
miss most of the transient loops and blackholes. In ad-
dition, the transient loops and blackholes may only af-
fect a certain kind of flows, so probing methods like
Pingmesh [25] may not even notice the existence of
them. Instead, if we can capture all the packets in each
flow and maintain a corresponding counter in real time
at every switch, we can quickly identify flows that are
experiencing loops or blackholes (see Section 6).

Errors in match-action tables: Switches usually main-
tain a pipeline of match-action tables for packet process-
ing. Data centers have reported table corruptions when
switch memory experiences soft errors (i.e., bit flips) and
these corruptions can lead to packet losses or incorrect
forwarding for a small portion of the traffic [25, 44]3.
Such corruptions are hard to detect using network ver-
ification tools because they cannot see the actual cor-
rupted tables. They are also hard to detect by sampled
NetFlow or EverFlow because we cannot pre-decide the
right set of packets to monitor. Instead, since FlowRadar
can monitor all the packets, we can see problems when
they happen (Section 6).

Fine-grained traffic analysis: Previous research has
shown that packet sampling is inadequate for many fine-
grained monitoring tasks such as understanding flow size
distribution and anomaly detection [22, 20, 30]. Since

3For example, the L2 forwarding table gets corrupted. The packet
that matches the entry can be flooded or mis-forwarded, leading to tran-
sient blackholes or loops before the entry is relearnt and corrected.

FlowRadar monitors all the packets, we can provide
more accurate traffic analysis and anomaly detection.

3.2 Temporal coverage

Per-flow loss map: Packet losses can be caused by a
variety of reasons (e.g., congestion, switch interface bug,
packet corruptions) and may have significant impact on
applications. Although each TCP connection can detect
its own losses (with sequence numbers or with switch
support [17]), it is hard for the operators to understand
where the losses happen inside the network, how many
flows/applications are affected by such loss, and how the
number of losses changes over time. NetFlow with
low sampling rates cannot capture losses that happened
to flows that are not sampled; and even for those sam-
pled flows, we cannot infer losses from estimated flow
counters. EverFlow can only capture control pack-
ets (e.g., NACK (Negative Acknowledgment)) to infer
loss and congestion scenarios. Instead, if we can deploy
FlowRadar at switches, we can directly get an overall
map of the per-flow loss rate for all the flows soon after
a burst of packets passes by (see Section 6).

Debugging ECMP load imbalance: ECMP load
imbalance can lead to inefficient bandwidth usage in
network and can significantly hurt application perfor-
mance [11]. Short-term load imbalance can be caused
by either (1) the network (e.g., ECMP not hashing on the
right flow fields) or (2) the application (e.g., the appli-
cation sends a sudden burst). If operators can quickly
distinguish the two cases, they can make quick reactions
to either reconfigure the ECMP functions for the network
problem or to rate limit a specific application for the ap-
plication problem.

EverFlow can diagnose some load imbalance prob-
lems by mirroring all the SYN and FIN packets and count
the number of flows on each ECMP paths. However, it
cannot diagnose either of the two cases above because it
does not have detailed packet counters for each flow and
does not know the traffic changes for these flows over
time. Traditional NetFlow has similar limitations (i.e.,
no track of flows over time).

Timely attack detection: Some attacks exhibit specific
temporal traffic patterns, which are hard to detect if we
just count the number of packets per flow as NetFlow, or
just capture the SYN/FIN packets as EverFlow. For ex-
ample, TCP low-rate attacks [29] send a series of small
traffic bursts that always trigger TCPs retransmission
timeout, which can throttle TCP flows to a small fraction
of the ideal rate. With per-flow counters at small time
scale, we can not only detect these attacks by temporal
analysis, but also report these attacks quickly (without
waiting for the inactive timeout in NetFlow).



Packets

01000 10100 00010
Flow filter

Counting 
Table

Packets FlowXOR
FlowCount
PacketCount

Figure 2: IBLT based flow counters

4 FlowRadar Design

The key design in FlowRadar is an encoding scheme to
store flows and their counters in a small fixed-size mem-
ory, that requires constant insertion time at switches and
can be decoded fast at the remote collector. When there
is a sudden burst of flows, we can leverage network-wide
decoding to decode more flows from multiple encoded
flowsets. We also analyze the tradeoff between memory
usage and decoding success rates.

4.1 Encoded Flowsets
The key challenge for NetFlow is how to handle flow col-
lisions. Rather than designing solutions to react to flow
collisions, our design focuses on how to embrace colli-
sions: We allow flows to collide with each other without
extra memory usage, and yet ensure we can decode indi-
vidual flows and their counters at the collector.

There are two key designs that allow us to embrace
collisions: (1) First, we hash the same flow to multiple
locations (like Bloom filters). In this way, the chance
that one flow collide with other flows in one of the bins
decreases. (2) When multiple flows fall in the same cell,
it is expensive to store them in a linked list. Instead, we
use a XOR function to the packets of these flows without
using extra bits. In this way, FlowRadar can work with a
fixed-size memory space shared among many flows and
has constant update and insertion time for all the flows.

Based on the two designs, the encoded flowset data
structure is shown in Figure 2, which includes two parts:
The first part is the flow filter. The flow filter is just a
normal Bloom filter with an array of 0’s and 1’s, which
is used for testing if a packet belongs to a new flow or
not. The second part is the counting table which is used
to store flow counters. The counting table includes the
following fields:
• FlowXOR: which keeps the XOR of all the flows

(defined based on 5 tuples) mapped in the bin
• FlowCount: which keeps the number of flows

mapped in the bin
• PacketCount: which keeps the number of packets of

all the flows mapped in the bin
As indicated in Algorithm 1, when a packet arrives, we

first extract the flow fields of the packet, and check the
flow filter to see if the flow has been stored in the flowset
or not. If the packet comes from a new flow, we up-

Algorithm 1: FlowRadar packet processing
1 if ∃ i ∈ [1,k f ], s.t. FlowFilter[HF

i (p.flow)]==0 then
2 FlowFilter.add(p.flow);
3 for j= 1..kc do
4 l = HC

j (p.flow);
5 CountTable[l].FlowXOR =

CountTable[l].FlowXOR ⊕ p.flow;
6 CountTable[l].FlowCount ++;
7 end
8 end
9 for j= 1..kc do

10 CountTable[HC
j (p.flow)].PacketCount ++;

11 end

date the counting table by adding the packet’s flow fields
to FlowXOR and incrementing FlowCount and Packet-
Count at all the kc locations. If the packet comes from an
existing flow, we simply increment the packet counters
at all the kc locations.

Each switch sends the flowset to the collector every a
few milliseconds, which we defined as time slots. In the
rest of the paper, we set the value of the time slot to 10ms,
unless explicitly setting it to other values in the context.

When FlowRadar collector receives the encoded
flowset, it can decode the per flow counters by first look-
ing for cells that include just one flow in it (called pure
cell). For each flow in a pure cell, we perform the same
hash functions to locate the other cells of this flow and re-
move it from all the cells (by XORing with the FlowXOR
fields, subtracting the packet counter, and decrementing
the flow counter). We then look for other pure cells and
perform the same for the flows in each pure cell. The
process ends when there are no pure cells. The detailed
procedure is illustrated in Algorithm 3 in the appendix.

4.2 Network-wide decoding

Operators can configure the encoded flowset size based
on the expected number of flows. However, there can
be a sudden burst in terms of the number of flows. In
that case, we may fail to decode some flows, when we
do not have any cell with just one flow in the middle of
the SingleDecode process. To handle a burst of flows,
we propose a network-wide decoding scheme that can
correlate multiple encoded flowsets at different switches
to decode more flows. Our network-wide decoding pro-
cess has two steps: decoding flows across switches and
decoding counters inside a single switch.

FlowDecode across switches: The key observation
is that if we use different hash functions at different
switches, and if we cannot decode one flow in one en-
coded flowset, it is likely that we may be able to de-



code the flow at another encoded flowset at a different
switch the flow traverses. For example, suppose we col-
lect flowsets at two neighboring switches A1 and A2. We
know that they have a common subset of flows from A1
to A2. Some of these flows may be single-decoded at A1
but not A2. If they match A2’s flow filter, we can remove
these flows from A2, which may lead to more one-flow
cells. We can run SingleDecode on A2 again.

Algorithm 2: FlowDecode
1 for i=1..N do
2 Si = SingleDecode(Ai);
3 end
4 f inish = false;
5 while not f inish do
6 f inish = true;
7 foreach Ai,A j are neighbor do
8 foreach f low in Si−S j do
9 if A j .FlowFilter.contains( f low) then

10 S j.add( f low);
11 for p=1..kc do
12 l = H j,C

p ( f low);
13 A j.CountTable[l].FlowXOR =

A j.CountTable[l].FlowXOR ⊕ flow;
14 A j.CountTable[l].FlowCount -= 1;
15 end
16 end
17 end
18 foreach f low in S j−Si do
19 Update Si and Ai same as S j and A j
20 end
21 end
22 for i=1..N do
23 result = SingleDecode(Ai);
24 if result 6= /0 then
25 f inish = false;
26 end
27 Si.add(result);
28 end
29 end

The general process of FlowDecode is described in Al-
gorithm 2. Suppose we have the N encoded flowsets:
A1..AN , and the corresponding sets of flows we get from
SingleDecode S1..SN . For any two neighboring Ai and
A j, we check the all the flows we can decode from Ai but
not A j (i.e., Si−S j) to see if they also appear at A j’s flow
filter. We remove those flows that match A j’s flow filter
from A j. We then run SingleDecode for all the flowsets
again, get the new groups of S1..SN and continue check-
ing the neighboring pairs. We repeat the whole process
until we cannot decode any more flows in the network.

Note that if we have the routing information of each
packet, FlowDecode can speed up, because for one de-
coded flow at Ai, we only check the previous hop and

next hop of Ai instead of all neighbors.

CounterDecode at a single switch: Although we can
easily decode the flows using FlowDecode, we cannot
decode the counters of them. This is because the coun-
ters at A and B for the same flow may not be the same due
to the packet losses and on-the-fly packets (e.g. packets
in A’s output queue). Fortunately, from the FlowDecode
process, we may already know all the flows in one en-
coded flowset. That is, at each cell, we know all the flows
that are in the cell and the summary of these flows’ coun-
ters. Formally, we know CountTable[i].PacketCount =
∑∀ f ,∃ j,HC

j ( f )=i f .PacketCount for each cell i. Suppose the
flowset has mc cells and n flows, we have a total of mc
equations and n variables. This means we need to solve
MX = b, where X is the vector of n variables and M and b
are constructed from the above equations. We show how
to construct M and b in Algorithm 4 in the Appendix.

Solving a large set of sparse linear equations is not
easy. With the fastest solver lsqr (which is based on iter-
ation) in Matlab, it takes more than 1 minute to get the
counters for 100K flows. We speed up the computation
from two aspects. First, we provide a close approxima-
tion of the counters, so that the solver can start from the
approximation and reach the result fast. As the coun-
ters are very close across hops for the same flow, we can
get the approximated counters during the FlowDecode.
That is, when decoding Ai with the help of A j’s flows
(Algorithm 2 line 7 to 21), we treat the counter from A j
as the counter in Ai for the same flow. We feed the ap-
proximated counters to the solver as initial values to start
iteration, so that it can converge faster. Second, we use a
loose stopping criterion for the iteration. As the counter
is always an integer, we stop the iteration as long as the
result is floating within a range of ±0.5 around an in-
teger. This significantly reduces the rounds of iteration.
By these two optimizations, we reduce the computation
time by around 70 times.

4.3 Analysis of decoding errors

SingleDecode: We now perform a formal analysis of the
error rate in an encoded flowset. Suppose the flow filter
uses k f hash functions and m f cells; and the counting ta-
ble has kc hash functions and mc cells with sc bits per cell.
The total memory usage is mc · sc +m f . Assume there
are n flows in the encoded flowset. For the flow filter, the
false positive for a single new flow (i.e., the new flow be-
ing treated as an existing flow) is (1− e−k f n/m f )k f . Thus
the chance that none of the n flows experience false pos-
itives is ∏

n−1
i=1 (1− (1−e−k f i/m f )k f ). When the flow filter

has a false positive, we can detect it by checking if there
are non-zero PacketCounts after decoding. In this case
the counters are not trustful, but we still get all the flows.



For the counting table, the decoding success rate of
SingleDecode (i.e., the chance we can decode all the
flows) is proved to be larger than O(1 − n−kc+2), if
mc > ckcn, where ckc is a constant associates with kc [24].
When we fail to decode some flows in the counting table,
the already decoded flows and their counters are correct.

We choose to use separated flow filter and counting
table rather than a combined one (i.e. the counting table
also serves as a bloom filter to test new flow), because
a combined one consumes much more memory. For a
combined one, for each packet, we check the kc cells it is
hashed to, and view this flow as a new flow if and only if
at least one of these kc cells’ FlowCount is 0. However,
this solution requires far more memory than the sepa-
rated solution. This is because for the counting table, a
good parameter setting is about kc = 3 and mc = 1.24n
when n is larger than 10K based on the guidelines in [24]
and our experiences in Section 5. In such a parameter set-
ting, when we treat the counting table as a Bloom filter,
the false positive rate for a new flow is (1− e−kcn/mc)kc

is larger than 99.9%. To keep the false positive rate low
enough for all the n flows, we would have to significantly
increase kc and mc.

NetDecode: We discuss FlowDecode and CounterDe-
code separately. For FlowDecode, we first consider a
simple pair-decode case, where we run NetDecode be-
tween two nodes with the same set of flows. This can
be viewed as decoding n flows in a large counting table
with 2kc hashes and 2mc cells. This means we will need
only half of the number of cells of the counting table
with 2kc hashes with SingleDecode. In our experiment,
we only need mc = 8K for decoding 10K flow appear at
both sides, which is even fewer than the number of flows.

For the more general network-wide FlowDecode, if all
nodes in the network have more flows than expected and
require FlowDecode, the decode success rate is similar
to the pair-decode case. This is because for each node A,
decoding its flows is similar to decoding the pair of A’s
flowset and the sum of flowsets from all the neighbors
containing A’s flows. However, it is more likely that only
a portion of the nodes have more flows than expected,
and the rest can SingleDecode. In this case, the decode
success rate is higher than the pair-decode case.

For CounterDecode, we need at least the same number
of linear equations as the number of variables (per flow
counters). Because we have one equation per cell, we
need the number of cells mc to be at least the number of
variables n. In practice, mc should be slightly larger than
the n, to obtain a high enough chance of having n linearly
independent equations.

The complete NetDecode process is bottlenecked by
CounterDecode not FlowDecode. This is because Coun-
terDecode requires more memory and takes more time
to decode. Since CounterDecode only runs on a single

node, the memory usage and decoding speed of NetDe-
code at a node mostly depends on the number of flows in
its own decoded flowset, rather than the number of other
flowsets that contain similar flows.

5 Evaluation

In this section, we demonstrate that FlowRadar can scale
to many flows and large networks with limited mem-
ory, bandwidth, and computing overhead, through sim-
ulations on FatTree topologies.

5.1 Scale to many flows

Parameter settings We set up a simulation network of
FatTree with k = 8 (80 switches). We set the number of
flows on each switch in 10 ms from 1K to 1000K. We
generate an equal number of flows between each inter-
Pod ToR pair. We then equally split these flows among
ECMP paths. In this way, each switch has the same num-
ber of flows. We set the flow filter to ensure that the prob-
ability that one of the n flows experiences a false positive
is 1/10 of the SingleDecode failure rate of the counting
table. We set the optimal k f and m f according to the for-
mulas in Section 4.3. We set kc = 4 because it is the best
for NetDecode. We select mc based on the guidelines
in [24]. We set the size of FlowCounter according to the
expected number of flows. We conservatively set both
NetFlow and FlowRadar packet counters as 4 Bytes, al-
though in FlowRadar we collect statistics in a short time
scale and thus would see much fewer packets and needs
fewer bytes for the packet counter. Since our results are
only related to the number of flows but not the packets,
we generate a random set of flows as input.

We run decoding on 3.60GHz CPU cores, and paral-
lelize decoding different flowsets on multiple cores.

The memory usage of FlowRadar is close to NetFlow
with a perfect hash table: We first compare the mem-
ory usage between NetFlow and FlowRadar. As dis-
cussed in Section 2, it is almost impossible in merchant
silicon to implement a hash-based design that handles
flow insertions and collisions within the per packet time
budget. If we implement a simple hash table, it would
take 8.5TB to store 100K flows to ensure a 99% chance
that there are no collisions. The actual data structure
used in custom silicon would be proprietary information.
Therefore, we compare with the best possible case for
NetFlow—a perfect hash table without any collisions.

Even with a perfect hash table, NetFlow still needs to
store in each cell the starting time of a flow and the time
the flow is last seen for calculating inactive timeout (4
Bytes each). However, in FlowRadar, we do not need
to keep timestamps in hardware because we use frequent



��

��

���

���

���

���

���

�� ��� ���� �����

�
��
��
��
��
��

�
��
��
��
���
��
��
��

����������������������

�������������������������
������������������

����������������������
�������������������

Figure 3: Memory usage per switch

������

�����

����

��

���

����

�� ��� ���� �����

��
��
�
��
��

�
��
��
��
���
��
��
��
��

����������������������

����
�����

Figure 4: Bandwidth usage per switch

��

��

���

���

���

���

���

�� ��� ���� �����

�
��
���
��
��

�
��
��
��
��
��

�
��

�
��
��
��
��
�

�������������������������������

Figure 5: Extra #flows using NetDecode

reporting in a short scale. To fully decouple the benefit of
FlowRadar data structure and removing timestamps, we
also compare with perfect hashing without timestamps,
which can be viewed as the optimal case we can reach.

Figure 3 shows that NetFlow with perfect hashing
needs 2.5 MB per switch. FlowRadar needs only
2.88MB per switch with SingleDecode and 2.36MB per
switch with NetDecode to store 100K flows with 99% de-
coding success4, which is +15.2% and -5.6% compared
to 2.5MB used by NetFlow. The best possible memory
usage with perfect hashing without timestamps is 1.7MB
per switch. With 1M flows, we need 29.7MB per switch
for SingleDecode and 24.8MB per switch for NetDe-
code, which is +18.8% and -0.8% compared to NetFlow
with perfect hashing and timestamps.

FlowRadar requires only a small portion of band-
width to send encoded flowsets every 10ms. Figure 4
shows that we only need 2.3Gbps per switch to send en-
coded flowsets of 100K flows with 10ms time slot, and
0.23Gbps with 100ms time slot. In Facebook data cen-
ter and traffic setting [35], a rack switch connects to 44
hosts with 10Gbps links, where each host send at most
100s to 1000s of concurrent flows in 5ms. Suppose there
are a total of 2K*44 flows in 10ms in the rack switch,
FlowRadar only incurs less than 0.52% of bandwidth
overhead (2.3Gbps/(44*10Gbps)) with 10ms time slot.

FlowRadar with NetDecode can support 26.6-30%
more flows than SingleDecode, with more decoding
time Operators can configure FlowRadar based on the
expected number of flows. When the number of flows
goes beyond the expected number, we can use NetDe-
code to decode more flows given the same memory. Fig-
ure 5 shows with 1K to 1M expected number of flows,
NetDecode can decode 26.6-30% more flows than Sin-
gleDecode given the same memory. So our solution can
tolerate bursts in the number of flows.

Figure 6 shows the average decoding time of each
flowset for the case with 100K expected flows. When
the traffic is below 100K flows, the collector can run
SingleDecode to quickly detect all the flows within 10
ms. When the traffic goes beyong 100K flows, we need

4Note that even in the 1% of cases we cannot successfully decode
all flows, we can still decode 61.7% of the flows on average.

NetDecode, which takes 283ms and 3275ms to decode
flowsets with respective 101K flows and 126.8K flows.

We break down the NetDecode time into CounterDe-
code and FlowDecode. The result is shown in Figure 7.
As the number of flows increases, the CounterDecode
time increases fast, but the FlowDecode time remains
low. If we just need to decode the flows, we need only
135ms, which is very small portion compared to Coun-
terDecode’s 3140ms. Note that the burst of flows does
not always happen, so it is fine to wait for extra time to
get the decoded flows and counters.

We do not rely on the routing information to reduce
the NetDecode time, because it only helps reduce the
FlowDecode time, which is only a small portion of the
NetDecode time. The routing information can help re-
duce the FlowDecode time by 2 times.

5.2 Scale to many switches

We now investigate how FlowRadar scales with larger
networks. For direct comparison, we assume the same
number of flows per switch with different network sizes.

The memory and bandwidth usages per switch do not
change with more switches: This is because the de-
coding success rate only relates to the number of flows
and number of cells. Obviously this is true for SingleDe-
code. For NetDecode this is also true, because as long as
all flows appear in at least 2 flowsets, NetDecode’s de-
coding rate is similar no matter how many flowsets the
flows appear in. The reason is that the bottleneck of the
number of flows can be decoded is from CounterDecode,
which is independent from other flowsets. For flowsets
with 102.5K cells, two such flowsets can already decode
more than 110K flows, but the CounterDecode can only
support 100K flows (limited by the number of linearly
independent equations).

Decoding requires proportionally more cores with
more switches: The SingleDecode time per switch only
relates to the number of flows in a flowset. For example,
to decode 100K flows within 10ms, we need the same
number of cores at the remote collector as the number
of switches. This means for a network with 27K servers
(K=48 FatTree) and 16 cores per server, we need about



����

��

���

����

�����

������

��� ��� ��� ��� ���� ���� ����

�
��

�
�
��
��
��
��
�
��
��
��
��
��
���
��
��
��

����������������������

Figure 6: Decoding time

���

����

�����

������

���� ���� ���� ���� ���� ���� ����

�
��

�
�
��
��
��
��
�
��
��
��
��
��
���
��
�
��

����������������������

����������������������
���������������������

�������������

Figure 7: Breakdown of NetDecode
Time

���

����

����

����

����

����

����

����

����

����

�� �� �� ��� ��� ��� ���

�
��

�
�
��
��
��
��
�
��
��
��
��
��
���
��
��
��

��������������������������������������

����������������������
���������������������

Figure 8: FlowDecode Time with differ-
ent network size

S3

S2 S5

S4

S1

Figure 9: A flow path that has cycle

0.65% of the servers for the decoding.
NetDecode only happens during bursts of flows. The

decoding time per switch increases slowly with more
switches, because most time is spent on CounterDecode,
which only relates to the number of flows in a flowset.

The FlowDecode time increases with larger networks,
because it takes more time to check a decoded flow with
the neighboring switches, when there are more neighbors
in a larger network. In a FatTree network, suppose each
switch has k neighbors. The total number of switches
in the network is n = 5

4 k2, so each flowset only checks
with O(

√
n) other flowsets. We tested the FlowDecode

time with different FatTree network sizes by increasing k
from 4 to 16. The memory on each switch is set expect-
ing 100K flows for SingleDecode. We generate traffic
such that the number of flows on each switch reaches
the maximum number (126.8K) that could be NetDe-
coded. Figure 8 shows the result. The FlowDecode time
increases linearly with k. However, it is still a small por-
tion compared to CounterDecode time. For 126.8K flows
per switch and k = 16 FatTree, FlowDecode only takes
0.24 seconds, which is 7.1% of the total decoding time.
Routing information can speed up FlowDecode to 0.093
seconds, which is 2.9% of the total decoding time.

6 FlowRadar Analyzer

We show two use cases of FlowRadar: transient loop and
blackhole detection with network-wide flow analysis and
providing per-flow loss map with temporal analysis.

6.1 Transient loop/blackhole detection

With FlowRadar, we can infer the path for each flow
by concatenating the switches that have records for that
flow. As a result, we can easily provide a network-wide
map of all the loops and blackholes, the time they hap-
pen, and the flows they affected.

Loops: We first identify all the switches that see the
same flow during each time slot. If the switches form a
cycle, then we suspect there is a loop. We cannot con-
clude that there is a loop because this may be caused by
a routing change. For example, in Figure 9, we may ob-
serve counters at all the switches in one time slot with
FlowRadar, which forms a cycle (S2,S3,S4,S5). How-
ever, this may be caused by a routing change from S1→
S2→ S5 to S1→ S2→ S3→ S4→ s5 within the time
slot. To confirm, we need to compare the counter on the
hop that is not in the cycle (counter1), and the counter on
one hop in the cycle (counter2). If counter1 < counter2
then we can conclude that there is a loop. For example,
if counter on S1 < counter on S3, we know this is a loop.

Blackholes: If a transient blackhole is longer than a
slot’s time, we can detect it by seeing the path of some
flows stopped at some hop. If a transient blackhole is
shorter than a slot’s time, we still see a large difference
between the counters before and after the blackhole at
one slot. Note that we do not need the counters, but only
the flow information to detect blackhole. Thus, during
flow bursts, we can run FlowDecode without Counter-
Decode to detect blackholes faster.

Evaluation: We create a FatTree k=4 topology with
16 hosts and 20 switches in DeterLab [2]. We modify
Open vSwitch [6] to support our traffic collection. We
direct all the packets to the user space and maintain the
encoded flowsets. We install forwarding rules for indi-
vidual flows with different source and destination IP pair.
We send persistent flows from each host to all the other
hosts, which send one packet every 5 ms. This is to make
sure that each flow has at least one packet in each time
slot even if some packets is close to the slot’s boundary.

We simulated a case that a VM migration causes a
transient loop when the routing table on the edge switch
S1 of the old VM location is updated so it sends pack-
ets up to the aggregation switch S2. But S2 has not been
updated so it sends packets back to S1. We manually up-
dated a rule at the edge switch S1 at around 10ms, which
forms a loop S1→ S2→ S1, where S2 is an aggregation
switch. We can detect the loop within 10ms.

To generate a blackhole, we manually remove a rout-
ing rule at an edge switch. We can detect the blackhole



��

����

����

����

����

��

�� ��� ��� ��� ��� ���� ���� ���� ����

�
�
��
��

�
��
��
�

����������

Figure 10: CDF of loss detection delay

within 20 ms. This is because there are still traffic in the
first 10ms when the blackhole happens. So we can only
confirm in the next 10ms.

6.2 Per-flow loss map
FlowRadar can generate a network-wide loss map by
comparing the per-flow counters between the upstream
and downstream switches (or hosts) in a sequence of time
slots. A simple approach is that for each flow, the differ-
ence between the upstream and downstream counters is
the number of losses in each time slot. However, this
approach does not work in practice because it is impos-
sible for the two switches capture exactly the same set
of packets, even though today’s data centers often have
well synchronized clocks across switches at milliseconds
level. This is because there are always packets on the fly
between upstream and downstream switches (e.g., in the
switch output queue).

To address this problem, we can wait until the flow
finishes to compare its total number of packets at differ-
ent hops. But this takes too long. Instead, we can detect
losses faster by comparing counters for flowlets instead
of flows. Suppose a time slot in FlowRadar is 10ms.
We define flowlets as bursts of packets from a flow that
are separated by gaps larger than a time slot [27]. With
FlowRadar, we can identify flowlets between two time
slots with counters equal to zero. Given a flowlet f , the
upstream and downstream switches collect sequences of
counters: U1...Ut and D1...Dt (D0 and Dt+1 are zero). We
compute the total number of losses for the flowlet f as
∑

t
i=1(Ui)−∑

t
i=1(Di). This is because if a packet does

not arrive at the downstream switch for at least 10ms, it
is very likely this packet is lost.

With this approach, we can get the accurate loss num-
bers and rates for all the flowlets that have finished.
The key factor for our detection delay is the duration of
flowlets. Fortunately, in data centers, many flows have
short flowlets. For example, in a production web search
workload [13], 87.5% of the partition/aggregate query
flows are separated by a gap larger than 15 ms. 95% of
query flows can finish within 10ms. Moreover, 95% of
background large flows have 10-200 ms flow completion
times with potential flowlets in them.

Evaluation: We evaluate our solution in a k=8 FatTree

topology in a ns-3 simulator [5]. The FatTree has 128
hosts connected with 80 switches using 10G links. We
take the same workload distribution from a production
web search data center [13], but add the 1000 partition-
aggregate queries per second with 20 incast degree (i.e.,
the number of responding nodes) and packet sizes of
1.5KB. The queue size of each port in our experiment
is 150KB which means 100 packets of size 1.5KB. The
flowlet durations are mostly shorter than 30ms with the
maximum as 160ms. 50% of background traffic has 0ms
interarrival time indicates application sends a spike of
flows. The rest at least 40% of background traffic has
interarrival time larger than 10ms for periodical update
and short messages.

We run FlowRadar to collect encoded flowsets every
10ms at all the switches. We define detection delay as the
time difference between when the loss happens and when
we report it. Figure 10 shows the CDF of loss detection
delay. We can detect more than 57% of the losses within
20ms, and more than 99% of the losses within 50ms.

7 Implementation

We now discuss the implementation issues in FlowRadar.

Encode and export flow counters at switches:
FlowRadar only requires simple operations (e.g., hash-
ing, XOR, and counting) that can be built on existing
merchant silicon components. For example, hashing is
already used in Layer 2 forwarding and ECMP functions.
With the trend of programmable switches (e.g., P4 [8]),
FlowRadar can be easier to implement.

We have implemented our prototype in P4 simula-
tor [9], which will be released at [3]. We use an ar-
ray of counters to store our counting table and flow
filter. On each packet’s arrival, we use the mod-
ify field with hash based offset API to generate the kc
hash values for counting table and k f hash values for
flow filter, and use bit xor API to xor the header into the
flowXOR field. In the control plane, we use the state-
ful read counter API to read the content in our data.

Since the encoded flowset is small, we can export the
entire encoded flowset to the collector rather than export-
ing them on a per flow basis. To avoid the interruptions
on the data plane during the exporting phase, we can use
two encoded flowset tables: the incoming packets update
one table while we export data in another table. Note that
there is a tradeoff between the memory usage and export-
ing overhead. If we export more often (with a smaller
export interval), there are fewer flows in the interval and
thus require fewer memory usage. Operators can config-
ure the right export interval based on the number of flows
in different time scales and the switch performance. For
this paper, we set the time interval as 10 ms.



Deployment scenarios: Similar to NetFlow, we can
deploy FlowRadar’s encoded flowset either per port or
per switch. The per-switch case would use less memory
than per-port case because of multiplexing of flows. That
is, it is unlikely that all the ports experience a burst in
terms of the number of flows at the same time.

In the per-switch case, we still need to distinguish the
incoming and outgoing flows (e.g., the two unidirectional
flows in the same connection). One way to do this is
to store the input port and output port as extra fields in
the encoded flowset such as InputPortXOR and Output-
PortXOR as what we did for the 5-tuple flow fields.5 An-
other way is to maintain two encoded flowsets, one for
incoming flows and another for outgoing flows.

FlowRadar can be deployed in any set of switches.
FlowRadar can already report the per-flow counters in
short time scales independently at each deployed switch.
If FlowRadar is deployed at more switches, we can lever-
age network-wide decoding to handle more number of
flows in a burst. Note that our network-wide decoding
does not require full deployment. As long as there are
flows that traverse two or more encoded flowsets, we
start to gain benefits from network-wide decoding. Op-
erators can choose where to deploy, and they know the
flows where they deployed FlowRadar. In the ideal case,
if all switches are deployed, then we know the per-flow
counters at all locations, and the paths of the flows. Op-
erators could also choose a subset of switches. For ex-
ample, if we deploy only on ToR switches, the counters
still cover all the events (e.g. loss) in the network, but
we no longer know the exact locations where the flows
appear in the network. As we mentioned in Section 5.2,
the decoding success rate does not change as long as we
have at least 2 flowsets, so partial deployment does not
affect decoding success rate.

8 Related Work

8.1 Monitoring tools for data centers
Due to the problems of NetFlow, data center operators
start to invent and use other monitoring tools. In addi-
tion to sFlow [40] and EverFlow [44], there are other
in-network monitoring tools. OpenFlow [32] provide
packet counters for each installed rules, which is only
useful when the operators know which flows to track.
Planck [34] leverages sampled mirroring at switches,
which may not be sufficient for some monitoring tasks
we discussed in Section 2. There are also many end-host
based monitoring solutions such as SNAP which cap-
tures TCP-level statistics [41] and pingmesh [25] which
leverages active probes. FlowRadar is complementary

5Similarly, one can easily add other flow properties (e.g., VLAN)
as XOR sum fields.

to the end-host based solutions by providing in-network
view for individual flows.

8.2 Measurement data structures

There have been many hash-based data structures for
measurement. Compared to them, FlowRadar has three
unique features: (1) Store flow-counter pairs for many
flows; (2) Easy to implement in merchant silicon; (3)
Support network-wide decoding across switches.

Data structures for performance measurement and
volume counting: Varghese et. al. proposed a group
of data structures for loss, latency, and burst measure-
ment [28, 37]. However, none of these solutions can
maintain per flow metrics and scale to a large num-
ber of flows. There are many hash-based data struc-
tures that can keep per-flow state with small mem-
ory [15, 42, 36, 43]. However, most of them do not suit
for NetFlow because they can only keep the values (i.e.,
per flow state). Instead, FlowRadar provides the key-
value pairs (i.e., the flow tuples and the packet counters)
and can scale to a large number of flows.

Hash-based data structures for storing key-value
pairs: Cuckoo hashing [33] and d-left hashing [14, 38]
are two hash table designs that can store key-value pairs
with low memory usage. However, both are hard to im-
plement in merchant silicon for NetFlow. This is because
NetFlow requires inserting a flow immediately for an in-
coming packet so that follow up packets can update the
same entry (i.e., atomic read-update operations). Other-
wise, if one packet reads a cell that is being updated by
a preceding packet, the counters become incorrect. To-
day, merchant silicon already has transactional memory
that supports read-update operations in an atomic way
for counters. However, typical merchant silicon can han-
dle read-update operations against only a few (up to four)
4B- or 8B-long counters for each packet6. This is be-
cause to support high link rate of merchant silicon (typi-
cally a few Tbps today), merchant silicon must resort to
a highly-parallelized packet-processing design, and the
atomic-execution logic is at odds with such parallelism.
In fact, to support such atomic read-update semantics
for a small number of counters, merchant silicon has
to employ various complicated hardware logic similar to
operand forward [7].

A d-way Cuckoo hash table [33] hashes each key to d
positions and stores the key in one of the empty positions.
When all the d positions are full, we need to rebuild the
table by moving items around to make room for the new
key. However, this rebuilding process can only be im-
plemented with switch software (i.e., the control plane),

6Note the total number of counters can still be larger; only the num-
ber of concurrently read-and-updatable counters is small.



because it requires multiple, and often-unbounded num-
ber of memory accesses [33]. Running the rebuilding
process in switch software is not suitable for NetFlow,
because NetFlow requires atomic read-update semantics.

d-left hashing splits a hash table with n buckets into
d equal subtables each with n/d buckets, where each
bucket contains L cells to hold up to L keys. d-left hashes
a new key to d buckets, one in each subtable, and put the
key in the bucket with the least load, breaking ties to the
left. d-left requires first reading all Ld cells and testing
if there is any match for an incoming flow. If there is
a match, we increment the counter; otherwise, we put
a new entry in an empty cell in the least-loaded bucket.
There are two key challenges in supporting d-left: First,
rather than read-update operations, d-left requires atomic
read-test-update operations. The testing logic requires
not only more ALUs and MUXes but also significantly
increase the complexity of the atomic operation logic,
making the critical section much longer in time. Second,
d-left can only make insertion decisions after the testing
on all Ld cells (each cell with 13 bytes 5-tuple fields and
4 bytes counter) are finished, which also increases the
size of the atomic operation logic. Longer atomic op-
eration duration can be a disaster for highly parallelized
packet processing in merchant silicon.

In contrast, FlowRadar is easier to implement in mer-
chant silicon, because of three reasons: First, FlowRadar
only requires atomic read-update operations (i.e., incre-
ment/xor) rather than atomic read-test-update, which is
much simpler in silicon design and has shorter atomic
operation duration. Second, FlowRadar only requires
atomic operations on a single cell and packets can up-
date different cells in parallel. Thus FlowRadar requires
significantly shorter atomic operations and is better fit for
merchant silicon with high line rate.

It is impossible to support d-left with today’s merchant
silicon because the smallest d-left configuration (i.e.,
d = 4 and L = 1) needs to atomically read-test-update
4*17=68B, but today’s silicon only supports 4*8B=32B.
Thus, we compare FlowRadar with the basic d-left set-
ting (i.e., d = 4 and L = 1) that may be supported in fu-
ture silicon, and the setting recommended by [16] (i.e.,
d = 3 and L = 5) which is even harder to implement.
To hold 100K flows on a memory of 2.74MB, the ba-
sic d-left has an overflow rate of 1.04%; both FlowRadar
and the recommended d-left have no overflow. During
flow bursts, FlowRadar can still report flows even when
the counters cannot be decoded. Such flow information
can be used for a variety of tasks like transient black-
hole detection, route verification, and flow duration mea-
surement. For example, to hold 152K flows in 2.74MB
memory, the basic d-left has an overflow rate of 10%;
the recommeded d-left has an overflow rate of 1.2%;
FlowRadar can still decode all 152K flows (but not their

counters).

Invertible Bloom filter Lookup Table (IBLT):
FlowRadar is inspired by Invertible Bloom filter
(IBF) [21] and Invertible Bloom filter Lookup Table
(IBLT) [24]. IBF is used to keep a set of items. By com-
paring two IBFs, one can easily extract the differences
between two sets. Rather then keeping a set of elements,
FlowRadar needs to collect a key-value store of flows
and their packet counters.

IBLT is an extension of IBF that can store key-value
stores. Our counting table is built upon IBLT, but has
two key extensions: (1) How to handle value updates.
Since IBLT does not have a flow filter before it to iden-
tify if a key is new or old, it treats an existing key with a
new value as a new key-value pair which has duplicated
keys with existing key-value pairs. It then uses an arith-
metic sum instead of a XOR sum in FlowXOR field, and
a sum of hash values of the flows instead of a simple flow
counter. This design takes more bits in both FlowXOR
and FlowCount fields, which takes as much memory as
FlowRadar uses for the flow filter. It also requires com-
putations over large numbers (beyond 64bit integer), and
more complex hash functions. Our experiments show
that IBLT saves only 2.6% of memory for 100K keys but
at the expense of 4.6 times more decoding time. (2) How
to decode the keys. Our single node encoding scheme is
similar to IBLT’s, but takes much less time because of
the simple FlowXOR and FlowCount fields. Moreover,
with an extra flow filter, we support network-wide flow
and counter decoding across multiple encoded flowsets.

9 Conclusion

We present FlowRadar, a new way to provide per-
flow counters for all the flows in short time scales,
which provides better visibility in data center networks.
FlowRadar encodes flows and their counters with a small
memory and constant insertion time at switches. It then
introduces network-wide decoding of flowsets across
switches to handle bursts of flows with limited memory.
Our design can be improved in many aspects to further
reduce the cost of computation, memory, and bandwidth,
such as reducing the NetDecode time and better ways to
leveraging redundancies across switch hops.

10 Acknowledgment

We thank our shepherd Sujata Banerjee, George Vargh-
ese, and the anonymous reviewers for their help-
ful feedbacks. This paper is partially supported by
CNS-1453662, CNS-1423505, CNS-1413972, NSFC-
61432009, and Google.



APPENDIX

A Algorithms

Algorithm 3: Decoding at a single node
1 Function SingleDecode(A)
2 flowset = /0;
3 foreach c where CountTable[c].FlowCount==1 do
4 flow = A.CountTable[c].FlowXOR;
5 flowset.add(flow);
6 count = A.CountTable[c].PacketCount;
7 for j=1..kc do
8 l=HC

j (flow);
9 A.CountTable[l].FlowXOR =

CountTable[l].FlowXOR ⊕ flow;
10 A.CountTable[l].FlowCount -= 1;
11 A.CountTable[l].PacketCount -= count;
12 end
13 end
14 return flowset;

Algorithm 4: Linear equations for CounterDecode
1 Function ConstructLinearEquations(A,S)
2 M=ZeroMatrix; b=ColumnVector;
3 foreach f lowt in S do
4 for j=1..kc do
5 l = HC

j ( f lowt ); M[l,t] = 1;
6 end
7 end
8 foreach CountTable[ j] in A do
9 b[ j] = CountTable[ j].PacketCount;

10 end

References

[1] http://www.cisco.com/c/en/
us/products/collateral/
ios-nx-os-software/ios-netflow/
prod_white_paper0900aecd80406232.
html.

[2] deterlab.net.

[3] Flowradar implementation in p4. https://
github.com/USC-NSL/FlowRadar-P4.

[4] NetFlow. https://www.ietf.org/rfc/
rfc3954.txt.

[5] ns-3 simulator. https://www.nsnam.org/.

[6] Open vSwitch. http://openvswitch.org/.

[7] Operand forwarding. https://en.
wikipedia.org/wiki/Operand_
forwarding.

[8] P4 language consortium. p4.org.

[9] P4 simulator. https://github.com/
p4lang.

[10] Packet loss impact on tcp throughput
in esnet. http://fasterdata.
es.net/network-tuning/
tcp-issues-explained/packet-loss/.

[11] Solving the mystery of link imbal-
ance a metastable failure state at scale.
https://code.facebook.com/posts/
1499322996995183/.

[12] Router overhead when enabling net-
flow. http://blog.tmcnet.com/
advanced-netflow-traffic-analysis/
2013/05/router-overhead-when-enabling-netflow.
html, 2013.

[13] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridha-
ran. Data center TCP (DCTCP). In SIGCOMM,
2010.

[14] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Up-
fal. Balanced allocations. SIAM J. Comput., 29(1),
1999.

[15] F. Bonomi, M. Mitzenmacher, R. Panigrahy,
S. Singh, and G. Varghese. Beyond bloom filters:
From approximate membership checks to approxi-
mate state machines. In SIGCOMM, 2006.

[16] F. Bonomi, M. Mitzenmacher, R. Panigraphy,
S. Singh, and G. Varghese. Bloom filters via d-left
hashing and dynamic bit reassignment extended ab-
stract. In Forty-Fourth Annual Allerton Conf., Illi-
nois, USA, pages 877–883, 2006.

[17] P. Cheng, F. Ren, R. Shu, and C. Lin. Catch the
whole lot in an action: Rapid precise packet loss
notification in data centers. In NSDI, 2014.

[18] Cisco. Netflow performance analysis. White paper,
2005.

[19] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s
highly available key-value store. In ACM SIGOPS,
2007.



[20] N. Duffield, C. Lund, and M. Thorup. Estimating
flow distributions from sampled flow statistics. In
ACM SIGCOMM, 2003.

[21] D. Eppstein, M. Goodrich, F. Uyeda, and G. Vargh-
ese. What’s the difference? efficient set difference
without prior context. In SIGCOMM, 2011.

[22] C. Estan, K. Keys, D. Moore, and G. Varghese.
Building a better netflow. ACM SIGCOMM, 2004.

[23] C. Estan and G. Varghese. Data streaming in com-
puter networking. In Workshop on Management
and Processing of Data Streams, 2003.

[24] M. T. Goodrich and M. Mitzenmacher. Invertible
bloom lookup tables. In arXiv:1101.2245v2, 2011.

[25] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang,
D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, Z.-W.
Lin, and V. Kurien. Pingmesh: A large-scale sys-
tem for data center network latency measurement
and analysis. In SIGCOMM, 2015.

[26] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,
and N. McKeown. I know what your packet did
last hop: Using packet histories to troubleshoot net-
works. In NSDI, 2014.

[27] S. Kandula, D. Katabi, S. Sinha, and A. Berger.
Dynamic load balancing without packet reordering.
SIGCOMM Comput. Commun. Rev., 37(2), 2007.

[28] R. Kompella, K. Levchenko, A. Snoeren, and
G. Varghese. Every microsecond counts: Tracking
fine-grain latencies with a loss difference aggrega-
tor. In SIGCOMM, 2009.

[29] A. Kuzmanovic and E. W. Knightly. Low-rate tcp-
targeted denial of service attacks (the shrew vs. the
mice and elephants). In SIGCOMM, 2003.

[30] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and
H. Zang. Is sampled data sufficient for anomaly
detection? In Proceedings of the 6th ACM SIG-
COMM conference on Internet measurement, IMC
’06, pages 165–176, New York, NY, USA, 2006.
ACM.

[31] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
macroscopic behavior of the tcp congestion avoid-
ance algorithm. In SIGCOMM Comput. Commun.
Rev., 1997.

[32] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: Enabling Innovation in

Campus Networks. SIGCOMM Computer Commu-
nication Review, 38(2), 2008.

[33] R. Pagh and F. F. Rodler. Cuckoo hashing. In Al-
gorithms — ESA 2001. Lecture Notes in Computer
Science 2161.

[34] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Fel-
ter, K. Agarwal, J. Carter, and R. Fonseca. Planck:
Millisecond-scale monitoring and control for com-
modity networks. In SIGCOMM, 2014.

[35] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C.
Snoeren. Inside the social network’s (datacenter)
network. In SIGCOMM, 2015.

[36] H. Song, S. Dharmapurikar, J. Turner, and J. Lock-
wood. Fast hash table lookup using extended
Bloom filter: An aid to network processing. In SIG-
COMM, 2005.

[37] F. Uyeda, L. Foschini, F. Baker, S. Suri, and
G. Varghese. Efficiently Measuring Bandwidth at
All Time Scales. In NSDI, 2011.

[38] B. Vöcking. How asymmetry helps load balancing.
J. ACM, 50(4), 2003.

[39] W. Vogels. Performance and scalability.
http://www.allthingsdistributed.
com/2006/04/performance_and_
scalability.html, 2009.

[40] M. Wang, B. Li, and Z. Li. sflow: Towards
resource-efficient and agile service federation in
service overlay networks. Distributed Computing
Systems, International Conference on, 0:628–635,
2004.

[41] M. Yu, A. Greenberg, D. Maltz, J. Rexford,
L. Yuan, S. Kandula, and C. Kim. Profiling Net-
work Performance for Multi-tier Data Center Ap-
plications. In NSDI, 2011.

[42] M. Yu, L. Jose, and R. Miao. Software Defined
Traffic Measurement with OpenSketch. In NSDI,
2013.

[43] D. Zhou, B. Fan, H. Lim, D. G. Andersen, and
M. Kaminsky. Scaling up clustered network appli-
ances with ScaleBricks. In SIGCOMM, 2015.

[44] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu,
R. Mahajan, D. Maltz, L. Yuan, M. Zhang, B. Y.
Zhao, and H. Zheng. Packet-level telemetry in large
datacenter networks. In SIGCOMM, 2015.


