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ABSTRACT
Mitigating DDoS attacks on the networks is an important security
challenge for the Internet Service Providers. Recent work has shown
a flexible and elastic DDoS defense mechanism via Software De-
fined Networking/Network functions virtualization and such systems
are showing increasingly efficient performance. However, an intel-
ligent attacker can exploit the system by dynamically adapting the
attack profile which a static defense cannot adequately handle. We
propose a game theoretic model for a dynamic deceptive defense.
We decompose the problem in two phases. The first phase focuses
on optimising the defense while trying to deceive the attacker with
dynamic adaptations in the defense strategy. The second phase con-
sists of optimising the resource allocation in order to execute the
pre-computed defence strategy. We show analytical and numerical
results showing the efficiency of our computation algorithms.
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1 INTRODUCTION
Mitigating distributed denial-of-service (DDoS) attacks on the net-
works is an important security challenge for the Internet Service
Providers. A rapid increase in DDoS related cybercrime has reached
an estimated 20,000 daily attacks [17], moreover, the attack types
and signatures constantly evolve [14, 20, 24]. Conventionally, DDoS
defense has relied on using hardware resources [5, 19] which of-
ten tend to be proprietary, expensive and not flexible in scaling
functioning, or network positioning. Thus, this is not effective in
thwarting new attack types and high volumes. Recent work has
shown a flexible and elastic DDoS defense mechanism via Software
Defined Networking (SDN) [12, 16], Network functions virtualiza-
tion (NFV) [9]. Such systems are showing increasingly efficient
performance, specifically in handling larger volumes or new types
of attacks, and are being deployed in practice more and more by
leading ISP providers [2, 3, 6, 8].

We consider such a setup. The attacker aims to exhaust the net-
work bandwidth of the victim by flexibly launching packets of sev-
eral attack types (e.g., TCP SYN flood, UDP flood, DNS amplifica-
tion). We assume there to be anomaly detection techniques in place
which can raise flags for suspicious packets — ISPs are typically
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equipped with these [4]. Thereby, the suspicious traffic and its esti-
mated volumes at different network ingresses are assumed to be the
given input to the problem. Further, we assume there are pre-defined
defense strategies for different attack types [11] which analyze the
incoming traffic and respond accordingly. Each such strategy can
be represented by a Directed Acyclic Graph where each node is a
logical module that processes the suspicious packet and the edges
indicate the traffic forwarding rules. This is the stage of the problem
that determines the scope of this paper. The complete structural flow
is described in Fig. 1. Each defense module needs to be realized
via different virtual machines. The defender’s goal is to find the
allocation of virtual resources which can process as much suspicious
traffic as possible while incurring as low latency costs as possible
which result from the processing.

Figure 1: DDoS Defense Pipeline

While deploying a defnese strategy for a given attack mix is a
relatively simpler problem, an intelligent attacker can exploit the
system by dynamically adapting the attack profile which a static
defense cannot adequately handle. Previous models [11] attempt
to handle this issue by considering regret-minimization objectives
that can be met by deploying well-studied strategies such as Follow
the perturbed leader (FPL) [13]. Such an approach is conservative,
in that it merely reacts to the attacker’s adaptations, but does not
aim to anticipate them and administer accordingly. This approach
is particularly inadequate when the re-allocation of the defense
resources to reciprocate the shifts in attack has significant delay,
proving attacker’s exploitative adaptions effective. To that end, we
propose a game theoretic model to compute a defense strategy that
is not only dynamic, but can prove deceptive to the attacker. An
intuitive example of the deceptive property is to have the defenses set
up so as to appear having false vulnerabilities, steering the attacker to
exploit them, which can then be anticipated and effectively nullified.

Several works in the past have used Game theory for Cyber secu-
rity, and in particular, Cyber deception. The Cyber Deception Game
(CDG) [21] and Cyber Camaouflage Game [25] are game-theoretic
models for deception via attribute obfuscation. Other works in cy-
ber defense [1, 15, 22, 23] have adopted game theoretic models,
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including several that aim to strategically deploy honeypots [7, 18].
A dynamic defense model in the green security domain was shown
effective in [10] and lays the foundation for our solution approach.

Our contributions are as follows. We propose a model that consists
of two phases. The first phase computes a dynamic defense strategy,
whereas the second phase optimally deploys compute resources to
implement the strategy. We show analytical results for the minimax
equilibria of the static (single-stage) game and subsequently provide
Mixed Integer Linear Program (MILP) formulations for computing
the optimal dynamic strategies of the multiple-stage game as well
as efficient and effective heuristics. Finally, we show numerical
results on simulated attack data which demonstrate the efficacy of
out solutions approaches.

2 DEFENSE CAPACITY COMPUTATION AND
DECEPTION (BASE GAME AND REPEATED
SETTING)

In this section, we abstract out the details pertaining to the VM
resource allocation for handling attack traffic of different types. We
model the problem as follows.

Let 𝐴 denote the set of attack types. For each attack type 𝑎, we
say that handling a unit of traffic takes up 𝑐𝑎 amount of defense
resources. The defender must decide the traffic volume 𝑓𝑎 for each
type that he wants to allocate resources for. Thus, the strategy can
be via vector 𝑓 = (𝑓𝑎)𝑎 . Given this strategy 𝑓 , the total amount of
resources used up is

∑
𝑎 𝑓𝑎𝑐𝑎; we assume limited resources for the

defender and thus capping the total usage of
∑
𝑎 𝑓𝑎𝑐𝑎 by a budget

𝐶. The attacker’s strategy is to launch an attack mix of different
types, and is similarly defined via a vector 𝑔 = {𝑔𝑎}𝑎 . The Attacker
must need computational and technological resources for the attacks,
which are typically limited. We assume launching a unit traffic of
type 𝑎 has a net cost 𝑟𝑎 to the attacker. Thus, given his attack strategy
𝑔 = {𝑔𝑎}𝑎 , his total cost is

∑
𝑎 𝑔𝑎𝑟𝑎 , assumed to be capped by a

budget 𝑅. Given the player strategies, the resultant reward to the
attacker from a particular type of attack depends on the amount of
traffic that goes through, i.e., cannot be processed by the defender,
which is max(𝑔𝑎 − 𝑓𝑎, 0) for each type 𝑎. Assuming a per-unit utility
of 𝑢𝑎 and a linear utility aggregation, the total utility for the attacker
is given by 𝑈 (𝑓 , 𝑔) = ∑

𝑎 𝑢𝑎 max(𝑔𝑎 − 𝑓𝑎, 0). Since the defender’s
goal would be to minimize the traffic that penetrates the network,
we model this as a zero-sum game.

First, we outline the extreme case when the defender’s budget is
so high that it is possible to set up a defense that would not allow
the attacker a positive utility.

PROPOSITION 2.1. If𝐶/𝑅 ≥ ∑
𝑎 𝑐𝑎/𝑟𝑎 , the defender can manage

to have zero utility, i.e. thwart the attacker completely.

PROOF. Since the maximum volume the attacker can attack for a
single type 𝑎 with all his budget is 𝑅/𝑟𝑎 , the defender can set up a
defense to handle all of it by spending 𝑅/𝑟𝑎 · 𝑐𝑎 for it. Aggregating
this for all the types, the defender can play a strategy {𝑅/𝑟𝑎}𝑎 with
a total cost of

∑
𝑎 𝑅/𝑟𝑎 · 𝑐𝑎 , if the total budget 𝐶 allows for it, which

will prevent the attacker from succeeding with any attack type. Thus,
this is possible if 𝐶 ≥ ∑

𝑎 𝑅/𝑟𝑎 · 𝑐𝑎 , concluding the proof. □

For the rest of the paper, we consider the more practical case that
the defender’s budget is not as high. First, we analyze the scenario
where the defense strategy is static.

2.1 Static Play
When the defense strategy is fixed, the attacker may be able to con-
duct reconnaissance techniques to learn the defense and adjust the
attack to be the best response. Hence, we model this as a Stackelberg
game where the defender is the leader and the attacker is the follower.
This scenario of static strategies is also sufficient to consider cases
when the players can change strategies but do so by committing to
fixed mixed strategies, as explained next.

Mixed strategies. Suppose the players are able to implement
mixed strategies. As in any Stackelberg game, the follower always
has a pure strategy best response. Hence, it suffices to consider only
pure strategies for the attacker. Subsequently, suppose the defender
plays a mixed strategy, i.e., the defender strategy 𝑓 is drawn from
a certain distribution 𝑃 . Then, for any attacker strategy 𝑔, the at-
tacker’s expected utility E𝑓 ∼𝑃 [𝑈 (𝑓 , 𝑔)] is greater than 𝑈 (E[𝑓 ], 𝑔)
by Jensen’s inequality since 𝑈 () is convex in 𝑓 . Hence, the defender
can simply play the pure strategy 𝐸 [𝑓 ] and do at least as good.
Hence, it suffices to only consider pure strategies for the players.

Next, we analyze the attacker best response. We can show that,

PROPOSITION 2.2. Given the defender’s strategy 𝑓 , the attacker
has a best response attacking only one type, say 𝑎∗, such that

𝑎∗ ∈ argmax
𝑎

𝑢𝑎 (𝑅/𝑟𝑎 − 𝑓𝑎)

.

PROOF. First, note that if the attacker in his best response at-
tacks a non-zero volume 𝑔𝑎 for a type 𝑎, it must be that 𝑔𝑎 ≥ 𝑓𝑎
since otherwise he gets no utility from attacking type 𝑎 and could
instead use that budget on other types to potentially gain a higher
utility. Now, say 𝑔 is a best response that attacks fewest different
types. To show contradiction, say ∃𝑎, 𝑎′ s.t. 𝑔𝑎, 𝑔𝑎′ > 0. WLOG,
let 𝑢𝑎/𝑟𝑎 ≥ 𝑢𝑎′/𝑟𝑎′ . Then, consider the budget of 𝑅′ = 𝑔𝑎′𝑟𝑎′ which
is required to attack 𝑎′; The attacker can instead use 𝑅′ to increase
the attack volume for 𝑎 by 𝑅′/𝑟𝑎 . This causes a net change of
𝑢𝑎 (𝑅′/𝑟𝑎) − 𝑢𝑎′ (𝑅′/𝑟𝑎′ − 𝑓𝑎′), which is non-negative since 𝑓𝑎′ ≥ 0
and 𝑢𝑎/𝑟𝑎 ≥ 𝑢𝑎′/𝑟𝑎′ . Hence, this modified strategy must be a best
response for the attacker with fewer attacks types being attacked
than 𝑔, a contradiction. Thus, there exists a best response with just
one type attacked.

Subsequently, if only type 𝑎∗ is attacked, the resultant attacker
utility is 𝑢𝑎∗ (𝑅/𝑟𝑎∗ − 𝑓𝑎∗ ). It follows, that for such a best response,
𝑎∗ ∈ argmax𝑎 𝑢𝑎 (𝑅/𝑟𝑎 − 𝑓𝑎) □

Given that the attacker can best-respond to the defender’s de-
fense strategy, we consider the minimax strategy for the defender to
minimize the worst-case loss. We can show that,

PROPOSITION 2.3. The defender has a minimax strategy 𝑓 ∗

yields a utility of 𝜆 where∑
𝑎

𝑐𝑎 (𝑅/𝑟𝑎 − 𝜆/𝑢𝑎) = 𝐶 and 𝑓 ∗𝑎 = (𝑅/𝑟𝑎 − 𝜆/𝑢𝑎)

.
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PROOF. For any defender strategy 𝑓 , let 𝑣𝑎 (𝑓 ) = 𝑢𝑎 (𝑅/𝑟𝑎 − 𝑓𝑎)
denote the attacker utility for attacking only type 𝑎 in response to 𝑓 .

Now, let the defender minimax strategy be 𝑓 ∗. By Prop. 2.2, there
exists a best response to 𝑓 ∗ that attacks only one type, say 𝑎. Now, if
∃𝑎′ ∈ 𝐴, and 𝛿 > 0 s.t. 𝑣𝑎 (𝑓 ∗) − 𝑣𝑎′ (𝑓 ∗) ≥ 𝛿 , then, the defender can
play a strategy 𝑓 ′ constructed from 𝑓 ∗ by

(1) reducing the defense for 𝑎′ by, say 𝛿/2· (1/𝑢𝑎′) so that 𝑣𝑎′ (𝑓 ′)
is higher than 𝑣𝑎′ (𝑓 ∗) by 𝛿/2. This frees up a budget 𝑐 ′ =
𝑐𝑎′𝛿/(2𝑢𝑎′).

(2) using the surplus budget 𝑐 ′ to increase the defense for all
types 𝑎′′ ∈ 𝐴 \ {𝑎′} s.t. each 𝑣𝑎′′ (𝑓 ′) is lower than 𝑣𝑎′′ (𝑓 ∗)
by a 𝛿 ′ > 0, s.t. 𝛿 ′ ≤ 𝛿/2.

As a result, 𝑓 ′ constructed as above still has the same attacker best
response but lower attacker utility, thus a contradiction. Hence, we
must have 𝑣𝑎 (𝑓 ∗) = (say) 𝜆 ∀𝑎 ∈ 𝐴; 𝜆 thus being the minmax utility.
This gives us the second half of the claim. Rewriting it for each 𝑎

gives 𝑓 ∗𝑎 = (𝑅/𝑟𝑎 − 𝜆/𝑢𝑎) and further using the defender’s budget
constraint gives the first half. The system of equations together give
𝑓 ∗ and 𝜆 (the closed forms are omitted for brevity). □

2.2 Dynamic defense and Deception
Now, we consider the case when the defender can dynamically alter
the defense strategy. In this case, if the defender can anticipate
the attacker’s adaptations, he can change his own strategy so as to
exploit the attacker. As the defender varies the strategies, he can
achieve deception by showing the attacker fake vulnerabilities and
anticipating the subsequent attack response. This can be modeled
in multiple rounds/stages. For simplicity, we assume the budget
is uniformly spread across the rounds for the attack and defense
capabilities respectively. Typically the budget captures the compute
capacities in the network and thus, assuming an equal budget for a
given time period is a reasonable assumption. For an attacker who
does not adjust to the varying defense, and launches a static attack
instead, the defender can simply play the minimax strategy discussed
in the previous section, so as to cover the worst case. The following
idea of deception works against an attacker who can perceive the
defender strategy in the previous rounds, and launches an attack
in the new round in response to the anticipated defender strategy
estimated from the observed strategies in the previous rounds. This
idea of deception demonstrated by the following example.

Figure 2: Example: Deception can yield better results

Consider Fig. 2 where we consider two stages (time intervals)
allowing the players to adapt strategies between the stages. Let there
be 3 attack types. Let the player budgets be 𝐶 = 𝑅 = 30 in each

round and the per-unit costs and utilities for all attack types for both
the players be 1. When the defender is not attempting any deception
or dynamic adaptations, he can equally distribute the budget across
types to handle attacks of all types. The attacker without any prior
observation launches uniform attacks in the first round, however,
randomly exploits one of the types in the next stage, which the
defender cannot predict and must resort to the same uniform strategy,
yielding an attacker utility of 20. On the other hand, if the defender
knows the attacker’s exploitative nature, he can display vulnerability
for type two with a very weak defense. As the attacker attempts to
exploit it however, the defender scales up the defense there to full
strength, reducing the aggregate attacker utility over two rounds to
6. Thus, this example demonstrates the effect of adapting strategies
dynamically and the potential for deception.

Formally, we model this as a𝑇 (< ∞) round game. We assume that
the attacker has a memory length Γ, and non-negative coefficients
𝛼0, . . . , 𝛼𝜏 summing to 1, which govern the way attacker estimates
the new defender strategy given the past observations. Specifically, in
round 𝑡 , when the attacker has observed the defender strategy in the

previous Γ rounds, he anticipates a strategy ℎ𝑡 = 𝛼0 𝑓 0 +
Γ∑

𝜏=1
𝛼𝜏 𝑓

𝑡−𝜏 ,

where 𝑓 0 is the uniform strategy which we assume as the bias/noise
representing the lack of certainty in the estimated future strategy.
When the number of previous rounds are fewer than the memory,
we treat 𝑓 𝑡−𝜏 = 𝑓 0. We let the player’s budgets in each rounds be
denoted by 𝑅,𝐶 respectively as before. The rest of the notation is
carried from the static play as well.

In any round 𝑡 , the attacker estimates the defender strategy ℎ𝑡 ,
and assuming rationality, plays a best response to it. Previous works
have also considered bounded rationality via SUQR models. Our
formulation can be easily adapted for such settings by appropriately
changing the attacker response modelling. For a rational attacker,
however, we can formulate the following objective for the defender.

min
𝑓 1,...,𝑓 𝑇

∑
𝑡

𝑈 (𝑓 𝑡 , 𝑔𝑡 ) (1)

s.t. 𝑈 (ℎ𝑡 , 𝑔𝑡 ) ≥ max
𝑎

𝑢𝑎 (𝑅/𝑟𝑎 − ℎ𝑡𝑎) ∀𝑡 ≤ 𝑇 (1a)∑
𝑎

𝑓 𝑡𝑎 𝑐𝑎 ≤ 𝐶,
∑
𝑎

𝑔𝑡𝑎𝑟𝑎 ≤ 𝑅 ∀𝑡 ≤ 𝑇 (1b)

ℎ𝑡 = 𝛼0 𝑓
0 +

Γ∑
𝜏=1

𝛼𝜏 𝑓
𝑡−𝜏∀𝑡 ≤ 𝑇 (1c)

The objective of the optimization problem is the attacker utility
aggregated over all rounds which the defender wants to minimize.
Constraint (1a) ensures the attacker plays a best response 𝑔𝑡 against
his estimated defender strategy ℎ𝑡 in each round 𝑡 . Inequalities in
(1b) capture the budget constraint for the players in each round. The
final inequality defines the attacker’s estimate ℎ𝑡 of the defender
strategy in each round 𝑡 in terms of the previous observations.

Note that the function 𝑈 (𝑓 , 𝑔) is not linear. The Attacker BR
constraint in the OP above can be linearized in two ways:

(1) Introduce binary variables 𝑧𝑡𝑎 , and let 𝑙𝑡𝑎 = max(𝑔𝑡𝑎 − ℎ𝑡𝑎, 0).
Then, using a big constant 𝑀 , we add the constraints∑

𝑎

𝑢𝑎𝑙
𝑡
𝑎 ≥ max

𝑎
𝑢𝑎 (𝑅/𝑟𝑎 − ℎ𝑡𝑎)
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𝑙𝑡𝑎 ≥ 0, 𝑙𝑡𝑎 ≥ 𝑔𝑡𝑎 − ℎ𝑡𝑎
𝑙𝑡𝑎 ≤ 𝑔𝑡𝑎 − ℎ𝑡𝑎 +𝑀𝑧𝑡𝑎, 𝑙𝑡𝑎 ≤ 𝑀 (1 − 𝑧𝑡𝑎)

(2) Introduce binary variables 𝑧𝑡𝑎 , which indicate whether the
attacker attacks type 𝑎 (only) in that round. This is since we
know that the attacker best response attacking only one type
exists. Then, we add the constraints:∑

𝑎

𝑧𝑡𝑎𝑢𝑎 (𝑅/𝑟𝑎 − ℎ𝑡𝑎) ≥ max
𝑎

𝑢𝑎 (𝑅/𝑟𝑎 − ℎ𝑡𝑎),
∑
𝑎

𝑧𝑡𝑎 = 1

This further leads to bilinear terms 𝑧𝑡𝑎ℎ
𝑡
𝑎 which can be lin-

earized (using big-M constraints).
This turns the formulation into a Mixed-integer Linear Program

(MILP). Due to the integer variables and Big-M constraints, com-
puting the solution for all 𝑇 rounds at once is expensive when 𝑇 is
large. Hence, we propose the following heuristics.

Look and Book Heuristic. Here, we only consider (“look” at)
the next few rounds, and compute an optimal solution for say 𝑛 future
rounds. However, since the subsequent rounds have not considered
enough future rounds, we only commit to (“book”) the first, say
𝑚 < 𝑛 rounds and repeat the process after these𝑚 rounds. We note
that the future rewards after these𝑚 rounds may get overestimated
since they are never achieved, and to remedy this, we introduce a
discount factor 𝛾 for the future rounds when computing the optimal
solution.

Algorithm 1: Look and Book (LB-(m,n))

1 for 𝑡 = 1; 𝑡 +=𝑚; 𝑡 ≤ 𝑇
2 (𝑓 𝑡 , . . . , 𝑓 𝑡+𝑛−1) ← 𝑙𝑏 (𝑡, 𝑛)
3 Return (𝑓 1, . . . , 𝑓 𝑇 )

The function lb(𝜏, 𝑛) solves the following optimization problem:

min
𝑓 𝜏 ,...,𝑓 𝜏+𝑛−1

𝜏+𝑚−1∑
𝑡=𝜏

𝑈 (𝑓 𝑡 , 𝑔𝑡 ) +
𝜏+𝑛−1∑
𝑡=𝜏+𝑚

𝑈 (𝑓 𝑡 , 𝑔𝑡 )𝛾𝑡−(𝜏+𝑚)+1 (2)

s.t. 𝑈 (ℎ𝑡 , 𝑔𝑡 ) ≥ max
𝑎

𝑢𝑎 (𝑅/𝑟𝑎 − ℎ𝑡𝑎) ∀𝑡 ≤ 𝑇 (2a)∑
𝑎

𝑓 𝑡𝑎 𝑐𝑎 ≤ 𝐶,
∑
𝑎

𝑔𝑡𝑎𝑟𝑎 ≤ 𝑅 ∀𝑡 ≤ 𝑇 (2b)

ℎ𝑡 = 𝛼0 𝑓
0 +

Γ∑
𝜏=1

𝛼𝜏 𝑓
𝑡−𝜏 (2c)

Fixed Sequence Heuristic. The idea here is to find a short
sequence of strategies with fixed length 𝑀 and require the defender
to execute this sequence repeatedly. This can be computed by simply
adding the following constraint to formulation (1):

𝑓 𝑡 = 𝑓 𝑡−𝑀 ∀𝑡 | 𝑀 < 𝑡 ≤ 𝑇
We name this heuristic FS-𝑀 corresponding to the sequence length
𝑀 . This heuristic has the following approximation guarantee.

THEOREM 2.4. Let the memory length be Γ = 1 and the bias
coefficient 𝛼0 = 0, i.e. the attacker estimates the defender strategy
ℎ𝑡 = 𝑓 𝑡−1 in each round 𝑡 . Then, there exists a fixed sequence
strategy giving a (1− 1

𝑀
) 𝑍−1
𝑍+1 approximation to the optimal strategy

profile in terms of the normalized utility, where 𝑍 = 𝑇 /𝑀 .

This property follows from Theorem 1 in [10] as it can be shown
to hold independent of the exhaustive key differences in the models
which are utility functions, strategy spaces and attacker rationality.

3 DDOS MITIGATION RESOURCE
ALLOCATION

Recent works [11] have proposed DDoS mitigation techniques that
involve allocating VM or hardware resources which process ma-
licious traffic. We consider this resource allocation problem with
the goal of minimizing latency, so as to execute the pre-computed
strategy in the first phase. We use a running example for illustration
as shown in Fig. 3.

Figure 3: Traffic flow and resource allocation for DDoS mitiga-
tion

Let 𝐴 denote the set of attack types. For each 𝑎 ∈ 𝐴, let T𝑎
denote the different types of virtual machines required to process
traffic of attack type 𝑎. Each such VM type represents a distinct
logical module it runs under the defense strategy corresponding to
the particular attack type. In the adjoining example, we consider
three attack types, i.e., 𝐴 = {1, 2, 3} with the first having six different
types of virtual machines, namely the set T1 = {𝑎, 𝑏, . . . , 𝑓 }. Further,
let T= ⋃

𝑎 T𝑎 . (We assume that the defense modules associated with
different attack types are all different, i.e. the sets T𝑎 for different 𝑎
are all disjoint). A VM of type 𝑡 can process traffic upto 𝐹𝑡 which
is input to the problem. The strategy graph for this attack type is
a DAG denoted by 𝐺𝑎 = (T𝑎, 𝐸𝑎), where 𝐸𝑎 ⊆ T𝑎 × T𝑎 is the set
of directed edges. Fig. 4 shows a strategy graph illustration. The
example in Fig. 3 shows 3 strategy graphs each corresponding to an
attack type.

Figure 4: Strategy graph example

The virtual machines are instantiated at several servers which
are placed at several datacenters. Let S denote the set of servers
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Symbol Meaning
𝑎 ∈ 𝐴 Attack type from the set of types
T𝑎 Types of VMs for a given 𝑎 ∈ 𝐴

𝐺𝑎 = (T𝑎, 𝐸𝑎) Strategy graph for 𝑎 ∈ 𝐴
𝑡 in𝑎 The VM type in T𝑎 that is the source of DAG 𝐺𝑎

T, T in ⋃
𝑎 T𝑎 and

⋃
𝑎{𝑡 in𝑎 } resp.

𝑝 ∈ 𝑃 A PoP node from the set of PoP nodes
𝑔𝑝𝑎 Attack volume to be handled at 𝑝 ∈ 𝑃 of type 𝑎 ∈ 𝐴

𝛿𝑡𝑡 ′
Estimated fraction of traffic on edge (𝑡, 𝑡 ′)
in a strategy graph

𝐹𝑡 Processing capacity of a VM of type 𝑡
𝐶𝑠 Server compute capacity of 𝑠 ∈ 𝑆
𝐶𝑑 Datacenter uplink capacity

𝐿𝑝𝑑
per unit latency cost between 𝑝 ∈ 𝑃 and
a server at datacenter 𝑑

𝐿𝑠𝑠′ per unit latency cost between servers 𝑠 and 𝑠 ′

𝛼
Relative importance of inter- to
intra- datacenter latency cost

𝜆𝑝𝑎
The payoff from an unprocessed packet of type
𝑎 ∈ 𝐴 at 𝑝 ∈ 𝑃

𝑓𝑝𝑡𝑠 or 𝑓𝑒𝑠
The total traffic on edge 𝑒 = (𝑝, 𝑡) ∈ 𝐸in that is
sent to VMs of type 𝑡 on server 𝑠

𝑓𝑡𝑡 ′𝑠𝑠′ or 𝑓𝑒𝑠𝑠′
Total traffic on edge 𝑒 = (𝑡, 𝑡 ′) ∈ 𝐸 that is sent
from VMs of type 𝑡 on server 𝑠 to VMs of 𝑡 ′ on 𝑠 ′

𝑛𝑠𝑡 The number of VMs of type 𝑡 at server 𝑠
Table 1: Table of notation

which can be partitioned as S =
⋃

𝑑 S𝑑 where each S𝑑 denotes
the set of servers at a particular datacenter 𝑑 ∈ 𝐷. For the MILP
formulation, consider the set of variables {𝑛𝑠𝑡 } where each 𝑛𝑠𝑡
denotes the number of VMs at server 𝑠 allocated to carry out the
processing of type 𝑡 . For any attack type 𝑎, let 𝑡 in𝑎 ∈ T𝑎 be the module
in the corresponding strategy graph where the traffic is routed from
a PoP node, i.e. the unique source node of the DAG 𝐺𝑎 , and let⋃

𝑎{𝑡 in𝑎 } = T in. In our example, T in = {𝑎,𝑔, 𝑙}. Let the set of
ingress or PoP nodes be P, i.e., the points where the traffic enters the
network. Let 𝐸in denote the edges from P to

⋃
𝑎{𝑡 in𝑎 }. The example

shows two PoPs amounting to 6 edges in 𝐸in.
For an edge 𝑒 = (𝑡, 𝑡 ′) ∈ ⋃𝑎 𝐸𝑎 and servers 𝑠, 𝑠 ′, let 𝑓𝑒𝑠𝑠′ or 𝑓𝑡𝑡 ′𝑠𝑠′

denote the traffic flow along edge 𝑒 from server 𝑠 to 𝑠 ′. Similarly, for
edge 𝑒 = (𝑝, 𝑡) ∈ 𝐸in and servers 𝑠, let 𝑓𝑒𝑠 or 𝑓𝑝𝑡𝑠 denote the portion
of traffic flow along edge 𝑒 from PoP node 𝑝 to server 𝑠. Let 𝑔𝑝𝑎 be
the attack traffic volume that the defense strategy has to handle for
attack type 𝑎 at PoP 𝑝, which is given by the first phase (see Section
2). This traffic flow is demonstrated in Fig. 5.

Let 𝛿𝑡𝑡 ′ be the expected fraction of traffic from 𝑡 to 𝑡 ′ which
is given as input. Let 𝐿𝑝𝑑 denote the latency cost for routing the
traffic from PoP 𝑝 to datacenter 𝑑, and let 𝐿𝑠𝑠′ denote the latency
cost for routing the traffic from server 𝑠 to server 𝑠 ′ with 𝛼 being the
relative importance of the two latency costs. The notation has been
summarized in Table 1.

[11] assumes that there are sufficient resources to handle the
attack volume and given the constraint that all the suspicious traffic
is to be processed, the goal is to route the traffic through VM defense

Figure 5: Traffic flow among servers: a,b,c are three VM types
and q,r are servers which run VMs to implement the corre-
sponding analysis modules

resources so that the latency costs incurred are minimized. Hence
we get the following MILP.

min
{𝑓𝑠𝑡 },{𝑛𝑠𝑡 }

𝐿

s.t. 𝐿 ≥ 𝛼
∑
𝑝,𝑑

𝐿𝑝𝑑
∑
𝑎

∑
𝑠∈𝑆𝑑

𝑓𝑝𝑡 in𝑎 𝑠 +
∑
𝑠,𝑠′

𝐿𝑠𝑠′
∑
𝑒∈𝐸

𝑓𝑒𝑠𝑠′ (Latency)

𝑛𝑠𝑡 𝐹𝑡 ≥
∑

𝑡 ′:(𝑡 ′,𝑡 ) ∈𝐸𝑎

∑
𝑠′∈𝑆

𝑓𝑡 ′𝑡𝑠′𝑠 ∀𝑠∀𝑡 ∈ T𝑎∀𝑎

𝑛𝑠𝑡 𝐹𝑡 ≥
∑
𝑝
𝑓𝑝𝑡𝑠 ∀𝑠∀𝑡 ∈ T in

𝑎 (Adequate VM allocation)∑
𝑠,𝑠′

𝑓𝑡𝑡 ′𝑠𝑠′ = 𝑔𝑡𝑡 ′ ∀𝑡, 𝑡 ′ (Flow variables match strategy)∑
𝑡 ′,𝑠′

𝑓𝑡 ′𝑡𝑠′𝑠 =
∑

𝑡 ′′,𝑠′′
𝑓𝑡𝑡 ′′𝑠𝑠′′ ∀𝑡, 𝑠 (flow conservation)∑

𝑡 𝑛𝑠𝑡 ≤ 𝐶𝑠 ∀𝑠 (Server compute capacity)∑
𝑝,𝑎

∑
𝑠∈𝑆𝑑

𝑓𝑝𝑡 in𝑎 𝑠 ≤ 𝐶𝑑 ∀𝑑 (Datacenter uplink capacity)

The various inequalities capture the model constraints as de-
scribed next to them. Note that the heterogeneity of the attack traffic
comes from the various ingress-’attack type’ pairs, thus, when ap-
plying the strategy computation phase to the problem as analyzed in
the previous section, each such ingress-’attack type’ pair is regarded
as an attack type therein.

Having analyzed both the phases, we next show numerical results
on our approaches.

4 NUMERICAL RESULTS
We compare the proposed heuristic approaches with varying pa-
rameters and game settings. LB-(1,1) is the myopic strategy that
maximizes the reward in each round and FS-1 is equivalent to cal-
culating the best static defender strategy against an attacker with
given memory and coefficients. For LB-(m,n) strategies in general,
we tune the discount factor 𝛾 and pick the one that works the best in
our comparisons.

Table 2 shows that computing the complete optimal solution
quickly becomes untractable. With a cut-off time of 1 hour, most
instances do not finish with 10 rounds and 4 or 5 attack types. For
smaller values, the average runtime is seen to heavily rise with the
the number of rounds or attack types which can be justified due
to the fact that the number of integer variables scales with both of
these.
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Attack types
3 4 5

Rounds
3 3.45 5.87 9.18
5 18.62 32.11 48.02
10 43.13 – –

Table 2: Runtime of the Full solution MILP formulation (min.)
as No. of Attack types and Rounds are varied
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Figure 6: Optimality of different heuristics compared

Servers
10 50 100

VM types
10 0.73 7.41 19.2
20 2.54 21.02 44.12
30 6.32 36.25 54.51

Table 3: Runtime (minutes) of the Resource allocation MILP as
No. of VM types and servers are varied

Fig. 6 shows that the heuristics parametrized by small values for
fast computation, produce output that is up to 90% optimal in several
cases. FS-2 always produces a better quality solution than FS-1 since
it encompasses the solution space of the latter. LB-(1,2) is seen to
better in three of the four cases highlighting the utility in committing
to a small portion of the myopic view rather than its entirety.

Finally, we show that our MILP solution for the resource alloca-
tion phase computes fast for large problem sizes. Table 3 shows that
the computation runtime scales with No. of VM types and servers
are varied, however, with a cut-off time of one-hour, it can handle
problems of size 100 servers, 30 VM types.

5 DISCUSSION
For mitigating the dynamic DDoS attacks, we propose a model that
consists of two phases. The first phase computes a dynamic defense
strategy, whereas the second phase optimally deploys compute re-
sources to implement the strategy. We show analytical results for
the minimax equilibria of the static (single-stage) game and subse-
quently provide Mixed Integer Linear Program (MILP) formulations
for computing the optimal dynamic strategies of the multiple-stage

game as well as efficient and effective heuristics. Finally, we show
numerical results on simulated attack data which demonstrate the
efficacy of out solutions approaches.

Future efforts advancing such a model may consider additional
constraints on the attacker strategy, such as attack volume bounds for
avoiding detection. Another direction is to relax the assumption on
the defender’s precise knowledge of the attacker model coefficients,
and compute robust solutions that do not rely on it, integrating
possible uncertainties therein.
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