
Scouts: Improving the Diagnosis Process Through
Domain-customized Incident Routing

Jiaqi Gao
★
, Nofel Yaseen

⋄
, Robert MacDavid

∗
, Felipe Vieira Frujeri

◦
, Vincent Liu

⋄
, Ricardo Bianchini

◦

Ramaswamy Aditya
§
, Xiaohang Wang

§
, Henry Lee

§
, David Maltz

§
, Minlan Yu

★
, Behnaz Arzani

◦

★Harvard University ⋄University of Pennsylvania ∗Princeton University ◦Microsoft Research §Microsoft

ABSTRACT
Incident routing is critical for maintaining service level objectives

in the cloud: the time-to-diagnosis can increase by 10× due to mis-

routings. Properly routing incidents is challenging because of the

complexity of today’s data center (DC) applications and their de-

pendencies. For instance, an application running on a VM might

rely on a functioning host-server, remote-storage service, and vir-

tual and physical network components. It is hard for any one team,

rule-based system, or even machine learning solution to fully learn

the complexity and solve the incident routing problem. We pro-

pose a different approach using per-team Scouts. Each teams’ Scout

acts as its gate-keeper — it routes relevant incidents to the team

and routes-away unrelated ones. We solve the problem through

a collection of these Scouts. Our PhyNet Scout alone — currently

deployed in production — reduces the time-to-mitigation of 65% of

mis-routed incidents in our dataset.

CCS CONCEPTS
•Computingmethodologies→Machine learning; •Networks
→ Data center networks;

KEYWORDS
Data center networks; Machine learning; Diagnosis

ACM Reference Format:
Jiaqi Gao, Nofel Yaseen, Robert MacDavid, Felipe Vieira Frujeri, Vincent

Liu, RicardoBianchini, Ramaswamy Aditya, Xiaohang Wang, Henry Lee,

David Maltz, Minlan Yu, Behnaz Arzani. 2020. Scouts: Improving the Di-

agnosis Process Through Domain-customized Incident Routing. In Annual
conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communi-
cation (SIGCOMM ’20), August 10–14, 2020, Virtual Event, NY, USA. ACM,

New York, NY, USA, 17 pages. https://doi.org/10.1145/3387514.3405867

1 INTRODUCTION
For cloud providers, incident routing — taking an issue that is too

complex for automated techniques and assigning it to a team of

engineers — is a critical bottleneck to maintaining availability and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00

https://doi.org/10.1145/3387514.3405867

service-level objectives. When incidents are mis-routed (sent to the
wrong team), their time-to-diagnosis can increase by 10× [21].

A handful of well-known teams that underpin other services

tend to bear the brunt of this effect. The physical networking team

in our large cloud, for instance, is a recipient in 1 in every 10 mis-

routed incidents (see §3). In comparison, the hundreds of other

possible teams typically receive 1 in 100 to 1 in 1000. These findings

are common across the industry (see Appendix A).

Incident routing remains challenging because modern DC ap-

plications are large, complex, and distributed systems that rely

on many sub-systems and components. Applications’ connections

to users, for example, might cross the DC network and multiple

ISPs, traversing firewalls and load balancers along the way. Any of

these components may be responsible for connectivity issues. The

internal architectures and the relationships between these compo-

nents may change over time. In the end, we find that the traditional

method of relying on humans and human-created rules to route

incidents is inefficient, time-consuming, and error-prone.

Instead, we seek a tool that can automatically analyze these

complex relationships and route incidents to the team that is most

likely responsible; we note that machine learning (ML) is a potential

match for this classification task. In principle, a single, well-trained

ML model could process the massive amount of data available from

operators’ monitoring systems—too vast and diverse for humans—

to arrive at an informed prediction. Similar techniques have found

success in more limited contexts (e.g., specific problems and/or

applications) [11, 15, 22, 25, 73]. Unfortunately, we quickly found

operationalizing this monolithicMLmodel comeswith fundamental

technical and practical challenges:

A constantly changing set of incidents, components, and monitoring
data: As the root causes of incidents are addressed and components

evolve over time, both the inputs and the outputs of the model are

constantly in flux. When incidents change, we are often left without

enough training data and when components change, we potentially

need to retrain across the entire fleet.

Curse of dimensionality: A monolithic incident router needs to in-

clude monitoring data from all teams. This large resulting feature

vector leads to “the curse of dimensionality” [4]. The typical solu-

tion of increasing the number of training examples in proportion to

the number of features is not possible in a domain where examples

(incidents) are already relatively rare events.

Uneven instrumentation: A subset of teams will always have gaps

in monitoring, either because the team has introduced new compo-

nents and analytics have not caught up, or because measuring is just

hard, e.g., in active measurements where accuracy and overhead

are in direct contention [34].

https://doi.org/10.1145/3387514.3405867
https://doi.org/10.1145/3387514.3405867

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Gao et al.

Limited visibility into every team: For the same reasons that it is

difficult for teams to have expertise in all surrounding components,

it is difficult for us to understand the appropriate feature sets from

each and every team.

Rather than building a single, monolithic predictor, we argue a
piecewise solution based on a collection of (strategically assigned)

per-team predictors, a.k.a. Scouts, is more useful. Scouts are low-

overhead, low-latency, and high-accuracy tools that predict, for a

given team, whether the team should be involved. They are built by

the team to which they apply and are amenable to partial deploy-

ment. Scouts address the above challenges: they only need to adapt

to changes to their team and its components (instead of all changes),

they operate over a more limited feature set (no longer suffer the

curse of dimensionality), they limit the need for understanding

the internals of every team (they only need to encode information

about the team they are designed for and its local dependencies),

and only require local instrumentation. Scouts can utilize a hybrid

of supervised and unsupervised models to account for changes to

incidents (see §5) and can provide explanations as to why they de-

cided the team is (not) responsible. Operators can be strategic about

which Scouts they need: they can build Scouts for teams (such as

our physical networking team) that are inordinately affected by

mis-routings. Given a set of Scouts, operators can incrementally

compose them, either through a global routing system or through

the existing manual process.

We designed, implemented, and deployed a Scout for the physical

networking team of a large cloud.
1
We focus on this team as, from

our study of our cloud and other operators, we find the network —

and specifically the physical network — suffers inordinately from

mis-routing (see §3). This team exhibits all of the challenges of

Scout construction: diverse, dirty datasets; complex dependencies

inside and outside the provider; many reliant services; and frequent

changes. As the team evolves, the framework we developed adapts

automatically and without expert intervention through the use of

meta-learning techniques [46].

These same techniques can be used to develop new “starter”

Scouts as well. However, even for teams that do not build a Scout,

e.g., if instrumentation is difficult or dependencies are hard to dis-

entangle, they still benefit from Scouts: their incidents spend less

time at other teams, and they receive fewer mis-routed incidents

belonging to Scout-enabled teams. In fact, we show even a single,

strategically deployed Scout can lead to substantial benefit.

Our Scout has precision/recall ≥ 98%, and it can reduce over 60%

of the investigation time of many incidents. Our contributions are:

1) An investigation of incident routing based on our analysis of

our production cloud. As the data we use is of a sensitive nature,

we limit our discussion to those incidents which impacted the

physical networking team (arguably the most interesting for this

conference), but the scope of the study was much broader. We

augment our results with analysis of public incident reports [2, 7]

and a survey of other operators (Appendix A).

2) The introduction of the concept of a distributed incident routing

system based on Scouts. We show the improvements such a system

can bring through trace-driven simulations (Appendix D).

1
To demonstrate the overall benefit of Scouts, we run trace-driven simulations of

broader deployments (Appendix D).

3) The design of a Scout for Microsoft Azure’s physical networking

team accompanied by a framework to enable its evolution as the

team’s monitoring systems, incidents, and responsibilities change.

4) A thorough evaluation of the deployed PhyNet Scout and analysis
of incidents in our cloud from the past year and a discussion of the

challenges the Scout encountered in practice.

This paper is the first to propose a decomposed solution to the

incident routing problem. We take the first step in demonstrating

such a solution can be effective by building a Scout for the PhyNet

team of Microsoft Azure. This team was one of the teams most

heavily impacted by the incident routing problem. As such, it was a

good first candidate to demonstrate the benefits Scouts can provide;

we leave the detailed design of other teams’ Scouts for future work.

2 BACKGROUND: INCIDENT ROUTING
Incidents constitute unintended behavior that can potentially im-

pact service availability and performance. Incidents are reported

by customers, automated watchdogs, or discovered and reported

manually by operators.

Incident routing is the process through which operators decide

which team should investigate an incident. In this context, we

use team to broadly refer to both internal teams in the cloud and

external organizations such as ISPs. Today, operators use run-books,

past-experience, and a natural language processing (NLP)-based

recommendation system (see §7), to route incidents. Specifically,

incidents are created and routed using a few methods:

1) By automated watchdogs that run inside the DC and monitor

the health of its different components. When a watchdog uncovers

a problem it follows a built-in set of rules to determine where it

should send the incident.

2) As Customer Reported Incidents (CRIs) which go directly to a

24 × 7 support team that uses past experience and a number of

specialized tools to determine where to send the incident. If the

cause is an external problem, the team contacts the organization

responsible. If it is internal, it is sent to the relevant team where it

is acknowledged by the on-call engineer.

It is important for every incident to be mitigated as quickly as

possible, even if it does not result in SLO violations—prolonged

investigations reduce the resilience of the DC to future failures [12,

33]: any time saved from better incident routing is valuable.

Routing incidents can be excruciatingly difficult as modern DC

applications are large and complex distributed systems that rely on

many other components. This is true even for incidents generated

by automated watchdogs as they often observe the symptom —

which can be far-reaching: a VM’s frequent rebooting can be an

indication of a storage problem or a networking issue [15, 73].

3 INCIDENTS IN THEWILD
To understand the impact of incident routing and why incidents

are sometimesmis-routed, we investigate incidents in a large cloud.

In particular, we examine, in depth, the internal logs of incidents

involving the physical networking team (PhyNet) of a large cloud.

These logs cover nine months and include records of the teams

the incident was routed through, the time spent in each team, and

logs from the resolution process. We have normalized the absolute

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
CRI Created by PhyNet monitorsCreated by other teams' monitors

Fraction of PhyNet incidents
per day

(a)

Fraction of PhyNet Incidents mis-
routed per day

(b)

CD
F

0.0
0.0

Figure 1: (a) Fraction of PhyNet incidents (per-day) created
by its monitors, by those of other teams, and by customers.
(b) Fraction of incidents of each type that are mis-routed.

investigation times to protect company sensitive data, however, the

reader can refer to the public incident reports of [2, 7] as a lower

bound (at the time of this writing, the maximum investigation time

in these reports was 25 hours).

3.1 What is the Cost of Incident Routing?
As the core networking team, the physical networking team’s

(PhyNet’s) purview is every switch and router in the DC. They

are on the critical path of most distributed systems and the analysis

of their incidents serves as an interesting case study of mis-routings.

Most PhyNet incidents are discovered by its own monitoring

systems and are routed correctly to PhyNet (Figure 1). But some of

the incidents PhyNet investigates are created by other teams’ mon-

itoring systems or customers. Of the incidents that pass through

PhyNet, PhyNet eventually resolves a fraction, while others are

subsequently routed to other teams. In the former case, if the inci-

dent went through other teams, their time will have been wasted in

proving their innocence. In the latter, the same is true of PhyNet’s

resources. This also delays resolution of the incident. 58% of inci-

dents passing through PhyNet fall into one of these categories. We

find perfect (100%) accuracy in incident routing can reduce time to

mitigation of low severity incidents by 32%, medium severity ones

by 47.4%, and high severity ones by 0.15% (all teams are involved in

resolving the highest severity incidents to avoid customer impact).

Across teams and incidents, better incident routing could elimi-

nate an average of 97.6 hours of investigations per day — exceeding

302 hours on ∼10% of days.

The incidents resolved by PhyNet are investigated by 1.6 teams

on average, and up to 11 teams in the worst case. Mis-routed inci-

dents take longer to resolve (Figure 2): on average, they took 10×
longer to resolve compared to incidents that were sent directly to

the responsible team. For 20% of them, time-to-mitigation could

have been reduced by more than half by sending it directly to

PhyNet (Figure 3). These incidents are likely a biased sample: mis-

routing may indicate the incident is intrinsically harder to resolve;

but our investigation into the reasons behind mis-routing indicates

that many hops are spurious and can be avoided (see §3.2).

PhyNet is often one of the first suspects and among the first

teams to which incidents are sent. As a result, daily statistics show

that, in the median, in 35% of incidents where PhyNet was engaged,

the incident was caused by a problem elsewhere (Figure 4).

3.2 Why Do Multiple Teams Get Involved?
We study why incident routing is difficult by analyzing, in depth,

200 rerouted incidents. To our knowledge, this is the first case study

focusing on the reasons behind cloud incident routing problems.

10 -8 10-6 10-4 10-2 100

Time (normalized)

Multiple teams investigate
Single team investigates

CD
F

0

0.2

0.4

0.6

0.8

1

10x

Figure 2: Time to diagnosis of incidents going through a sin-
gle vs going through multiple teams. The numbers are nor-
malized by the maximum investigation time in the dataset.

When an incident comes in, it is common to send it to the team

where the issue was first detected. For example, if a customer is un-

able to connect to a database, the database team is typically alerted

first. When operators find the database is functioning correctly

(e.g. CPU, disk, and query execution times seem healthy and there

are no changes in login times), they involve other teams. Common

reasons for involving other teams are:

Engineers from different teams bring a wide range of do-
main knowledge to determine culpability. Often, the involve-
ment of multiple teams is due to a lack of domain-knowledge in a

particular area. In our example, the database expert may not have

the networking expertise to detect an ongoing network failure or its

cause. Team-level dependencies are deep, subtle, and can be hard to

reason about — exacerbating the problem. In our database example,

a connectivity issue may spur engineers to check if the physical

network, DNS, software load balancers, or virtual switches are at

fault before looking at other possible (and less-likely) causes. The

most common cause of mis-routing is when a team’s component is

one of the dependencies of the impacted system and thus a legiti-

mate suspect, but not the cause. In 122 out of 200 incidents, there

was at least one such team that was unnecessarily engaged.

Counter-intuitively, when no teams are responsible, more
teams get involved. A fundamental challenge in incident routing

is engineers’ lack of visibility into other ISPs and customer systems,

which may be experiencing ongoing DDoS attacks, BGP hijacks,

or bugs/misconfigurations. CRIs are especially prone to starting

with missing information as these issues can be varied in nature

and hard to debug remotely. In such cases, it is sometimes faster to

rule out teams within the cloud first rather than to wait or blame

others. Ironically, this ends up involving more teams.

One example from the dataset is where a customer was unable to

mount a file-share. Suspects included storage, switches and links in

the network, the load balancer, or the provider’s firewalls, among

others. After ruling out all these components, operators found the

customer had mis-configured their on-premises firewall. Customer

misconfigurations or a workload beyond the customer VM’s capac-

ity was responsible for this and 27 other incidents in our dataset;

the PhyNet team was engaged in the investigation of each.

Concurrent incidents and updates are hard to isolate. DC is-

sues are often a result of management operations that create un-

intended side effects [12, 33]. Out of the 200 incidents we stud-

ied, 52 were caused by upgrades. These updates are not limited to

those made by the provider as they typically partner with hard-

ware vendors that have their own upgrade cycles. It can be difficult

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Gao et al.

Fraction of time misrouted PhyNet
incidents spend in other teams

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 3: Investigation time we can reduce (%).

to separate the effects of these concurrent incidents and updates.

Sometimes, the same issue may spawn multiple incidents — one

for the component at fault and one for each dependent service. All

of these teams investigate the incident in parallel until the cause is

discovered. This was the case in 20 of the 200 incidents. In other

cases, an incident may be mis-attributed to an open problem even

though it is a separate incident. The team responsible for the exist-

ing problem will need to show that the new incident is un-related.

3.3 Design Goals
Our findings motivate a set of design goals:

Finding the right team precedes finding the root cause. One
approach to routing incidents is to try to automatically find the

root cause. Sadly, these types of approaches are fundamentally tied

to the semantics of specific applications [15, 17, 73] and are difficult

to scale to today’s DCs and the diverse applications they run.

When an incident is created, it is an implicit acknowledgment

that automation has failed to mitigate it. We find, as others have

done [15, 17, 21, 73]: human intervention is often necessary and

incident routing is an important first step in the investigation pro-

cess.

Incident routing should be automatic and robust. There are
too many incidents, too much variety in the incidents, too many

teams, and too much monitoring data for a human to consistently

make accurate decisions—operator anecdotes motivate the need for

assistance. This assistance cannot be limited to classifying known

problems as systems continuously change, new problems arise, and

old problems are patched. It must also be able to react to changing

norms: different clusters have different baseline latencies or device

temperatures. These values may also change over time.

The system should not bemonolithic. Any system that directly

examines all monitoring data across the provider is impractical. Part

of the reason for this is technical. The volume of monitoring data

would cause significant scalability, performance, and operational

challenges — even if we could gather this data, the high-dimensional

nature of the data makes it hard to reason about (see §1). Another

part is human: no one team can expect to know the ins and outs of

other teams’ monitoring data and components.

Teams should provide expertise on data, but not routing de-
cisions. Operators rely on a wide range of monitoring data. Our

PhyNet team uses tools such as active probing, tomography, packet

captures, and system logs, among others. An incident routing sys-

tem should be able to utilize all such data and to reason about

which is useful for a given incident. Given the diversity of teams,

even if we have access to their monitoring data, domain expertise

is needed to parse and understand it. However, once parsed, the

system can do the rest of the heavy lifting so teams need not be

0.0

0.2

0.4

0.6

0.8

1.0

0

CD
F

Fraction of PhyNet incidents with
PhyNet as a waypoint

20 40 60 80 100

Figure 4: Fraction (%) of incidents per-day mis-routed
through PhyNet (it was not responsible).
experts in incident routing, only in the relevant data. A corollary

of this point is the system should be able to explain why certain

routing decisions were made.

The system should be robust to partial and uneven deploy-
ment.We found a number of fundamental challenges in building

an optimal incident router. Some issues are the fault of external

organizations to which an internal system will have little visibility.

Internally, incident routing infrastructure will inevitably be uneven

— some teams may be new or have new components to which ana-

lytics have not caught up, other systems’ incidents are just plain

hard to route.

4 DESIGN OVERVIEW
Our solution centers around the concept of a “Scout”: a per-team

ML-assisted gate-keeper that takes as input the monitoring data of

a team, and answers the question: “is this team responsible for this

incident?” The answer comes with an independent confidence score

(measuring the reliability of the prediction) as well as an explanation

for it. Fundamentally, Scouts are based on our operators’ experience

that team-specific solutions are much easier to build and maintain

compared to application-specific ones [15, 73]. Scouts are team-

centric, automated, and continually re-trained.

Decomposing incident routing. Our key design choice is the de-

composition of incident routing into a per-team problem. Not only

does this make the problem tractable, but it also makes incremental

progress possible and insulates teams from having to worry about

the system as a whole. There are tradeoffs to this design, but we

find them acceptable in return for tractability (see §9).

We do not expect every team (or even amajority of them) to build

Scouts. Rather, we expect that, for teams that are disproportionately

affected by incident mis-routings, there is a substantial incentive to

constructing a Scout as they can automatically turn away incidents

that are not the team’s responsibility (saving operator effort) and

acquire incidents that are (speeding up time to mitigation). Teams

are also incentivized to keep them up-to-date and accurate in or-

der to maintain a high confidence score. An interesting result of

our work is: even a single well-made and well-positioned Scout can
improve the system as a whole (see §7).

We can compose Scouts in various ways, from integrating them

into the existing, largely manual, incident routing process to de-

signing a new Scout Master (see Appendix C). We focus on the

challenges of designing a Scout; we leave a detailed exploration of

Scout Master design to future work.

Automating the process. To facilitate the maintenance (and often

construction) of Scouts by non-ML-experts, our design includes a

Scout framework to automate this task. The Scout framework allows

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Model
Selector

Figure 5: The anatomy of a Scout.

teams to provide a simple configuration file that provides guidance

on their monitoring data — whether measurements are time-series

or a log of events; whether different pieces of data refer to different

statistics of a common component; or if certain data/components

should be ignored. The framework then automatically trains, re-

trains, and evaluates models to achieve the desired output. The

team can improve upon the Scout by tweaking the input features,

by adding additional models, or by adding specific decision rules.

In many ways, our framework mirrors a recent push toward

AutoML [46, 56]. Sadly, existing AutoML techniques are poorly

suited to incident routing because: (1) their sensitivity to the format

of input data makes them difficult to use [36]; (2) they deal poorly

with behavior that is slightly different from that found in the train-

ing set; (3) they are a black box, making it hard for operators to

reason about why they receive an incident; and (4) in return for

automation, they typically explore a huge search space and have a

high training cost. By building a framework specialized for incident

routing, we create a better solution. Such a framework is critical

for deploying an ML-based Scout in production as it helps (e.g.,

PhyNet) operators (not familiar with ML) maintain the Scout over

time and to incorporate new monitoring data or remove old ones.

5 THE SCOUT FRAMEWORK
Figure 5 shows the architecture of our framework. It takes as input

a configuration file (provided by operators), the incident descrip-

tion, and pulls the relevant monitoring data the team (and its local

dependencies) collects and produces a Scout (e.g., for PhyNet). We

next describe each component.

5.1 Monitoring Specifications
Scouts rely on monitoring data to decide where to route incidents:

they must (1) decide which monitoring data is relevant to the in-

cident (lest we contribute to the curse of dimensionality) and (2)

pre-process that data before it is used. Both steps are difficult to

handle automatically. First, the framework starts with the incident

description and all of the operator’s monitoring data (from all DCs)

as input and has no other information with which to narrow its

search. Second, the framework must be able to process arbitrary

new datasets with minimal context. Teams can annotate both the

incident text and the monitoring data to help:

Extracting components from the incident itself. Scouts can-
not investigate all components (DC sub-systems such as VMs,

switches, and servers): (1) it would result in a high-dimensional

feature-set (2) it can lead to too many false positives — due to con-

current and unrelated incidents (see §3). To solve this problem,

Scouts extract relevant components from the incident description.

Operators enable this by specifying how to detect such components

in the incident description (dependent components can be extracted

by using the operator’s logical/physical topology abstractions [52]).

Operators typically use machine-generated names for these compo-

nents and can specify how they can be extracted from the incident

using regular expressions:

Configuration

let VM = <regex>;
let server = <regex>;
let switch = <regex>;
let cluster = <regex>;
let DC = <regex>;

Example incident

(made up)

VM X.c10.dc3 in cluster
c10.dc3 is experiencing
problem connecting to
storage cluster c4.dc1

Tagging monitoring data with additional metadata. Scouts
also need to pull the relevant monitoring data and decide how to

pre-process it. Operators can assist in this process as well (this infor-

mation may already be part of the DC’s topology abstraction). First,

the location of each piece of monitoring data so the Scout can access

it. Second, the component associations of the data, e.g., to which

cluster and/or switch it refers. Third — to assist pre-processing — a

data type and optional class tag. For example:

MONITORING dataset_1 = CREATE_MONITORING(resource_locator,
{cluster=Y,server=Z},
TIME_SERIES, CPU_UTIL);

The data type can be one of TIME_SERIES or EVENT. Time-series

variables are anything measured at a regular interval, e.g., utiliza-

tion, temperature, etc. Events are data points that occur irregularly,

e.g., alerts and syslog error messages. All monitoring data can be

transformed into one of these two basic types, and Scouts use a

different feature engineering strategy for each (see §5.2). Note, op-

erators may apply additional pre-processing to the monitoring data;

for example, filtering out those syslogs they consider to be noise.

The class tag is optional (our PhyNet Scout only has two data-sets

with this tag), but enables the automatic combination of “related”

data sets — it ensures we can do feature engineering properly and

do not combine apples and oranges (see §5.2).

Operators provide this information through configuration files

(Figure 5). To modify the Scout, operators can modify the con-

figuration file, e.g., by adding/removing references to monitoring

data or changing the regular expressions the Scout uses to extract

components from the incident text.

5.2 Feature Construction and Prediction
A Scout needs to examine each incident and decide if its team is

responsible (maybe based on past incidents). ML is particularly well

suited to such tasks (see §1).

We first need to decide whether to use supervised or unsuper-

vised learning. Supervised models are known to be more accurate

(Table §3). But supervised models had trouble classifying: (a) infre-

quent and (b) new incidents — there is not enough representative

training data to learn from [47]
2
. Thus, we opted for a hybrid so-

lution that uses supervised learning to classify most incidents but

2
This is consistent with the high accuracy of these models as such incidents are rare.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Gao et al.

falls back to an unsupervised model for new and rare incidents. We

use a separate ML model to learn which category an incident falls

into (the model selector). The underlying components are:

5.2.1 Random forests (RFs). We use Random forests (RFs) [57]

as our supervised learning model. RFs can learn the complex re-

lationships between incidents, the monitoring data the teams col-

lect, and whether the team is responsible. RFs are a natural first

choice [15, 18, 24, 68]: they are resilient to over-fitting and offer

explain-ability.

Explain-ability is often a crucial feature for the successful de-

ployment of a system such as ours (see §7). We use [57] to provide

explanations to the team when incidents are routed to them.

Our RF takes as input a set of aggregated statistics for each

type of component. For instance, in the component specification

presented in §5.1, the five component types would result in five

distinct sets of features.
Per-component features. We next construct features for each

type of relevant component — up to five types in our example.

Per-component features incorporate EVENT and TIME_SERIES data

related to the components during the interval [𝑡 −𝑇, 𝑡], where 𝑡 is
the timestamp of the incident and 𝑇 is a fixed look-back time. Each

data set is pre-processed as follows:

Events/alerts: We count the events per type of alert and per compo-

nent, e.g., the number of Syslogs (per type of Syslog).

Time-series: We normalize them and calculate the: mean, standard

deviation, min, max, and 1
𝑠𝑡
, 10

𝑡ℎ
, 25

𝑡ℎ
, 50

𝑡ℎ
, 75

𝑡ℎ
, 90

𝑡ℎ
, and 99

𝑡ℎ

percentiles during [𝑡 −𝑇, 𝑡] to capture any changes that indicate a

failure.

Merging features from multiple components. Many compo-

nents contain a variable amount of related monitoring data that

need to be combined to ensure a fixed-length feature-set. This

is because: (1) differences in hardware/instrumentation (e.g. two

servers with different generations of CPU, one with 16 cores and

one with 32, where data is collected for each core), or (2) the inclu-

sion of sub-components, e.g., many switches in a single cluster. In

the first case, user ‘class’ tags specify the data to combine (which

we normalize first). In the second, the component tags provide

that information: e.g., all data with the same ‘resource_locator’ and

‘cluster’ tag is combined. We ensure a consistent feature set size by

computing statistics over all the data as a whole. Our intuition is

these features capture the overall distribution and hence, the impact

of the failure. For example, if a switch in a cluster is unhealthy, the

data from the switch would move the upper (or lower) percentiles.

We compute statistics for all applicable component types: for

cluster c10.dc3 in our example, we would compute a set of cluster

and DC features. If we do not find a component in any of the team’s

monitoring data, we remove its features. For example, PhyNet is

not responsible for monitoring the health of VMs (other teams are)

and so the PhyNet Scout does not have VM features.

In our example, the features include a set of server and switch
features — corresponding to the statistics computed over data sets

that relate to servers and switches — set to 0; statistics computed

over each data set related to the two clusters: c10.dc3 and c4.dc1;
and similarly, dc features over data from dc3 and dc1.

We add a feature for the number of components of each type.

This, for example, can help the model identify whether a change in

RF CPD+ NLP

Precision 97.2% 93.1% 96.5%

Recall 97.6% 94.0% 91.3%

F1-score 0.97 0.94 0.94

Table 1: F1-Score, precision, recall of each model as well as
the existing NLP solution §7.

the 99
𝑡ℎ

percentile of a switch-related time series is significant (it

may be noise if all the data is from one switch but significant if the

data is aggregated across 100 switches).

5.2.2 Modified Change Point Detection (CPD+). To choose an

unsupervised model we use the following insight: when a team’s

components are responsible for an incident there is often an accom-

panying shift in the data from those components, moving from one

stationary distribution to another.

CPD+ is an extension of change point detection (CPD) [51], an

algorithm that detects when a time series goes from one stationary

distribution to another. CPD is not, by itself, sufficient: (a) CPD only

applies to time-series data and cannot operate over events; (b) CPD

tends to have high false-positives—changes in distribution due to

non-failure events are common. The problem in (b) is exacerbated

when the incident implicates an entire cluster and not a small set

of devices: the algorithm can make a mistake on each device.

We use simple heuristics to solve these problems
3
. Our intuition

is while we do not have enough data to learn whether the team

is responsible, we do have enough to learn what combination of

change-points point to failures: when we have to investigate the

full cluster, we “learn” (using a new RF) whether change-points

(and events) are due to failures. The input is the average number

of change-points (or events) per component type and monitoring

data in the cluster.

When the incident implicates a handful of devices, we take a

conservative approach and report the incident as the team’s re-

sponsibility if any error or change-point is detected—these are

themselves explanations of why the incident was routed to the

team.

5.3 The Model Selector
Given an incident, the model selector maintains high accuracy by

carefully deciding between the RF and CPD+ algorithms. The model

selector has to:

Decide if the incident is “in-scope”.Operators know of incidents

(and components) that can be explicitly excluded from their team’s

responsibilities. Hence, they can specify incidents, components, and

keywords that are ‘out-of-scope’. Although optional, this can reduce

false positives. One example is an application that does not run on

a particular class of servers; any incident involving those servers is

unrelated. If PhyNet has passed the responsibility of a soon-to-be

decommissioned switch over to another team, that switch is also

out-of-scope. Example EXCLUDE commands are:

EXCLUDE switch = <regex>; or
EXCLUDE TITLE = <regex>; or
EXCLUDE BODY = <regex>;

3
Anomaly detection algorithms (as opposed to CPD) e.g., OneClassSVM [66] had lower

accuracy (Table 1): 86% precision and 98% recall.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

After applying exclusion rules, the model selector extracts com-

ponents from the incident description. This step is critical to avoid

using the team’s entire suite of monitoring data as input (see §5.1).

If the model selector cannot detect such a component, the incident

is marked as too broad in scope for either the RF or CPD+: it is likely

to be mis-classified—we revert to the provider’s existing incident

routing process.

Decide between RF, CPD+.We prefer to use the RF as our main

classifier because it is the most accurate (Table 1) and the most ex-

plainable — the CPD+ algorithm is only triggered on rare incidents

where the RF is expected to make mistakes.

We use meta-learning [65] to find “new” or rare incidents: we use

another ML model (an RF which is trained over “meta-features”).

Our meta-features are based on the method proposed in [58]: we

identify important words in the incident and their frequency. This

model is continuously re-trained so the model selector can adapt its

decisions to keep up with any changes to the team or its incidents.

Important note: The RF and the CPD+ algorithms used in our

framework can be replaced by other supervised and unsupervised

models respectively. Similarly, the RF model used in the model

selector can be replaced by other models (see §7). We chose these

models for our production system due to their explain-ability (the

RF), low overhead (CPD+), and high accuracy (both the RFs §7).

Operators can choose to replace any of these models depending on

their needs. We show an evaluation of other models in §7.

Thus, the end-to-end pipeline operates as follows: when a new

incident is created, the PhyNet Scout first extracts the relevant

components based on the configuration file. If it cannot identify

any specific components, incident routing falls back to the legacy

system. Otherwise, it constructs the model selector’s feature vector

from the incident text, and the model selector decides whether to

use the RF or the CPD+ algorithm. Finally, the Scout will construct

the feature vector for the chosen model, run the algorithm, and

report the classification results to the user.

6 IMPLEMENTATION
We have deployed a Scout for the physical network (PhyNet) team

of Microsoft Azure. Azure’s production ML system, Resource Cen-

tral [23], manages the lifecycle of our models (the RF, CPD+, and the

Model selector) and serves predictions from them. Resource Central

consists of an offline (training) and an online (serving) component.

The offline component trains the models using Spark [72]. It is also

responsible for model re-training. The trained models are then put

in a highly available storage system and served to the online com-

ponent. This component provides a REST interface and is activated

once an incident is created in the provider’s incident management

system: the incident manager makes calls to the online component,

which runs the desired models and returns a prediction. If any of

the features are unavailable — e.g., if one of the monitoring sys-

tems we rely on also failed when the incident occurred — Resource

Central uses the mean of that feature in the training set for online

predictions. We will evaluate such failure scenarios in §7.

We have implemented a prototype of the Scout framework in

Python. The configuration file of PhyNet’s Scout describes three

types of components: server, switch, and cluster and twelve types

of monitoring data (listed in Table 2).

Each call to the Scout (consisting of pulling the relevant moni-

toring data, constructing features, and running the inference) takes

1.79 ± 0.85 minutes — negligible compared to the time operators

spend investigating incidents (those not resolved automatically).

Overall, the online pipeline and offline pipeline consist of 4124

and 5000 lines of code respectively. To facilitate what-if analysis,

we do not take action based on the output of the Scout but rather

observe what would have happened if it was used for routing deci-

sions.

7 EVALUATION
Data: We use 9 months of incidents from Microsoft Azure. Each

data point describes an incident as, (𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 is a feature
vector and 𝑦𝑖 is a label: 0 if PhyNet resolved the incident and 1

otherwise. We use a look-back time (T) of two hours (unless noted

otherwise) to construct 𝑥𝑖 . We also have a log of how each incident

was handled by operators in the absence of our system (see §3). We

remove all incidents that were automatically resolved and further

focus on incidents where we can extract at least one component.

As mentioned in §5.3, both of these types of incidents use the

legacy incident routing infrastructure. Note that excluding incidents

without a component means that the distribution of incidents used

in our evaluations is slightly different from that of §3.

Training and test sets:We randomly split the data into a training

and a test set. To avoid class imbalance [40] (most-incidents are

not PhyNet’s responsibility), we only use 35% of the non-PhyNet

incidents in the training set (the rest are in the test set). We split

and use half the PhyNet incidents for training. We also show results

for time-based splits in §7.3.

Accuracy Metrics:We use several such metrics:

Precision: The trustworthiness of the Scout’s output. A precision

of 90% implies the Scout is correct 90% of the time when it says

PhyNet is responsible.

Recall: The portion of PhyNet incidents the Scout finds. A recall of

90% implies the Scout can identify 90% of the incidents for which

PhyNet was responsible.

F1-score [32]: The harmonic mean of the algorithm’s precision and

recall — for measuring overall accuracy.

Metrics comparing Scouts to the baseline: We also define met-

rics that show the benefits of the Scout over the existing baseline.

We first describe this baseline in more detail and then define these

metrics:

Baseline: We use the operator’s existing incident routing process —

incident routing without Scout’s involvement — as our baseline. Our

discussion in section §3 describe the incident routing problem with
thesemechanisms in place: operators use run-books, past-experience,

CD
F

 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fraction of total investigation time

0.0
0.0

Figure 6: Distribution of overhead-in to PhyNet based on our
legacy incident routing solution.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Gao et al.

Data set Description

Ping statistics [34] Data from a monitoring system that periodically records latency between pairs of servers in the DC.

Link-level drop statistics Data from a diagnosis system that identifies links dropping packets [64].

Switch-level drop statistics Data from a diagnosis system that identifies switches dropping packets [64].

Canaries Data from “canary” VMs which run on every rack in the DC and test reachability to the Internet on commonly

used (reserved) ports. These VMs are also routinely used to test new software deployments [3].

Device reboots Records of when a VM, host, or a switch is rebooted.

Link loss status Data from counters that indicate the packet loss rate on a switch port.

Packet corruption rate (FCS) Data from a system that periodically checks the loss rate (due to corruption) on a link and reports an error if it

is above an operator specified threshold.

SNMP [20] and Syslogs [28] Data from standard network monitoring systems.

PFC counters Periodic counts of priority flow control (PFC) messages sent by RDMA-enabled switches.

Interface counters Number of packets dropped on a switch interface.

Temperature The temperature of each component (e.g., ASIC) of the switch or server.

CPU usage The CPU-usage on the device.

Table 2: Data sets used in PhyNet Scout.

and a natural language processing (NLP)-based recommendation

system.

The NLP-based system is a multi-class classifier that only takes

the incident description as input. It constructs features from the

incident description using the approach of [31]. The classifier pro-

duces a ranked list (along with categorical — high, medium, and low

— confidence scores) as a recommendation to the operator. This sys-

tem has high precision but low recall (Table 1). This is, in part, due

to suffering from the challenges described in §1. In addition, (a) the

text of the incident often describes the symptoms observed but does

not reflect the actual state of the network’s components; (b) the

text of the incident is often noisy — it contains logs of conversation

which often lead the ML model astray.

Our metrics compare Scouts to the current state of incident

routing (with the above mechanisms in place):

Gain: the benefit (in investigation time) the Scout offers. This is

measured as gain-in — time saved by routing incidents directly

to the team when it is responsible; and gain-out — time saved by

routing incidents away from the team when it is not responsible.

We measure these times as a fraction of the total investigation time.

Overhead: the amount of time wasted due to the Scout’s mistakes.

We again break overhead into overhead-out — the overhead of send-

ing incidents out to other teams by mistake; and overhead-in —

the overhead of sending incidents to the team itself by mistake.

Sadly, we do not have ground truth to measure overhead directly.

To estimate overhead-in, we first build the distribution of the over-

head of mis-routings to PhyNet using the baseline (Figure 6). We

then, using standard probability theory and assuming incidents are

independent and identically distributed, calculate the distribution

of our system’s overhead. We cannot estimate overhead-out: the

multitude of teams the incident can be sent to and the differences

in their investigation times make any approximation unrealistic.

We present error-out instead: the fraction of incidents mistakenly

sent to other teams.

7.1 Benefit of the PhyNet Scout
Our Scout’s precision is 97.5%, and recall 97.7% leading to an F-1

score of 0.98. In contrast, today, the precision of the provider’s inci-

dent routing system is 87.2%, with a recall of 91.9% and a resulting

F-1 score of 0.89.

Gain-In
Best possible gain
Overhead-in

Fraction of investigation time (%)
(a)

CD
F

0.0

0.2

0.4

0.6

0.8

1.0 1.0

Gain-out
Best possible gain
Error out : 1.7%

0.0

0.2

0.4

0.6

0.8

Fraction of investigation time (%)
(b)

1000 20 40 60 801000 20 40 60 80

Figure 7: Gain/overhead for mis-routed incidents: (a)
gain/overhead in (b) gain/error out.

The PhyNet Scout significantly reduces the investigation time

of mis-routed incidents with little additional overhead (Figure 7).

It closely mimics a perfect gate-keeper: in the median, the gap

between our Scout and one with 100% accuracy is less than 5%.

For those incidents that were already correctly routed (no oppor-

tunity for gain) our Scout correctly classifies 98.9% (no overhead).

Even at the 99.5𝑡ℎ percentile of the overhead distribution the Scout’s

overhead remains below 7.5%: much lower than the gain in the case

of mis-routed incidents. This overhead is an upper bound on what

we expect to see in practice: we use mis-routed incidents (typically

harder to diagnose compared to these correctly routed incidents)

to approximate overhead.

7.2 Analysis of (Mis-)Predictions
The Scout can correctly classify many, previously mis-routed, inci-

dents. For example, in one instance, VMs in a cluster were crashing

because they could not connect to storage. The incident was first

sent to the storage team — it was created by their watchdogs. Stor-

age engineers guessed the issue was caused by a networking prob-

lem and sent the incident to PhyNet, which found a configuration

change on the ToR switch that caused it to reboot and interrupt

Time
(a)

F-
1

sc
or

e

0.4
0.5

0.6

0.7

0.8

0.9

1.0

Conservative one class SVM
Aggressive one class SVM

Adaboost
Bag of words

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time
(b)

10
-01

11
-01

12
-01

01
-01

02
-01

09
-01

10
-01

11
-01

12
-01

01
-01

02
-01

09
-01

Figure 8: Comparing decider algorithms with: (a) 10 day and
(b) 60 day retraining intervals.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

of monitoring systems removed

F-
1

sc
or

e

Worst case
Average case

1 2 3 4 5 6 70.86
0.88

0.90

0.92

0.94
0.96

0.98
1.00

Figure 9: The framework can adapt to deprecated monitor-
ing systems.

connectivity. The incident implicated the 2 servers hosting the VMs

and the cluster. Using the number of ToR reboots and ping statistics

from the cluster, the RF predicted it was a PhyNet incident. Here,

the RF also assisted in the diagnosis by pointing directly to the root

cause. But like any ML system, the Scout also made a few mistakes.

We next study their cause:

Why does the Scout have false negatives? False negatives hap-
pen when (in order of frequency):

The incident is transient. These incidents are typically created by

alerting systems: when a particular metric crosses a threshold, an

incident is created to alert operators to a potential issue. Some-

times the cause is a temporary spike and operators monitor the

implicated components (to ensure customers are not impacted) and

then close the incident. These incidents are difficult for the Scout to

classify correctly as the monitoring data will show healthy PhyNet

components.

None of the monitoring data captures the incident’s symptoms: For
example, in one instance, an operator created an incident to track

fixes to incorrect DHCP configurations on a ToR. None of the mon-

itoring data used by our Scout captured DHCP problems and the

Scout made an error.

The problem is due to an implicit component. We observe cases

where data that could explain an incident is available, but it was

of a component not mentioned in the incident (which was also not

found as a dependency of mentioned components).

There are too many components in the incident. In a few instances,

although the incident was caused by a PhyNet problem, there were

too many clusters impacted: the incident mentioned too many com-

ponents. This diluted the (set of statistics §5) features and resulted

in a mis-prediction. Such incidents are an inherent limitation of our

framework (see§9), however, we found such incidents to be rare.

Why does the Scout have false positives? Sometimes, the Scout

may route incidents incorrectly to PhyNet. Such cases are rare but

occur because of:

Simultaneous incidents. In one instance, our software load balancer

experienced a problem in a cluster which was also experiencing

a PhyNet problem. The incident only implicated a cluster — no

individual switch or server was implicated — and the Scout mistak-

enly routed the incident to PhyNet. Such mistakes happen only if

the incident: (a) overlaps (in time) with a PhyNet incident; (b) and

shares the same set (or a subset) of components with the PhyNet

incident. Such cases are rare but are a limitation of our framework.

The Scout Master could potentially resolve this, but only if the other

teams have also built their own Scout.

7.3 Adapting to Changes
We next evaluate our Scout framework:

Adapting to deprecated monitoring systems. The Scout frame-

work should automatically adapt to changes in the available moni-

toring data — operators should not have to design a new Scout from

scratch each time. Changes can happen in one of two ways: old

monitoring systems may be deprecated or new ones deployed. Due

to limited space, we evaluate the more harmful of the two: when

old systems are deprecated and the Scout has less information to

work with. We randomly select 𝑛 monitoring systems and remove

all features related to them from the training set (Figure 9). The

framework can automatically adapt and its F-1 score drops only by

1% even after 30% of the monitoring systems are removed (𝑛 = 5).

To show the worst-case, we next remove the most influential mon-

itoring systems (based on feature importance) first. The drop in

F-1 score is more significant but remains below 8% after 30% of

the monitoring systems are removed. This indicates many moni-

tors can pickup PhyNet related symptoms which, combined with

re-training, helps recover from removing a small number of them.

Adapting to changes in incidents over-time. CPD+ can clas-

sify new incidents (the RF model has low accuracy in such cases).

Over time, the framework re-adapts itself so that it can classify

such incidents more accurately through retraining. We show this

under different re-training frequencies in (Figure 10). We show two

different scenarios: (a) when the training set continues to grow as

new incidents are added — all of the incident history is kept for

training and (b) where we keep only the past 60 days of incidents

for training. We see the model can adapt and maintain an F-1 score

higher than 0.9 if it uses a 10-day retraining interval (Figure 10-

a). We also see that in October-November a new type of incident

kept recurring which the model initially consistently mis-classified.

More frequent retraining allowed the Scout to quickly learn how

to classify this new type of incident and recover its high accuracy.

However, less frequently trained Scout’s continued to suffer.

7.4 Benefits for Different Incident Classes
We next show how Scouts help different types of mis-routed in-

cidents. We split incidents into three types based on how they

were created: customer reported, PhyNet monitor (those created by

PhyNet’s monitoring systems), and non-PhyNet monitor incidents

(those created by other teams’ watchdogs):

PhyNet monitor incidents: Unsurprisingly, most of these incidents

were correctly routed to PhyNet — our system classifies all such

incidents correctly as well. But there is a small subset of these

incidents which should go to other teams and so our system can

provide substantial gain-out for these incidents. Specifically, 0.19%

of incidents in our test set (of mis-routed incidents) were those

Time
10-01

F-
1

sc
or

e

0.4
0.5
0.6

0.7

0.8
0.9
1.0

10 days
20 days
30 days
60 days

0.4
0.5
0.6

0.7

0.8
0.9
1.0

(a)
Time

(b)

09
-01

11
-01

12
-01

01
-01

10-01
09

-01
11

-01
12

-01
01

-01
02

-01
02

-01

Figure 10: Adapting over time by re-training: (a) the size of
the training set keeps growing. (b) the size of the training
set is fixed (60 days).

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Gao et al.

Gain-In
Best possible gain
Overhead-in

Fraction of investigation time (%)
(a)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Gain-out
Best possible gain
Error-out: 3.06%

0.0

0.2

0.4

0.6

0.8

1.0

Fraction of investigation time (%)
(b)

20 40 60 800 100 20 40 60 800 100

Figure 11: The Scout’s gain and overhead for mis-routed in-
cidents created by other teams’ watchdogs: (a) gain and over-
head in (b) gain and error out.

generated by a PhyNet monitor that were not caused by a PhyNet-

related root-cause. The gain-out for these incidents was as high as

94%.

Non-PhyNet monitor incidents: often go to other teams. But a num-

ber of those incidents are caused by PhyNet-related problems and

our Scout provides significant gain-in in those cases (Figure 11-

a): for over 50% of incidents, the Scout saves more than 30% of

their investigation times. The Scout also provides gain-out for a

small fraction of these incidents (5%); the majority of which do not

go through PhyNet at all. The gain-out in such cases tends to be

large: ≥ 44%. Our overhead for these incidents is minimal: ≤ 4% of

incidents have overhead-in lower than 7%; error-out is 3.06%.

Customer-reported incidents (CRIs).CRIs are less common thanmoni-

tor generated incidents (§3) but are also among the hardest incidents

to classify both for human operators, the NLP system (§3), rule-

based systems, and even Scouts: customers often do not include

necessary information when opening support tickets (incidents)

and the first few teams these incidents go through do the work

needed to discover and append this information to the incident

description. Luckily, Scouts are not one-shot systems — they can be

applied to the incident again before each transfer: operators would

always use the most recent prediction. We ran an experiment where

we waited until the investigation of the first n teams was over be-

fore triggering the Scout. We see the Scout’s gain-in (Figure 12-a)

increases after the first few teams investigate.

But there is a trade-off as n increases: the Scout has more infor-

mation as more teams investigate, but has less room to improve

things as we get closer to when the incident was sent to the re-

sponsible team. Gain out exhibits a similar trend (Figure 12-b): it

decreases as the time we wait to trigger the Scout over-takes the

gain. Overhead numbers (Figure 12-c,d) indicate it is best to wait

for at least two teams to investigate a CRI before triggering a Scout

for the best trade-off.

7.5 A Detailed Case Study
We will next discuss two incidents in more detail. These incidents

were routed incorrectly by operators to the wrong team thus wast-

ing valuable time and effort. The PhyNet Scout, however, is able to

correctly classify and route these incidents. These incidents help

demonstrate how the Scout can help operators in practice.

A virtual disk failure. In this example, the database team expe-

rienced multiple, simultaneous, virtual disk failures that spanned

across multiple servers. The database team’s monitoring systems

detected and reported the incident immediately. Automated sys-

tems tried to resolve the problem but were unsuccessful. A database

operator was then alerted to manually investigate the cause of the

problem. In the end, a network issue was responsible for this failure:

a ToR switch had failed in that cluster which caused the connections

to all servers connected to it to also fail. The incident is eventually

sent to the PhyNet team. With the Scout the time and effort of the

database operator could have been saved and the incident could

have directly been routed to the PhyNet team.

This is a typical example of how a Scout can help operators:

team A’s failure caused a problem that was detected by team B’s

watchdogs. When team B’s automated systems fail to resolve the

problem, engineers from that team are alerted to figure out where

to route the incident. If team B’s automated systems had queried

team A’s Scout, team B’s operators need not have gotten involved.

Virtual IP availability drop. Our network support team received

an incident reporting connectivity problems to a particular virtual

IP. The potential teams responsible for these incidents were the

software load balancing team (SLB) that owns the mapping between

this virtual IP and the physical IPs that serve it, the host networking

team, and the PhyNet team.

The support team first identified that the SLB team had deployed

an update in the same cluster the incident had occurred. There-

fore, they suspected that the SLB component may have caused the

incident. The incident was passed on to the SLB team where an

operator investigated and concluded the SLB nodes were healthy.

The incident was then routed to the host networking team, but their

service too was healthy. Next, the incident was sent to the PhyNet

team where operators quickly identified the problem: a ToR switch

had reloaded and this had triggered a known bug that caused the

availability drop.

If the support team had first queried all available Scouts, the

PhyNet Scout would have identified the cause as being due to a

PhyNet issue (our PhyNet Scout classified this incident correctly).

This would have significantly reduced the investigation time for

this incident.

We have extended evaluations in Appendix B.

8 LESSONS FROM DEPLOYMENT
Our Scout is currently running in production as a suggestion mech-

anism. Operators’ feedback since deployment has been instructive

in a number of ways:

Scouts should not make “easy” mistakes. Although our Scout

has high accuracy and classifies many (mis-routed) incidents cor-

rectly, as with any ML predictor, it sometimes makes mistakes. A

few of these mistakes happened on incidents where the cause was

known to the operator, either because the incident itself clearly

pointed to the cause (e.g., for those incidents created by PhyNet

watchdogs) or due to context the operator had about why the in-

cident happened (e.g., they knew of a particular code change that

was the cause). When the Scout mis-classified such incidents we

found operators questioned its benefit and were more reluctant to

rely on it (despite its high accuracy). As most incidents created by

PhyNet’s monitoring systems fell into this category, we decided

to not pass those incidents through the Scout at all — after all, the

benefit of PhyNet Scout for PhyNet monitor-generated incidents

was minimal to begin with.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Max 99th percentile 95th percentile Average Error-out

Number of team investigations
(a)

Number of team investigations
(b)

G
ai

n-
ou

t

Number of team investigations
(c)

O
ve

rh
ea

d-
in

2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

0.6

0.8

1.0

Er
ro

r-
ou

t

G
ai

n-
in

2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

Number of team investigations
(d)

0.0

0.2

0.4

2 3 4 5 61

Figure 12: (a) gain-in, (b) gain-out, (c) overhead-in, and (d) error-out for CRIs as more teams investigate.

Explanations are crucial. In earlier versions of the Scout we only

reported the decision along with the confidence. Operators had a

hard time accepting the output because of the lack of explanation.

We thus augmented incidents with an explanation: we listed all

the components found in the incident and the monitoring data the

Scout used. For those incidents which the Scout classified as being

PhyNet’s responsibility, we used the method of [57] to describe

which features pointed to the problem being caused by PhyNet.

Some features help ML but confuse operators. One of our fea-
tures is the number of components of each type (§5). Operators find

it confusing when these features are part of the explanation for a

decision because they are not part of their routine investigation

process: the model finds them useful but operators do not.

Operators do not have time to read the fine-print. We care-

fully studied the Scout, its mistakes, and its confidence scores be-

fore deploying it in production. We included these findings as part

of the recommendation to the operators. For example, an incident

classified as not being PhyNet’s responsibility would come with

the following recommendation: “The PhyNet Scout investigated

[list of components] and suggests this is not a PhyNet incident.
Its confidence is [confidence]. We recommend not using this out-

put if confidence is below 0.8. Attention: known false negatives

occur for transient issues, when an incident is created after the

problem has already been resolved, and if the incident is too broad

in scope.” However, we found operators did not read this fine-print

and complained of mistakes when confidence was around 0.5 or

when transient incidents occurred.

Adding new features can be slow. The first step in building any

supervised model is to create a data set for training. To enable this,

early on (9 months in advance), we extended the retention period

of PhyNet’s monitoring data. To add new data sets we often have

to wait until there is enough (either because we had to extend the

retention period, or because the system is new) before we can add

it to the feature-set.

Down-weighting old incidents.Over time, many of the incidents

become “old” or obsolete, as the systems they pertain to evolve or

are deprecated. Therefore, in our deployed Scout we down-weight

incidents in proportion to how long ago they occurred.

Learning from past mistakes. To further improve the Scout, in

our production deployment we also found it useful to increase the

weight of incidents that were mis-classified in the past in future

re-training of the model.

Not all incidents have the right label.Our incidentmanagement

system records the team owning the incident when the root cause

was discovered and the incident was resolved. We use this field

to label the incidents for evaluating our system. Our analysis of

the mistakes our system made in production showed that in some

cases this label can be incorrect: the team that closed the incident

is not the team that found the root cause. This is often because

operators do not officially transfer the incident (in which case the

label is left unchanged). Such mislabeling can cause problems for

the Scout over time as many of these incidents were mistakenly

marked as mis-classifications and up-weighted for future training:

the model would emphasize learning the wrong label in the future.

This problem can be mitigated by de-noising techniques and by

analysis of the incident text (the text of the incident often does

reveal the correct label).

Concept drift. While the use of the CPD+ algorithm helps the

Scout be somewhat resilient to new incidents. Concept drift prob-

lems do rarely occur in practice: during the last two years, there

were a few weeks (despite frequent retraining) where the accuracy

of the Scout dropped down to 50%. This is a known problem in the

machine learning community and we are working on exploring

known solutions for addressing such problems.

9 DISCUSSION
Scouts can significantly reduce investigation times (see §3,§7). How-

ever, like any other system, it is important to know when not to
rely on them:

Scouts route incidents, they do not trigger them. “Given the

high accuracy of Scouts, can they also periodically check team

health?” Sadly, no: (1) incidents provide valuable information that

enables routing — without them the accuracy of the Scout drops

significantly; (2) the overhead of running such a solution periodi-

cally would be unacceptable because the Scout would periodically

have to process all the monitoring data the team collects for each

and every device.

“Specific” incidents are easier to classify. Scouts identify which
components to investigate from the incident and limit the scope

of their investigations to those components. Incidents that are too

broad in Scope are harder to classify because of feature dilution.

Such cases tend to be high priority incidents — all teams have to
get involved (see §3).

Simultaneous incidents with over-lapping components are
harder to classify. If two incidents implicate the same set of com-

ponents and one is caused by the Scout’s team, the Scout may

struggle to differentiate them (see §7). This is a very specific and

relatively rare subset of the broader issue of concurrent incidents.

Operators can improve the starter Scout the framework cre-
ates. Our framework creates a starter Scouts. Operators can im-

prove this Scout by adding rules they have learned to work well in

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Gao et al.

practice. Similarly, operators familiar with ML and statistics can

add more specialized features to this starter Scout to improve its ac-

curacy. For teams whose components have complex dependencies

with other teams’ components, the accuracy of the Scout created by

the framework may not be high enough — in such cases the team

may be better off building their own.

The framework is only as good as the data input. Like all

ML-based solutions, our framework suffers from the “garbage-in-

garbage out principle” [44]: if none of the input data is predictive of
the team’s culpability or if it is too noisy, the framework will not

produce an accurate Scout. Operators use the same data to diagnose

incidents when the team is responsible: this should be unlikely.

Some teamsmay not have data for training.GDPR [6] imposes

constraints on what data operators can collect and store which

impacts their ability to use ML [16] — operators may need to use

non-ML-based techniques for certain teams.

Not all teams should build a Scout. Not all teams experience

mis-routing in the same degree. Teams with few dependencies, for

example, do not experience mis-routing as often as a team such as

PhyNet, which is a dependency for almost all network-dependant

services. Similarly, teams where problems are less ambiguous are

also less prone to mis-routing, e.g., DNS issues tend to be routed

directly to the DNS team. This is also another reason that we built

a team-by-team solution: it helps prioritize teams who contribute

most to the mis-routing problem.

The framework requires correct annotations.We do not sup-

port any automatic validation of annotations. This is a subject of

future work.

Potential drawbacks of the team-by-team approach. There
are two potential drawbacks to our Scout design. The first draw-

back is Scout Master cannot route an incident when all the Scouts

returns “no.” This may be due to false negatives, or because the

team responsible for the incident has not yet built a Scout. The

second drawback is some teams have complex dependencies, it may

not be possible to carve out a clear boundary and build completely

isolated Scouts for those teams. For example, if team A and team B

depend on each other, they may need to cooperate when building

their Scouts and use signals from each other’s monitoring systems.

We believe the pros outweigh the cons.

The side-effect of aggregating sub-components. In order to

maintain a fixed size feature vector (as necessitated by our ML

components) the Scout framework aggregates monitoring data

from components of the same type and computes a set of statistics

over the resulting data set. In some cases, this may dilute the impact

of a problem with an individual device which can result in mis-

classifications. We observe, however, that the Scout accuracy is

high irrespective of this design choice.

Alternative design. In the design of our Scout framework, we had

to find a solution to the fact that each incident can implicate an

unknown number of components (we do not know this number in

advance). Our solution uses aggregate statistics across components

with the same type to create a fixed-sized feature vector at all

times. However, two other designs are possible: (a) one can consider

all devices in the data center for each incident — this results in

an enormous feature-vector and would result in lower accuracy

due to the curse of dimensionality; (b) one can build a separate

classifier per type of component and check the health of each device

independently — this was infeasible in our case as we did not have a

data set with labels for each device (many incidents did not contain

the name of the device which was identified as the root cause).

10 RELATEDWORK
Mitigation tools [14, 26, 27, 30, 37, 38, 42, 43, 45, 48–50, 53,
55, 59, 62, 63, 67, 69, 74–76]. Many automated diagnosis tools

have been built over the years [14, 26, 27, 30, 37, 38, 42, 43, 45, 48–

50, 53, 55, 59, 62, 63, 67, 69, 74–76]. These works aim at finding a

single root cause. But, there are some incidents where they fail

(packet captures from inside the network may be necessary [70]).

Incidents are an indication that existing diagnosis systems have

failed to automatically mitigate the problem. Many diagnosis sys-

tems require a human expert to interpret their findings [70]: the

support teams do not have the necessary expertise. There are many

instances where the network is not responsible for the problem –

these systems are too heavy-weight for solving incident routing.

Application-specific incident routers [15, 17, 29, 71, 73]. Be-
cause they are heavily tied to the application semantics, these works

fail at fully solving the incident routing problem: they cannot op-

erate at DC-scale because operators would have to run (and con-

figure) an instance of these solutions per each application-type.

Also, [15, 71, 73] all focus on identifying whether the network, the

host, or the remote service is responsible. Cloud providers have mul-

tiple engineering groups in each category (e.g., our cloud has 100

teams in networking) and the broader problem remains unsolved.

Work in software engineering [13, 35, 39, 41, 60] The work

[13, 41]. try to find the right engineer to fix a bug during software

development and use either NLP-based text analysis or statistical-

based ticket transition graphs. Other work: [39, 60] analyzes the

source code. None can be applied to the incident routing problem

where bugs are not always confined to the source code but can be

due to congestion, high CPU utilization, or customer mistakes.

Measurement studies on network incidents [19, 21, 31, 33, 58,
61]. The work [21] describes the extent of incident mis-routings in

the cloud, while our work focuses on the reasons why they happen.

Other studies characterize the different types of problems observed

in today’s clouds. These works provide useful insights that help

build better Scouts.

11 CONCLUSION
We investigate incident routing in the cloud and propose a dis-

tributed, Scout-based solution. Scouts are team-specialized gate-

keepers. We show that even a single Scout can significantly reduce

investigation times.

Ethics: This work does not raise any ethical issues.

ACKNOWLEDGMENTS
The authors would like to thank Sumit Kumar, Rituparna Paul,

David Brumley, Akash Kulkarni, Ashay Krishna, Muqeet Mukhtar,

Lihua Yuan, and Geoff Outhred for their help with deployment of

the PhyNet Scout and their useful feedback. We would also like

to thank shepherd and SIGCOMM reviewers for their insightful

comments. Jiaqi Gao was supported in this project by a Microsoft

internship as well as by the NSF grant CNS-1834263. Nofel Yaseen

was supported, in part, by CNS-1845749.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

REFERENCES
[1] Adaboost. https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

AdaBoostClassifier.html.

[2] Azure cloud incidents. https://azure.microsoft.com/en-us/status/history/.

[3] Canary analysis: Lessons learned and best practicies from google

and waze. https://cloud.google.com/blog/products/devops-sre/

canary-analysis-lessons-learned-and-best-practices-from-google-and-waze.

[4] The curse of dimensionality in classification. https://www.visiondummy.com/

2014/04/curse-dimensionality-affect-classification/.

[5] Gaussian Naive Bayes. https://scikit-learn.org/stable/modules/generated/sklearn.

naive_bayes.GaussianNB.html.

[6] General data protection regulation. https://ec.europa.eu/info/law/law-topic/

data-protection_en.

[7] Google cloud incidents. https://status.cloud.google.com/summary.

[8] K nearest neighbors. https://scikit-learn.org/stable/modules/generated/sklearn.

neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier.

[9] Neural Networks. https://scikit-learn.org/stable/modules/generated/sklearn.

neural_network.MLPClassifier.html.

[10] Quadratic Discriminant Analysis. https://scikit-learn.org/stable/modules/

generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html.

[11] Agarwal, B., Bhagwan, R., Das, T., Eswaran, S., Padmanabhan, V. N., and

Voelker, G. M. Netprints: Diagnosing home network misconfigurations using

shared knowledge. In NSDI (2009), vol. 9, pp. 349–364.
[12] Alipourfard, O., Gao, J., Koenig, J., Harshaw, C., Vahdat, A., and Yu, M.

Risk-based planning for evolving data center networks. Symposium on Operating
Systems Principles (SOSP) (2019).

[13] Anvik, J., Hiew, L., and Murphy, G. C. Who should fix this bug? In Proceedings
of the 28th international conference on Software engineering (2006), ACM, pp. 361–

370.

[14] Arzani, B., Ciraci, S., Chamon, L., Zhu, Y., Liu, H., Padhye, J., Outhred, G.,

and Loo, B. T. Closing the network diagnostics gap with vigil. In Proceedings of
the SIGCOMM Posters and Demos (2017), ACM, pp. 40–42.

[15] Arzani, B., Ciraci, S., Loo, B. T., Schuster, A., and Outhred, G. Taking the

blame game out of data centers operations with netpoirot. In Proceedings of the
2016 ACM SIGCOMM Conference (2016), ACM, pp. 440–453.

[16] Arzani, B., Ciraci, S., Saroiu, S., Wolman, A., Stokes, J., Outhred, G., and

Diwu, L. Madeye: Scalable and privacy-preserving compromise detection in the

cloud. In 17th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 20) (2020), USENIX Association.

[17] Bahl, P., Chandra, R., Greenberg, A., Kandula, S., Maltz, D. A., and Zhang,

M. Towards highly reliable enterprise network services via inference of multi-

level dependencies. In ACM SIGCOMM Computer Communication Review (2007),

vol. 37, ACM, pp. 13–24.

[18] Bekerman, D., Shapira, B., Rokach, L., and Bar, A. Unknownmalware detection

using network traffic classification. In Communications and Network Security
(CNS), 2015 IEEE Conference on (2015), IEEE, pp. 134–142.

[19] Benson, T., Sahu, S., Akella, A., and Shaikh, A. A first look at problems in the

cloud. HotCloud 10 (2010), 15.
[20] Case, J. D., Fedor, M., Schoffstall, M. L., and Davin, J. Simple network

management protocol (snmp). Tech. rep., 1990.

[21] Chen, J., He, X., Lin, Q., Xu, Y., Zhang, H., Hao, D., Gao, F., Xu, Z., Dang,

Y., and Zhang, D. An empirical investigation of incident triage for online

service systems. In Proceedings of the 41st International Conference on Software
Engineering: Software Engineering in Practice (2019), IEEE Press, pp. 111–120.

[22] Chen,M., Zheng, A. X., Lloyd, J., Jordan,M. I., and Brewer, E. Failure diagnosis

using decision trees. In International Conference on Autonomic Computing, 2004.
Proceedings. (2004), IEEE, pp. 36–43.

[23] Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura, M., and Bian-

chini, R. Resource central: Understanding and predicting workloads for improved

resource management in large cloud platforms. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles (2017), ACM, pp. 153–167.

[24] Cusack, G., Michel, O., and Keller, E. Machine learning-based detection of

ransomware using sdn. In Proceedings of the 2018 ACM International Workshop on
Security in Software Defined Networks & Network Function Virtualization (2018),

ACM, pp. 1–6.

[25] Dimopoulos, G., Leontiadis, I., Barlet-Ros, P., Papagiannaki, K., and

Steenkiste, P. Identifying the root cause of video streaming issues on mo-

bile devices. In Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies (2015), ACM, p. 24.

[26] Duffield, N. Network tomography of binary network performance characteris-

tics. IEEE Transactions on Information Theory 52, 12 (2006), 5373–5388.
[27] Duffield, N. G., Arya, V., Bellino, R., Friedman, T., Horowitz, J., Towsley, D.,

and Turletti, T. Network tomography from aggregate loss reports. Performance
Evaluation 62, 1-4 (2005), 147–163.

[28] Gerhards, R. The syslog protocol. Tech. rep., 2009.

[29] Ghasemi, M., Benson, T., and Rexford, J. Rinc: Real-time inference-based

network diagnosis in the cloud. Princeton University (2015).

[30] Ghita, D., Argyraki, K., and Thiran, P. Toward accurate and practical network

tomography. ACM SIGOPS Operating Systems Review 47, 1 (2013), 22–26.
[31] Gill, P., Jain, N., and Nagappan, N. Understanding network failures in data

centers: measurement, analysis, and implications. In ACM SIGCOMM Computer
Communication Review (2011), vol. 41, ACM, pp. 350–361.

[32] Goutte, C., and Gaussier, E. A probabilistic interpretation of precision, re-

call and f-score, with implication for evaluation. In European Conference on
Information Retrieval (2005), Springer, pp. 345–359.

[33] Govindan, R., Minei, I., Kallahalla, M., Koley, B., and Vahdat, A. Evolve

or die: High-availability design principles drawn from googles network infras-

tructure. In Proceedings of the 2016 ACM SIGCOMM Conference (2016), ACM,

pp. 58–72.

[34] Guo, C., Yuan, L., Xiang, D., Dang, Y., Huang, R., Maltz, D., Liu, Z., Wang, V.,

Pang, B., Chen, H., et al. Pingmesh: A large-scale system for data center network

latency measurement and analysis. In ACM SIGCOMM Computer Communication
Review (2015), vol. 45, ACM, pp. 139–152.

[35] Guo, P. J., Zimmermann, T., Nagappan, N., and Murphy, B. Not my bug! and

other reasons for software bug report reassignments. In Proceedings of the ACM
2011 conference on Computer supported cooperative work (2011), ACM, pp. 395–404.

[36] Guyon, I., Chaabane, I., Escalante, H. J., Escalera, S., Jajetic, D., Lloyd, J. R.,

Macià, N., Ray, B., Romaszko, L., Sebag, M., et al. A brief review of the chalearn

automl challenge: any-time any-dataset learning without human intervention.

In Workshop on Automatic Machine Learning (2016), pp. 21–30.

[37] Heller, B., Scott, C., McKeown, N., Shenker, S., Wundsam, A., Zeng, H.,

Whitlock, S., Jeyakumar, V., Handigol, N., McCauley, J., et al. Leveraging

sdn layering to systematically troubleshoot networks. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking (2013),

ACM, pp. 37–42.

[38] Herodotou, H., Ding, B., Balakrishnan, S., Outhred, G., and Fitter, P.

Scalable near real-time failure localization of data center networks. In Proceedings
of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining (2014), ACM, pp. 1689–1698.

[39] Hovemeyer, D., and Pugh, W. Finding bugs is easy. Acm sigplan notices 39, 12
(2004), 92–106.

[40] Japkowicz, N. The class imbalance problem: Significance and strategies. In Proc.
of the Int’l Conf. on Artificial Intelligence (2000).

[41] Jeong, G., Kim, S., and Zimmermann, T. Improving bug triage with bug tossing

graphs. In Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering (2009), ACM, pp. 111–120.

[42] Kandula, S., Katabi, D., and Vasseur, J.-P. Shrink: A tool for failure diagnosis

in ip networks. In Proceedings of the 2005 ACM SIGCOMM workshop on Mining
network data (2005), ACM, pp. 173–178.

[43] Katz-Bassett, E., Madhyastha, H. V., Adhikari, V. K., Scott, C., Sherry, J.,

Van Wesep, P., Anderson, T. E., and Krishnamurthy, A. Reverse traceroute.

In NSDI (2010), vol. 10, pp. 219–234.
[44] Kim, Y., Huang, J., and Emery, S. Garbage in, garbage out: data collection, quality

assessment and reporting standards for social media data use in health research,

infodemiology and digital disease detection. Journal of medical Internet research
18, 2 (2016), e41.

[45] Kompella, R. R., Yates, J., Greenberg, A., and Snoeren, A. C. Ip fault localization

via risk modeling. In Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2 (2005), USENIX Association, pp. 57–

70.

[46] Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., and Leyton-Brown, K.

Auto-weka 2.0: Automatic model selection and hyperparameter optimization in

weka. The Journal of Machine Learning Research 18, 1 (2017), 826–830.
[47] Laskov, P., Düssel, P., Schäfer, C., and Rieck, K. Learning intrusion detection:

supervised or unsupervised? In International Conference on Image Analysis and
Processing (2005), Springer, pp. 50–57.

[48] Ma, L., He, T., Swami, A., Towsley, D., Leung, K. K., and Lowe, J. Node failure

localization via network tomography. In Proceedings of the 2014 Conference on
Internet Measurement Conference (2014), ACM, pp. 195–208.

[49] Mahajan, R., Spring, N., Wetherall, D., and Anderson, T. User-level internet

path diagnosis. ACM SIGOPS Operating Systems Review 37, 5 (2003), 106–119.
[50] Mathis, M., Heffner, J., O’neil, P., and Siemsen, P. Pathdiag: automated tcp

diagnosis. In International Conference on Passive and Active Network Measurement
(2008), Springer, pp. 152–161.

[51] Matteson, D. S., and James, N. A. A nonparametric approach for multiple

change point analysis of multivariate data. Journal of the American Statistical
Association 109, 505 (2014), 334–345.

[52] Mogul, J., Goricanec, D., Pool, M., Shaikh, A., Koley, B., and Zhao, X. Expe-

riences with modeling network topologies at multiple levels of abstraction. In

17th USENIX Symposium on Networked Systems Design and Implementation (NSDI
20) (2020).

[53] Mysore, R. N., Mahajan, R., Vahdat, A., and Varghese, G. Gestalt: Fast, unified

fault localization for networked systems. In USENIX Annual Technical Conference
(2014), pp. 255–267.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://azure.microsoft.com/en-us/status/history/
https://cloud.google.com/blog/products/devops-sre/canary-analysis-lessons-learned-and-best-practices-from-google-and-waze
https://cloud.google.com/blog/products/devops-sre/canary-analysis-lessons-learned-and-best-practices-from-google-and-waze
https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://ec.europa.eu/info/law/law-topic/data-protection_en
https://ec.europa.eu/info/law/law-topic/data-protection_en
https://status.cloud.google.com/summary
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Gao et al.

[54] Myung, I. J. Tutorial on maximum likelihood estimation. Journal of mathematical
Psychology 47, 1 (2003), 90–100.

[55] Ogino, N., Kitahara, T., Arakawa, S., Hasegawa, G., and Murata, M. Decen-

tralized boolean network tomography based on network partitioning. In Network
Operations and Management Symposium (NOMS), 2016 IEEE/IFIP (2016), IEEE,

pp. 162–170.

[56] Olson, R. S., and Moore, J. H. Tpot: A tree-based pipeline optimization tool for

automating machine learning. In Automated Machine Learning. Springer, 2019,
pp. 151–160.

[57] Palczewska, A., Palczewski, J., Robinson, R. M., and Neagu, D. Interpreting

random forest models using a feature contribution method. In 2013 IEEE 14th
International Conference on Information Reuse & Integration (IRI) (2013), IEEE,
pp. 112–119.

[58] Potharaju, R., and Jain, N. An empirical analysis of intra-and inter-datacenter

network failures for geo-distributed services. ACM SIGMETRICS Performance
Evaluation Review 41, 1 (2013), 335–336.

[59] Roy, A., Zeng, H., Bagga, J., and Snoeren, A. C. Passive realtime datacenter

fault detection and localization. In NSDI (2017), pp. 595–612.
[60] Saha, R. K., Lease, M., Khurshid, S., and Perry, D. E. Improving bug localization

using structured information retrieval. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE) (2013), IEEE, pp. 345–355.

[61] Sankar, S., Shaw, M., Vaid, K., and Gurumurthi, S. Datacenter scale evaluation

of the impact of temperature on hard disk drive failures. ACM Transactions on
Storage (TOS) 9, 2 (2013), 6.

[62] Scott, C., Wundsam, A., Raghavan, B., Panda, A., Or, A., Lai, J., Huang, E.,

Liu, Z., El-Hassany, A., Whitlock, S., et al. Troubleshooting blackbox sdn

control software with minimal causal sequences. ACM SIGCOMM Computer
Communication Review 44, 4 (2015), 395–406.

[63] Tammana, P., Agarwal, R., and Lee, M. Simplifying datacenter network debug-

ging with pathdump. In OSDI (2016), pp. 233–248.
[64] Tan, C., Jin, Z., Guo, C., Zhang, T., Wu, H., Deng, K., Bi, D., and Xiang, D.

Netbouncer: Active device and link failure localization in data center networks.

In 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19) (2019).

[65] Vilalta, R., and Drissi, Y. A perspective view and survey of meta-learning.

Artificial intelligence review 18, 2 (2002), 77–95.

[66] Watson, M. R., Marnerides, A. K., Mauthe, A., Hutchison, D., et al. Malware

detection in cloud computing infrastructures. IEEE Transactions on Dependable
and Secure Computing 13, 2 (2016), 192–205.

[67] Widanapathirana, C., Li, J., Sekercioglu, Y. A., Ivanovich, M., and Fitz-

patrick, P. Intelligent automated diagnosis of client device bottlenecks in private

clouds. In Utility and Cloud Computing (UCC), 2011 Fourth IEEE International
Conference on (2011), IEEE, pp. 261–266.

[68] Winstein, K., and Balakrishnan, H. Tcp ex machina: computer-generated

congestion control. In ACM SIGCOMM Computer Communication Review (2013),

vol. 43, ACM, pp. 123–134.

[69] Wu, W., Wang, G., Akella, A., and Shaikh, A. Virtual network diagnosis as a

service. In Proceedings of the 4th annual Symposium on Cloud Computing (2013),

ACM, p. 9.

[70] Yu, D., Zhu, Y., Arzani, B., Fonseca, R., Zhang, T., Deng, K., and Yuan, L.

dshark: A general, easy to program and scalable framework for analyzing in-

network packet traces. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19) (2019).

[71] Yu, M., Greenberg, A. G., Maltz, D. A., Rexford, J., Yuan, L., Kandula, S., and

Kim, C. Profiling network performance for multi-tier data center applications. In

NSDI (2011), vol. 11, pp. 5–5.
[72] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I.

Spark: Cluster computing with working sets. HotCloud 10, 10-10 (2010), 95.
[73] Zhang, Q., Yu, G., Guo, C., Dang, Y., Swanson, N., Yang, X., Yao, R., Chin-

talapati, M., Krishnamurthy, A., and Anderson, T. Deepview: Virtual disk

failure diagnosis and pattern detection for azure. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18) (2018), USENIX
Association.

[74] Zhang, Y., Roughan, M., Willinger, W., and Qiu, L. Spatio-temporal com-

pressive sensing and internet traffic matrices. In ACM SIGCOMM Computer
Communication Review (2009), vol. 39, ACM, pp. 267–278.

[75] Zhao, Y., Chen, Y., and Bindel, D. Towards unbiased end-to-end network

diagnosis. In ACM SIGCOMM Computer Communication Review (2006), vol. 36,

ACM, pp. 219–230.

[76] Zhu, Y., Kang, N., Cao, J., Greenberg, A., Lu, G., Mahajan, R., Maltz, D., Yuan,

L., Zhang, M., Zhao, B. Y., et al. Packet-level telemetry in large datacenter

networks. In ACM SIGCOMM Computer Communication Review (2015), vol. 45,

ACM, pp. 479–491.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Appendices are supportingmaterial that has not been peer-reviewed.

A MEASUREMENT VALIDATION
To validate our findings in §3, we looked at 182 publicly disclosed

incidents from two clouds [2, 7]. These incident reports only include

issues that led to significant customer impact, and they only provide

a partial log of the mitigation process, but they still provide some

useful insights. We found that in 35 of the 182 incidents multiple
components were discussed as either being impacted or involved in

the incident: each of these components may have been involved in

the investigation even though their components were not directly

responsible. In 6 such incidents, operators explicitly acknowledge

the involvement of multiple entities, and in at least one (Nov. 11,

2018), a neighboring ISP was responsible. In practice, the set of

involved entities is much higher than the reports indicate. In any

case, when problems occur, their impact can often be observed

across the DC; many teams are potential suspects
4
.

of Teams 1–10 10–20 20–100 100–1000 >1000

Respondents 14 1 8 1 1

of Users <1k 1k–10k 10k–100k 100k–1m >1m

Respondents 4 5 11 3 4

Table 3: Characteristics of the networks operated by our sur-
vey respondents.

Survey of network operators. Direct surveys of practicing net-

work operators re-affirm the above results. In total, 27 operators

responded to our survey; Table 3 shows some of the characteris-

tics of the respondents. 9 of them were ISP operators, another 10

self-identified as an enterprise, 5 were DC operators, 1 managed

a content delivery network, one a nationwide security provider,

and one classified their network as falling in all these categories.

Many of the respondents reported a small number of teams in their

organization (1–10), but one reported upwards of 1,000 teams. The

networks operated by respondents served a wide array of user base

sizes, with some handling less than 1,000 users, and 4 handling over

a million.

When asked how much these operators thought incident routing

impacts their organization, on a scale of 1–5 with 5 as the highest,

23 selected a score ≥3, out of which 17 selected a score ≥4. 17
marked the significance of this problem as ≥4. 17 of the 27 opera-
tors answered that their network was incorrectly blamed for over

60% of incidents across their systems. We also asked the converse:

“When an incident occurs, how often other components (not the

network) are initially blamed even though the incident was caused

by a networking issue?” 20 operators said that other teams were

implicated less than 20% of the time.

Operators listed the reasons why incident routing hard was hard

for them: (1) Operators find it difficult to identify the boundary of

each team’s responsibilities especially in larger organizations; (2)

Tickets don’t contain the information necessary to enable effective

incident routing; (3) Operators lack the ability to understand the

entire complex system to direct incident to the right team; (4)

4
The work of [33] provides an in-depth study of these incidents in Google cloud.

Operators need access to monitoring data, both historical and real-

time, to demonstrate that networking is not the issue — this data is

often not available especially when problems occur intermittently.

Lastly, 14 out of the 27 operators said that for typical investiga-

tions, more than 3 teams are involved when incidents occur; 19 said

this number was ≥ 2.

We note the absolute numbers are subject to significant bias

from the respondents, but qualitatively, they demonstrate the effect

of improper routing on the lives of operators.

B EXTENDED EVALUATION
The choice of supervised learningmodel.We use RFs for super-

vised learning as they are explain-able. We also experimented with

other choices in order to understand the tradeoff of explain-ability

vs accuracy (Table §4).

Evaluating the Model Selector.We could use unsupervised mod-

els such as OneClassSVM, boosting (e.g., Adaboost), or reinforce-

ment learning instead of our bag of words based RF (bag of words)

in the model selector. We evaluate these choices here (we defer re-

inforcement learning to future work as it requires careful selection

of the reward).

With frequent (every 10 days) retraining all model’s are compara-

ble (Figure §8-a). With a lower retraining frequency (every 60 days)

the difference between these models becomes apparent (Figure 8-b).

OneClassSVM (with an aggressive kernel) is better in such cases as

it switches to using CPD+ more often. Choosing the right kernel

is critical for OneClassSVM. A conservative kernel (Polynomial)

which would favor classifying most incidents as “old” cannot adapt

to the longer re-training interval while an aggressive kernel (radias

basis kernel) will choose to classify many samples as “new” and

uses CPD+ in those cases.

Given the cheap cost of re-training, we recommend frequent

retraining no matter which model is used. Due to its explainability,

we opted for the RF in deployment.

Understanding what makes the Scout work. We next investi-

gate in more detail how the Scout is able to achieve its high accuracy.

The differences across classes: We first look at how “separable” the

two classes (PhyNet’s responsibility vs not PhyNet’s responsibility)

are. Specifically, we look at the Euclidean distance (computed over

the feature vectors) between incidents that are PhyNet’s responsibil-

ity; between incidents that are not PhyNet’s responsibility, and the

cross distance between incidents in these two classes. Even though

the distribution of each class is not separable individually, we see a

clear separation in the cross distance (Figure 13). We compute the

same metric for the features of each component type (Figure 14):

the results seem to indicate server-related features should not have

much predictive power. However, a more detailed deflation study

(Table 5) shows these features still marginally contribute to the

overall accuracy of the Scout. We also see some components have

more contribution toward recall (e.g., Server features) while others

contribute to precision (e.g., switch features).

Feature analysis: To further evaluate the impact of the features for

each component type we: (a) remove the corresponding features;

and (b) use only the corresponding features (Table 5). We see al-

though server-related features have the least contribution to overall

accuracy all components contribute to the overall high F-1 Score.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Gao et al.

Figure 13: The Euclidean distance (computed over feature
vectors) between: (a) incidents that are PhyNet’s responsi-
bility; (b) incidents that are not PhyNet’s responsibility; and
(c) the cross distance between incidents in (a) and (b).

Other teams can also build Scouts.We have not yet built Scouts

for other teams because it would require accumulating enough

data for training (see §8) — we are working with our teams to

increase the retention period for their monitoring data to do so.

But in this section we will demonstrate how other teams can build

Scouts by reporting the accuracy of a rule-based system built by our

Storage team. This system is used to automatically analyze incidents

generated by our monitoring systems (those of storage itself and

those belonging to other teams), check the monitoring data the

storage team collects, and determine whether a storage engineer

should be involved in the investigations (the system does not trigger

on CRIs). We find it has precision: 76.15% and recall of 99.5%. Our

storage team manages a large and complex distributed system and

has dependency on many networking teams: e.g., our software load

balancing team and PhyNet. Our evaluation indicates it is possible

to build an accurate storage Scout through more sophisticated

(possibly ML based) techniques — given the relatively high accuracy

the rule-based system already achieves.

C SCOUT MASTER DESIGN
Coordinating the Scouts is a “Scout Master” which represents a

global incident routing process that queries all available Scouts

in parallel to route incidents. This process can be the operators

existing, manual, process (where Scout’s act as recommendation

systems) or a more sophisticated incident routing algorithm. For

example, a strawman where: if only one Scout returns a “yes” an-

swer with high confidence (1), sends the incident to the team that

owns the Scout; when multiple Scouts return a positive answer (2),

if one team’s component depends on the other, sends the incident

to the latter, if not sends it to the team whose Scout had the most

confidence; and if none of the Scouts return a positive answer (3),

Algorithm F1-score

KNN [8] 0.95

Neural Network (1 layer) [9] 0.93

Adaboost [1] 0.96

Gaussian Naive Bayes [5] 0.73

Quadratic Discriminant Analysis [10] 0.9

Table 4: Comparing RFs to other ML models.

falls back to the existing, non-Scout-based, incident routing system.

More sophisticated algorithms can predict the team “most likely”

to be responsible (the MLE estimate [54]) for an incident given the

historic accuracy of each Scout and its output confidence score. The

design of an optimal Scout Master is beyond the scope of this work,

but we show an evaluation of the strawman in Appendix D.

(c)(a) (b)

Figure 14: The Euclidean distance (computed over feature
vectors) using (a) just the server features, (b) just the switch
features, and (c) just the cluster features.

Features used Precision Recall F1 Score

Server Only 59.5 % 97.2 % 0.73

Switch Only 97.1% 93.1% 0.95

Cluster Only 93.4% 95.7% 0.94

Without Cluster 97.4% 94.5% 0.95

Without Switches 87.5% 94.0% 0.90

Without Server 97.3% 94.7% 0.96

all 97.5% 97.7% 0.98

Table 5: Deflation Study: investigating the utility of each
component type’s features.

D EVALUATING THE SCOUT MASTER
When evaluating the Scout Master we find:

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

1 Scout
2 Scouts
3 Scouts
4 Scouts

5 Scouts
6 Scouts
Best
possible

Fraction of investigation time

CD
F

Figure 15: The amount of investigation time we can reduce
for mis-routed incidents by adding more Scouts.

The gains can be significant even if only a handful of teams
deployed Scouts: We first assume teams can build Scouts with

100% accuracy — we will relax this assumption in the next set of

experiments. Once again, we only focus onmis-routed incidents.We

simulate the impact of𝑛 teams having Scouts (where we experiment

with all possible assignments of Scouts to teams) and using the

actual incidents logs from a large cloud provider evaluate their

benefit: even if only a small number of teams were to adopt Scouts

the gains could be significant — with only a single Scout we can

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

reduce the investigation time of 20% of incidents and with 6 we can

reduce the investigation time of over 40% (Figure 15). With enough

Scouts — or by better assignment of Scouts to teams — gains can

be as high as 80% (Figure 15).

Even Scouts with imperfect accuracy are beneficial.We next

simulate Scouts of imperfect accuracy. To do so, we assign an ac-

curacy 𝑃 to each Scout which we pick uniformly at random from

the interval (𝛼, 𝛼 + 5%): each time a Scout is used, with probability

𝑃 it will correctly identify whether its team is responsible. If the

Scout is correct, we assign it a confidence 𝐶 chosen uniformly, at

random in the interval (0.8 − 𝛽, 0.8) and if it is incorrect we as-

sign it a confidence from the interval (0.5, 0.5 + 𝛽). Again, we look
at all possible Scout assignments and use actual incident reports

from a large cloud to evaluate the benefit of these Scouts. As the

impact of mis-routing is much less pronounced for some teams

compared to others (compare the gains presented here for a sin-

gle Scout with those of the PhyNet Scout), our results represent

a lower-bound on the actual benefits of Scouts. Despite this, even

with three Scouts, the Scout Master can reduce investigation time

by up to 80% (Figure 16).

0.0
0.1 0.2 0.3 0.4 0.5 0.70

0.75
0.80

0.85
0.90

0.95
1.00

Single Scout

0.0

0.2

0.4

0.6

1.0

0.0 0.1 0.2 0.3 0.4
0.5

Two Scouts
0.8

0.70
0.75

0.80
0.85

0.90
0.95

1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2
0.3

0.4 0.50.70
0.75

0.80

0.85
0.90

0.95
1.00
0.0

0.2

0.4

0.6

0.8

1.0
Three Scouts

Fr
ac

ti
on

 o
f i

n
ve

st
ig

at
io

n

ti
m

e
re

du
ce

d

Average 95th percentile

Figure 16: The lower bounds on gain when adding Scouts
with imperfect accuracy. By strategically assigning Scouts
to teams that are impacted more heavily by mis-routing we
can achieve much higher gains.

	Abstract
	1 Introduction
	2 Background: Incident Routing
	3 Incidents in the Wild
	3.1 What is the Cost of Incident Routing?
	3.2 Why Do Multiple Teams Get Involved?
	3.3 Design Goals

	4 Design Overview
	5 The SCOUT Framework
	5.1 Monitoring Specifications
	5.2 Feature Construction and Prediction
	5.3 The Model Selector

	6 Implementation
	7 Evaluation
	7.1 Benefit of the PhyNet Scout
	7.2 Analysis of (Mis-)Predictions
	7.3 Adapting to Changes
	7.4 Benefits for Different Incident Classes
	7.5 A Detailed Case Study

	8 Lessons From Deployment
	9 Discussion
	10 Related Work
	11 Conclusion
	References
	A Measurement Validation
	B Extended evaluation
	C Design
	D Evaluating the

