
Cheetah: Accelerating DatabaseQueries
with Switch Pruning

Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, Minlan Yu

Harvard University

{tirmazi,ran,jiaqigao,minlanyu}@g.harvard.edu

Abstract
Modern database systems are growing increasingly distributed

and struggle to reduce query completion time with a large

volume of data. In this paper, we leverage programmable

switches in the network to partially offload query compu-

tation to the switch. While switches provide high perfor-

mance, they have resource and programming constraints

that make implementing diverse queries difficult. To fit in

these constraints, we introduce the concept of data prun-
ing – filtering out entries that are guaranteed not to affect

output. The database system then runs the same query but

on the pruned data, which significantly reduces processing

time. We propose pruning algorithms for a variety of queries.

We implement our system, Cheetah, on a Barefoot Tofino

switch and Spark. Our evaluation on multiple workloads

shows 40− 200% improvement in the query completion time

compared to Spark.

1 Introduction
Database systems serve as the foundation for many appli-

cations such as data warehousing, data analytics, and busi-

ness intelligence [49]. Facebook is reported to run more than

30,000 database queries that scan over a petabyte per day [24].

With the increase of workloads, the challenge for database

systems today is providing high performance for queries on

a large distributed set of data.

A popular database query processing system is Spark

SQL [36]. Spark SQL optimizes query completion time by as-

signing tasks to workers (each working on one data partition)
and aggregating the query result at a master worker. Spark

maximizes the parallelism and minimizes the data move-

ment for query processing. For example, each worker sends

a stream of the resulting metadata (e.g., just the columns

relevant to the query) before sending the entire rows that

are requested by the master. Despite the optimizations, the

query performance is still limited by software speed.

We propose Cheetah, a query processing system that

partially offloads queries to programmable switches. Pro-

grammable switches are supported by major switch ven-

dors [10, 11, 39, 40]. They allow programmatic processing

of multiple Tbps of traffic [39], which is orders of magni-

tude higher throughput than software servers and alterna-

tive hardware such as FPGAs and GPUs. Moreover, switches

already sit between the workers and thus can process aggre-

gated data across partitions.

However, we cannot simply offload all database opera-

tions to switches as they have a constrained programming

model [9]: Switches process incoming packets in a pipeline

of stages. At each stage, there is a limited amount of memory

and computation. Further, there is a limited number of bits

we can transfer across stages. These constraints are at odds

with the large amount of data, diverse query functions, and

many intermediate states in database systems.

To meet these constraints, we propose a new abstraction

called pruning. Instead of offloading full functionality to

programmable switches, we use the switch to prune a large

portion of data based on the query, and the master only needs

to process the remaining data in the same way as it does

without the switch. For example, the switch may remove

some duplicates in a DISTINCT query, and let the master

remove the rest, thus accelerating the query.

The pruning abstraction allows us to design algorithms

that can fit with the constrained programming model at

switches: First, we do not need to implement all database

functions on the switches but only offload those that fit in

the switch’s programming model. Second, to fit in the limited

memory of switches, we either store a cached set of results

or summarized intermediate results while ensuring a high

pruning rate. Third, to reduce the number of comparisons,

we use in-switch partitioning of the data such that each

entry is only compared with a small number of entries in

its partition. We also use projection techniques that map

high-dimensional data points into scalars which allows an

efficient comparison.

Based on the pruning abstraction, we design and develop

multiple query algorithms ranging from filtering and DIS-

TINCT to more complex operations such as JOIN or GROUP

BY. Our solutions are rigorously analyzed and we prove

bounds on the resulting pruning rates. We build a proto-

type on the Barefoot Tofino programmable switch [39] and

demonstrate 40 − 200% reduction of query completion times

compared with Spark SQL.

2 Using programmable switches
Cheetah leverages programmable switches to reduce the

amount of data transferred to the query server and thus

improves query performance. Programmable switches that

follow the PISA model consist of multiple pipelines through

which a network packet passes sequentially. These pipelines

contain stages with disjoint memory which can do a limited

set of operations as the packet passes through them. See [46]

for more information about the limitations. In this section,

we discuss the benefits and constraints of programmable

switches to motivate our pruning abstraction.

2.1 Benefits of programmable switches
We use Spark SQL as an example of a database query exe-

cution engine. Spark SQL is widely used in industry [36],

adopts common optimizations such as columnar memory-

optimized storage and vectorized processing, and has com-

parable performance to Amazon’s RedShift [18] Google s

BigQuery [23].

When a user submits a query, Spark SQL uses a Catalyst

optimizer that generates the query plan and operation code

(in the form of tasks) to run on a cluster of workers. The

worker fetches a partition from data sources, runs its as-

signed task, and passes the result on to the next batch of

workers. At the final stage, themaster worker aggregates the
results and returns them to the user. Spark SQL optimizes

query completion time by having workers process data in

their partition as much as possible and thus minimizes the

data transferred to the next set of workers. As a result, the

major portion of query completion time is spent at the tasks

the workers run. Thus, Spark SQL query performance is of-

ten bottlenecked by the server processing speed and not the

network [36].

Cheetah rides on the trend of significant growth of the

network capacity (e.g., up to 100Gbps or 400Gbps per port)

and the advent of programmable switches, which are now

provided by major switch vendors (e.g., Barefoot [39, 40],

Broadcom [10], and Cavium Xpliant [11]). These switches

can process billions of packets per second, already exist in the

data path, and thus introduce no latency or additional cost.

Table 3 compares the throughput and delay of Spark SQL

on commodity servers with those of programmable Tofino

switches. The best throughput of servers is 10-100Gbps, but

switches can reach 6.5-12.8 Tbps. The switch throughput is

also orders of magnitudes better than alternative hardware

choices such as FPGAs, GPUs, and smart NICs. Switches also

have less than 1 𝜇s delay per packet.

These switches already exist in the cluster and already

see the data transferred between the workers. They are at a

natural place to help process queries. By offloading part of

the processing to switches, we can reduce the workload at

workers and thus significantly reduce the query completion

time despite more data transferred in the network. Compared

with server-side or storage-side acceleration, switches have

the extra benefit in that it can process the aggregated data

across workers. We defer the detailed comparison of Cheetah

with alternative hardware solutions to §10.

2.2 Constraints of programmable switches
Programmable switches make it possible to offload part of

queries because they parse custom packet formats and thus

can understand data block formats. Switches can also store

a limited amount of state in their match-action tables and

make comparisons across data blocks to see if they match a

given query. However, there are several challenges in imple-

menting queries on switches:

Function constraints: There are limited operations we

can run on switches (e.g. hashing, bit shifting, bit match-

ing, etc). These are insufficient for queries which some-

times require string operations, and other arithmetic op-

erations (e.g., multiplication, division, log) on numbers that

are not power-of-twos.

Limited pipeline stages andALUs: Programmable switches

use a pipeline of match action tables. The pipeline has a lim-

ited number of stages (e.g. 12-60) and a limited number of

ALUs per stage. This means we can only do a limited num-

ber of computations at each stage (e.g. no more than ten

comparisons in one stage for some switches). This is not

enough for some queries which require many comparisons

across entries (e.g. DISTINCT) or across many dimensions

(e.g. SKYLINE).

Memory and bit constraints: To reach high throughput

and low latency, switches have a limited amount of on-chip

memory (e.g. under 100MB of SRAM and up to 100K-300K

TCAM entries) that is partitioned between stages. However,

if we use switches to run queries, we have to store, compare,

and group a large number of past entries that can easily go

beyond the memory limit. Moreover, switches only parse a

limited number of bits and transfer these bits across stages

(e.g., 10-20 Bytes. Some queries may have more bits for the

keys especially when queries are on multiple dimensions or

long strings.

3 Cheetah design
The pruning abstraction: We introduce the pruning ab-

straction for partially offloading queries onto switches. In-

stead of offloading the complete query, we simply offload

a critical part of a query. In this way, we best leverage the

high throughput and low latency performance of switches

while staying within their function and resource constraints.

With pruning, the switch simply filters the data sent from

the workers, but does not guarantee query completion. The

master runs queries on the pruned dataset and generates

the same query result as if it had run the query with the

original dataset. Formally, we define pruning as follows; Let

𝑄 (𝐷) denote the result (output) of query 𝑄 when applied

to an input data 𝐷 . A pruning algorithm for 𝑄 , 𝐴𝑄 , gets 𝐷

produces 𝐴𝑄 (𝐷) ⊆ 𝐷 such that 𝑄 (𝐴𝑄 (𝐷)) = 𝑄 (𝐷). That is,

Figure 1: Cheetah Design.

the algorithm computes a subset of the data such that the

output of running 𝑄 on the subset is equivalent to that of

applying the query to the whole of 𝐷 .

Tomake our description easier, for the rest of the paper, we

focus on queries with one stage of workers and one master

worker. We also assume a single switch between them. An ex-

ample is a rack-scale query framework where all the workers

are located in one rack and the top-of-rack switch runs Chee-

tah pruning solutions. Our solutions can work with multiple

stages of workers by having the switch prune data for each

stage. We discuss how to handle multiple switches in §9.

Cheetah architecture: Cheetah can be easily integrated

within Spark without affecting its normal workflow. Figure 1

shows the Cheetah design:

Query planner: The way users specify a query in Spark

remains unchanged. For example, the query (e.g., SELECT

* WHERE 𝑐 > 𝜃) has three parameters: (1) the query type

(filtering in this example), (2) The query parameters 𝜃 , and

(3) the relevant columns (𝑐 in this example). In addition to

distributing tasks to workers, the query planner sends (1)

and (2) to the switch control plane which updates the switch

memory accordingly. Once the master receives an ACK from

the switch, which acknowledges that it is ready, it starts

the tasks at workers.

CWorkers: With Cheetah, the workers do not need to run

computationally intensive tasks on the data. Instead, we im-

plement a Cheetah module (CWorker), which intercepts the

data flow at workers and sends the data directly through the

switch. Therefore, Cheetah reduces the processing time at

the workers and partially offloads their tasks to the switch.

The workers and the master only need to process the re-

maining part of the query. CWorkers also convert the related

columns into packets that are readable by the switch. For

example, if some entries have variable width or are exces-

sively wide (e.g., a DISTINCT query on multiple columns),

CWorkers may compute fingerprints before sending the data

out.

Cheetah Switch: Cheetah switch is the core component

of our system. We pre-compile all the common query algo-

rithms at the switch. At runtime, when the switch receives

(a) Products

name seller price
Burger McCheetah 4

Pizza Papizza 7

Fries McCheetah 2

Jello JellyFish 5

(b) Ratings

name taste texture
Pizza 7 5

Cheetos 8 6

Jello 9 4

Burger 5 7

Fries 3 3

Table 1: Running Database Example

a query and its parameters, it simply installs match-action

rules based on the query specifications. Since most queries

just need tens of rules, the rule installation takes less than 1

ms in our evaluation. According to these rules, the switch

prunes incoming packets by leveraging ALUs, match-action

tables, registers, and TCAM as explained in §4. The switch

only forwards the remaining packets to the CMaster. The

switch identifies incoming packets from workers based on

pre-specified port numbers. This allows the switch to be

fully compatible with other network functions and applica-

tions sharing the same network. Since the switch only adds

acceleration functions by pruning the packets, the original

query pipeline can work without the switch. If the switch

fails, operators can simply reboot the switch with empty

states or use a backup ToR switch. We also introduce a new

communication protocol, as explained in detail in §7.2, that

allows the workers to distinguish between pruned packets

that are legitimately dropped and lost packets that should

be retransmitted.

CMaster: At the master, we implement a Cheetah module

(CMaster) that converts the packets back to original Spark

data format. The Spark master works in the same way with

and without Cheetah. It “thinks” that we are running the

query on the pruned dataset rather than the original one

and completes the operation. As the pruned dataset is much

smaller, the Sparkmaster takes less time to complete on Chee-

tah. Many Spark queries adopt late materialization: Spark

first runs queries on the metadata fields (i.e., those columns

of an entry that the query conditions on) and then fetches

all the requested columns for those entries that match the

criteria. In this case, Cheetah prunes data for the metadata

query and does not modify the final fetches.

4 Query Pruning Algorithms

In this section, we explore the high-level primitives used for

our query pruning algorithms. An example of input tables

which we will use to illustrate them is given in Table 1. We

also provide a table summarizing our algorithms, their pa-

rameters and pruning guarantee type in the full version [50].

4.1 Handling Function Constraints
Due to the switch’s function and resource limitations, we

cannot always prune a complete query. In such cases, Chee-

tah automatically decomposes the query into two parts and

prunes parts of the query which are supported.

Example #1: Filtering Query:
Consider the common query in database of selecting entries

matching a WHERE expression, for example:

SELECT * FROM Ratings WHERE (taste > 5)

OR (texture > 4 AND name LIKE e%s)

The switch may not be able to compute some expressions

due to lack of function support (e.g., if it cannot evaluate

name LIKE e%s) or may lack ALUs or memory to compute

some functions. Cheetah runs a subset of the predicates at

the switch to prune the data and runs the remaining either

at the workers or the master.

The Cheetah query compiler decomposes the predicates

into two parts: Consider a monotone Boolean formula 𝜙 =

𝑓 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . 𝑦𝑚) over binary variables {𝑥𝑖 } , {𝑦𝑖 } and
assume that the predicates {𝑥𝑖 } can be evaluated at the switch
while {𝑦𝑖 } cannot. The Cheetah query compiler replaces each

variable 𝑦𝑖 with a tautology (e.g., (𝑇 ∨ 𝐹)) and applies stan-

dard reductions (e.g., modus ponens) to reduce the resulting

expression. The resulting formula is computable at the switch

and allow Cheetah to prune packets.

In our example, we transform the query into:

(taste > 5) OR (texture > 4 AND (𝑇 ∨ 𝐹))

⊢ (taste > 5) OR (texture > 4).
Therefore, Cheetah prunes entries that do not satisfy (taste >

5) OR (texture > 4) and let the master node complete the

operation by removing entries for which ¬(taste > 5) ∧
(texture > 4) ∧ ¬(name LIKE e%s).

In other cases, Cheetah uses workers to compute the pred-

icates that cannot be evaluated on the switch. For instance,

the CWorker can compute (name LIKE e%s) and add the

result as one of the values in the sent packet. This way the

switch can complete the filtering execution as all predicate

values are now known.

Cheetah supports combined predicates by computing the

basic predicates that they contain (taste > 5 and texture >

4 in this example) and then checking the condition based

on the true/false result we obtain for each basic predicate.

Cheetah writes the values of the predicates as a bit vector

and looks up the value in a truth table to decide whether to

drop or forward the packets.

4.2 Handling Stage/ALU Constraints
Switches have limited stages and limited ALUs per stage.

Thus, we cannot compare the current entrywith a sufficiently

large set of points. Fortunately, for many queries, we can

partition the data into multiple rows such that each entry is

only comparedwith those in its row. Depending on the query,

the partitioning can be either randomized or hash-based as

in the following.

Example #2: DISTINCT Query:
The DISTINCT query selects all the distinct values in an

input columns subset, e.g.,

SELECT DISTINCT seller FROM Products

returns (Papizza, McCheetah, JellyFish). To prune DISTINCT

queries, the idea is to store all past values in the switch.

When the switch sees a new entry, it checks if the new value

matches any past values. If so, the switch prunes this entry;

if not, the switch forwards it to the master node. However,

storing all entries on the switch may take too much memory.

To reduce memory usage, an intuitive idea is to use Bloom

filters (BFs) [7]. However, BFs have false positives. For DIS-

TINCT, this means that the switch may drop entries even if

their values have not appeared. Therefore, we need a data

structure that ensures no false positives but can have false

negatives. Caches match this goal. The master can then re-

move the false negatives to complete the execution.

We propose to use a 𝑑 × 𝑤 matrix in which we cache

entries. Every row serves as a Least Recently Used (LRU)

cache that stores the last𝑤 entries mapped to it. When an

entry arrives, we first hash it to {1, . . . , 𝑑}, so that the same

entry always maps to the same row. Cheetah then checks

if the current entry’s value appears in the row and if so

prunes the packet. To implement LRU, we also do a rolling

replacement of the𝑤 entries by replacing the first one with

the new entry, the secondwith the first, etc. By usingmultiple

rows we reduce the number of per-packet comparisons to

allow implementation on switches.

In the full version [50]. we analyze the pruning ratio on

random order streams. Intuitively, if row 𝑖 sees 𝐷𝑖 distinct

values and each is compared with 𝑤 that are stored in the

switch memory, then with probability at least𝑤/𝐷𝑖 we will

prune every duplicate entry. For example, consider a stream

that contains 𝐷 = 15000 distinct entries and we have 𝑑 =

1000 rows and 𝑤 = 24 columns. Then we are expected to

prune 58% of the duplicate entries (i.e., entry values that have
appeared previously).

Theorem 1. Consider a random order stream with 𝐷 >

𝑑 ln(200𝑑) distinct entries1. Our algorithm, configured with
𝑑 rows and 𝑤 columns is expected to prune at least 0.99 ·
min

{
𝑤 ·𝑑
𝐷 ·𝑒 , 1

}
fraction of the duplicate entries.

4.3 Handling Memory Constraints
Due to switch memory constraints, we can only store a few

past entries at switches. The key question is: how do we

1
It’s possible to optimize other cases, but this seems to be the common case.

decide which data to store at switches that maximizes prun-

ing rate without removing useful entries? We give a few

examples below to show how we set thresholds (in the TOP

N query) or leverage sketches (in JOIN and HAVING) to

achieve these goals.

Example #3: TOP N Query:
Consider a TOP N query (with an ORDER BY clause), in

which we are required to output the 𝑁 entries with the

largest value in the queried input column;
2
e.g.,

SELECT TOP 3 name , texture FROM Ratings

ORDER BY taste

may return (Jello 4, Cheetos 6, Pizza 5). Pruning in a TOP N

query means that we may return a superset of the largest

𝑁 entries. The intuitive solution is to store the 𝑁 largest

values, one at each stage. We can then compare them and

maintain a rolling minimum of the stages. However, when

𝑁 is much larger than the number of stages (say 𝑁 is 100

or 1000 compared to 10-20 stages), this approach does not

work.

Instead, we use a small number of threshold-based coun-

ters to enable pruning TOP N query. The switch first com-

putes the minimal value 𝑡0 for the first 𝑁 entries. Afterward,

the switch can safely filter out everything smaller than 𝑡0. It

then tries to increase the threshold by checking how many

values larger than 𝑡1 we observe, for some 𝑡1 > 𝑡0. Once 𝑁

such entries were processed, we can start pruning entries

smaller than 𝑡1. We can then continue with larger thresholds

𝑡2, 𝑡3, . . . , 𝑡𝑤 . We set the thresholds exponentially (𝑡𝑖 = 2
𝑖 · 𝑡0)

in case the first 𝑁 is much smaller than most in the data.

This power-of-two choice also makes it easy to implement in

switch hardware. When using𝑤 thresholds, our algorithm

can may get pruning points smaller than 𝑡0 · 2𝑤−1
, if enough

larger ones exist.

Example #4: JOIN Query:
In a JOIN operation we combine two tables based on the

target input columns.
3
For example, the query

SELECT * FROM Products JOIN Ratings

ON Products.name = Ratings.name

gives

name seller price taste texture
Burger McCheetah 4 5 7

Pizza Papizza 7 7 5

Fries McCheetah 2 3 3

Jello JellyFish 5 9 4

.

In the example, we can save computation if the switch iden-

tifies that the key "Cheetos" did not appear in the Products

2
In different systems this operation have different names; e.g., MySQL

supports LIMIT while Oracle has ROWNUM.

3
We refer here to INNER JOIN, which is SQL’s default. With slight modifi-

cations, Cheetah can also prune LEFT/RIGHT OUTER joins.

table and prune it. To support JOIN, we propose to send

the data through the switch with two passes. In the first

pass, we use Bloom Filters [7] to track observed keys. Specif-

ically, consider joining tables A and B on input column (or

input columns) C. Initially, we allocate two empty Bloom

filters 𝐹𝐴, 𝐹𝐵 to approximately record the observed values

(e.g., name) by using an input column optimization to stream

the values of C from both tables. Whenever a key 𝑥 from

table A (or B) is processed on the switch, Cheetah adds 𝑥 to

𝐹𝐴 (or 𝐹𝐵). Then, we start a second pass in which the switch

prunes each packet 𝑥 from A (respectively, B) if 𝐹𝐵 (𝐹𝐴) did

not report a match. As Bloom Filters have no false negatives,

we are guaranteed that Cheetah does not prune any matched

entry. In the case of JOIN, The false positives in Bloom Filters

only affect the pruning ratio while the correctness is guaran-

teed. Such a two pass strategy causes more network traffic

but it significantly reduces the processing time at workers.

If the joined tables are of significantly different size, we can

optimize the processing further. We first stream the small ta-

ble without pruning while creating a Bloom filter for it. Since

it is smaller, we do not lose much by not pruning and we

can create a filter with significantly lower false positive rate.

Then, we stream the large tablewhile pruning it with the filter.

Example #5: HAVING Query:

HAVING runs a filtering operation on top of an aggregate

function (e.g.,MIN/MAX/SUM/COUNT). For example,

SELECT seller FROM Products GROUP BY
seller HAVING SUM(price) > 5

should return (McCheetah, Papizza). We first check the ag-

gregate function on each incoming entry. For MAX and MIN,

we simply maintain a counter with the current max and min

value. If it is satisfied, we proceed to our Distinct solution

(see §4.2) – if it reports that the current key has not appeared

before, we add it to the data structure and forward the entry;

otherwise we prune it.

SUM and COUNT are more challenging because a single

entry is not enough for concluding whether we should pass

the entry. We leverage sketches to store the function val-

ues for different entries in a compact fashion. We choose

Count-Min sketch instead of Count sketch or other algo-

rithms because Count-Min is easy to implement at switches

and it has one-sided error. That is, for HAVING 𝑓 (𝑥) > 𝑐 ,

where 𝑓 is SUM or COUNT, Count-Min gives an estimator

𝑓 (𝑧) that satisfies 𝑓 (𝑧) ≥ 𝑓 (𝑧). Therefore, by pruning only if
𝑓 (𝑧) ≤ 𝑐 we guarantee that every key 𝑥 for which 𝑓 (𝑥) > 𝑐

makes it to the master. Thus, the sketch estimation error only

affects the pruning rate. After the sketch, the switches blocks

all the traffic to the master. We then make a partial second

pass (i.e., stream the data again), only for the keys requested

by the master. That is, the master gets a superset of the keys

that it should output and requests all entries that belong to

them. It can then compute the correct COUNT/MAX and

remove the incorrect keys (whose true value is at most 𝑐).

We defer the support for SUM/COUNT < 𝑐 operations to

future work.

4.4 Projection for High-dimensional Data
So far we mainly focus on database operations on one dimen-

sion. However, some queries depend on values of multiple

dimensions (e.g., in SKYLINE). Due to the limited number

of stages and memory at switches, it is not possible to store

and compare each dimension. Therefore, we need to project

the multiple dimensions to one value (i.e., a fingerprint). The

normal way of projection is to use hashing, which is useful

for comparing if an entry is equal to another (e.g., DISTINCT

and JOIN). However, for other queries (e.g., SKYLINE), we

may need to order multiple dimensions so we need a different

projection strategy to preserve the ordering.

Example #6: SKYLINE Query:
The Skyline query [8] returns all points on the Pareto-curve

of the 𝐷-dimensional input. Formally, a point 𝑥 is dominated

by 𝑦 only if it is dominated on all dimensions, i.e., ∀𝑖 ∈
{1, . . . , 𝐷} : 𝑥𝑖 ≤ 𝑦𝑖 . The goal of a SKYLINE query is to

find all the points that are not dominated in a dataset.
4
For

example, the query

SELECT name FROM Ratings SKYLINE
OF taste , texture

should return (Cheetos, Jello, Burger).

Because skyline relates to multiple dimensions, when we

decide whether to store an incoming entry at the switch, we

have to compare with all the stored entries because there

is no strict ordering among them. For each entry, we have

to compare all the dimensions to decide whether to replace

it. But the switch does not support conditional write under

multiple conditions in one stage. These constraints make

it challenging to fit SKYLINE queries on the switch with a

limited number of stages.

To address this challenge, we propose to project each

high-dimensional entry into a single numeric value. We de-

fine a function ℎ : R𝐷 → R that gives a single score to

𝐷-dimensional points. We require that ℎ is monotonically
increasing in all dimensions to ensure that if 𝑥 is dominated

by 𝑦 then ℎ(𝑥) ≤ ℎ(𝑦). In contrast, ℎ(𝑥) ≤ ℎ(𝑦) does not
imply that 𝑥 is dominated by 𝑦. For example, we can define

ℎ to be the sum or product of coordinates.

The switch stores a total of𝑤 points in the switch. Each

point 𝑦 (𝑖) , 𝑖 = 1..𝑤 takes two stages: one for ℎ(𝑦 (𝑖)) and
another for all the dimensions in 𝑦 (𝑖) . When a new point 𝑥

arrives, for each𝑦 (𝑖) , the switch first checks if ℎ(𝑥) > ℎ(𝑦 (𝑖)).
4
For simplicity, we consider maximizing all dimensions. We can extend the

solution to support minimizing all dimensions with small modifications.

If so, we replace ℎ(𝑦 (𝑖)) and 𝑦 (𝑖) by ℎ(𝑥) and 𝑥 . Otherwise,
we check whether 𝑥 is dominated by 𝑦 (𝑖) and if so mark 𝑥

for pruning without changing the state. Note that here our

replace decision is only based on a single comparison (and

thus implementable at switches); our pruning decision is

based on comparing all the dimensions but the switch only

drops the packet at the end of the pipeline (not same stage

action).

If 𝑥 replaced some 𝑦 (𝑖) , we put 𝑦 (𝑖) in the packet and con-

tinue the pipeline with the new values. We use a rolling

minimum (according to the ℎ values) and get that the 𝑤

points stored in the switch are those with the highest ℎ value

so far are among the true skyline.

The remaining question is which function ℎ should be.

Product (i.e.,ℎ𝑃 (𝑥) =
∏𝐷

𝑖=1 𝑥𝑖) is better than sum (i.e.,ℎ𝑆 (𝑥) =∑𝐷
𝑗=1 𝑥 𝑗) because sum is biased towards the the dimension

with a larger range (Consider one dimension ranges between

0 and 255 and another between 0 and 65535). However, pro-

duction is hard to implement on switches because it requires

large values and multiplication. Instead, we use Approxi-

mate Product Heuristic (APH) which uses the monotonicity

of the logarithm function to represent products as sum-of-

logarithms and uses the switch TCAM and lookup tables to

approximate the logarithm values (see more details in the

full version [50]).

5 Pruning w/ Probabilistic Guarantees
The previous section focuses on providing deterministic

guarantees of pruning, which always ensures the correct-

ness of the query results. Today, to improve query execu-

tion time, database systems sometimes adopt probabilistic

guarantees (e.g., [22]). This means that with a high proba-

bility (e.g., 99.99%), we ensure that the output is exactly as

expected (i.e., no missing entries or extra entries). That is,

Pr[𝑄 (𝐴𝑄 (𝐷)) ≠ 𝑄 (𝐷)] ≤ 𝛿 , where 𝑄 is the query, 𝐴𝑄 is

the algorithm, and 𝐷 is the data, as in §3. Such probabilistic

guarantees allow users to get query results much faster.
5

By relaxing to probabilistic guarantees, we can improve

the pruning rate by leveraging randomized algorithms to

select the entries to store at switches and adopting hashing

to reduce the memory usage.

Example #7: (Probabilistic) TOP N Query:
Our randomized TOP N algorithm aims at, with a high prob-

ability, returning a superset of the expected output (i.e., none
of the 𝑁 output entries is pruned). Cheetah randomly parti-

tions the entries into rows as explained in §4.2. Specifically,

when an entry arrives, we choose a random row for it in

{1, . . . , 𝑑}. In each row, we track the largest𝑤 entries mapped

to it using a rolling minimum. That is, the largest entry in

the row is first, then the second, etc. We choose to prune any

5
The master can check the extra entries before sending the results to users.

Spark can also return the few missing entries at a later time.

Figure 2: TOP N example on a stream (7,4,7,5,3,2). The entry
3 was mapped to the third row and pruned as all stored val-
ues were larger. In contrast, 2wasmapped to the second row
and is not pruned. Thematrix dimensions are chosen so that
with high probability none of the TOP N entry is pruned.

entry that was smaller than all𝑤 entries that were cached in

its row. Cheetah leverages the balls and bins framework to

determine how to set the dimensions of the matrix (𝑑 and𝑤)

given 𝑁 , the goal probability 𝛿 , and the resource constraints

(the number of stages limits𝑤 while the per-stage memory

restricts 𝑑).

The algorithm is illustrated in Figure 2.

The proper (𝑤,𝑑) configuration of the algorithm is quite

delicate. In the full version [50], we analyze how to set 𝑤

given a constraint on 𝑑 or vice versa. We also show that

we achieve the best pruning rate when the matrix size 𝑑 ·
𝑤 is minimized (if there is no constraint on 𝑑 or 𝑤), thus

optimizing the space and pruning simultaneously.

The goal of our algorithm is to ensure that with probability

1 − 𝛿 , where 𝛿 is an error parameter set by the user, no more

than𝑤 TOP N values are mapped into the same row. In turn,

this guarantees that the pruning operation is successful and

that all output entries are not pruned. In the following, we

assume that 𝑑 is given (this can be derived from the amount

of per-stage memory available on the switch) and discuss

how to set the number of matrix columns. To that end, we

use 𝑤 ≜

⌊
1.3 ln(𝑑/𝛿)

ln(𝑑
𝑁 ·𝑒 ln(𝑑/𝛿))

⌋
matrix columns. For example, if

we wish to find the TOP 1000 with probability 99.99% (and

thus, 𝛿 = 0.0001) and have 𝑑 = 600 rows then we use𝑤 = 16

matrix columns. Having more space (larger 𝑑) reduces 𝑤 ;

e.g., with 𝑑 = 8000 rows we need just 5 matrix columns.

Having too few rows may require an excessive number of

matrix columns (e.g.,𝑤 = 288 matrix columns are required

for 𝑑 = 200) which may be infeasible due to the limited

number of pipeline stages. Due to lack of space, the proof of

the theorem appears in the full version [50].

Theorem 2. Let 𝑑, 𝑁 ∈ N, 𝛿 > 0 such that 𝑑 ≥ 𝑁 · 𝑒/ln𝛿−1

and define𝑤 ≜

⌊
1.3 ln(𝑑/𝛿)

ln(𝑑
𝑁 ·𝑒 ln(𝑑/𝛿))

⌋
. Then TOP N query succeeds

with probability at least 1 − 𝛿 .

In the worst case, if the input stream is monotonically

increasing, the switch must pass all entries to ensure correct-

ness. In practice, streams are unlikely to be adversarial as

the order in which they are stored is optimized for perfor-

mance. To that end, we analyze the performance on random

streams, or equivalently, arbitrary streams that arrive in a

random order. Going back to the above example, if we have

𝑑 = 600 rows on the switch and aim to find TOP 1000 from

a stream of𝑚 = 8𝑀 elements, our algorithm is expected to

prune at least 99% of the data. For a larger table of𝑚 = 100𝑀

entries our bound implies expected pruning of over 99.9%.

Observe that the logarithmic dependency on𝑚 in the fol-

lowing theorem implies that our algorithm work better for

larger datasets. The following theorem’s proof is deferred to

the full version [50].

Theorem 3. Consider a random-order stream of 𝑚 ele-
ments and the TOP N operation with algorithm parameters
𝑑,𝑤 as discussed above. Then our algorithm prunes at least(
𝑚 −𝑤 · 𝑑 · ln

(
𝑚 ·𝑒
𝑤 ·𝑑

))
of the𝑚 elements in expectation.

Optimizing the Space and Pruning RateThe above analysis
considers the number of rows 𝑑 as given and computes the

optimal value for the number of matrix columns 𝑤 . How-

ever, unless one wishes to use the minimal number of matrix

columns possible for a given per-stage space constraint, we

can simultaneously optimize the space and pruning rate. To

that end, observe that the required space for the algorithm is

Θ(𝑤 ·𝑑), while the pruning rate is monotonically decreasing

in𝑤 · 𝑑 as shown in Theorem 3. Therefore, by minimizing

the product𝑤 · 𝑑 we optimize the algorithm in both aspects.

Next, we note that for a fixed error probability 𝛿 the value

for 𝑤 is monotonically decreasing in 𝑑 as shown in Theo-

rem 2. Therefore we define 𝑓 (𝑑) ≜ 𝑤 ·𝑑 ≈ 𝑑 ·1.3 ln(𝑑/𝛿)
ln(𝑑

𝑁 ·𝑒 ln(𝑑/𝛿)) and
minimize it over the possible values of 𝑑 .6 The solution for

this optimization is setting 𝑑 ≜ 𝛿 · 𝑒𝑊 (𝑁 ·𝑒2/𝛿)
, where𝑊 (·) is

the Lambert𝑊 function defined as the inverse of 𝑔(𝑧) = 𝑧𝑒𝑧 .

For example, for finding TOP 1000 with probability 99.99%

we should use 𝑑 = 481 rows and 𝑤 = 19 matrix columns,

even if the per-stage space allows larger 𝑑 .

Example #8: (Probabilistic) DISTINCT Query:
Some DISTINCT queries run on multiple input columns or

on variable-width fields that are too wide and exceed the

number of bits that can be parsed from a packet. To reduce

the bits, we use fingerprints,which are short hashes of all

input columns that the query runs on.

However, fingerprint collisions may cause the switch to

prune entries that have not appeared before and thus provide

inaccurate output.
7
Interestingly, not all collisions are harm-

ful. This is because the DISTINCT algorithm hashes each

entry into a row in {1, . . . , 𝑑}. Thus, a fingerprint collision
between two entries is bad only if they are in the same row.

We prove the following bound on the required fingerprint

length in the full version [50].

6
This omits the flooring of 𝑤 as otherwise the function is not continuous.

The actual optimum, which needs to be integral, will be either the minimum

𝑑 for that value or for 𝑤 that is off by 1.

7
Note that for some other queries (e.g., JOIN), fingerprint collisions only

affect the pruning rate, but not correctness.

Theorem 4. Denote

M ≜


𝑒 · 𝐷/𝑑 if 𝐷 > 𝑑 ln(2𝑑/𝛿)
𝑒 · ln(2𝑑/𝛿) if 𝑑 · ln𝛿−1/𝑒 ≤ 𝐷 ≤ 𝑑 ln(2𝑑/𝛿)

1.3 ln(2𝑑/𝛿)
ln(𝑑

𝐷 ·𝑒 ln(2𝑑/𝛿)) otherwise
,

where 𝐷 is the number of distinct items in the input. Consider
storing fingerprints of size 𝑓 =

⌈
log(𝑑 · M2/𝛿)

⌉
bits. Then

with probability 1 − 𝛿 there are no false positives and the
distinct operation terminates successfully.

For example, if 𝑑 = 1000 and 𝛿 = 0.01%, we can support

up to 500𝑀 distinct elements using 64-bits fingerprints re-
gardless of the data size. Further, this does not depend on

the value of𝑤 .

The analysis leverages the balls and bins framework to

derive bounds on the sum of square loads, where each load is

the number of distinct elements mapped into a row. It then

considers the number of distinct elements we can support

without having same-row fingerprint collisions. For example,

if 𝑑 = 1000 and the error probability 𝛿 = 0.01%, we can sup-

port up to 500𝑀 distinct elements using 64-bits fingerprints

regardless of the data size. Further, this does not depend on the
value of𝑤 . We also provide a rigorous analysis of the pruning

rate in Additionally, we analyze the expected pruning rate

in random-order streams and show , in the full version [50],

that we can prune at least an Ω
(
𝑤 ·𝑑
𝐷

)
fraction of the entries,

where 𝐷 is the number of distinct elements in the input.

6 Handling multiple queries
Cheetah supports the use case where the query is not known

beforehand but only the set of queries (e.g., DISTINCT, TOP

N, and JOIN) we wish to accelerate. Alternatively, the work-

load may contain complex queries that combine several of

our operations. In this scenario, one alternative would be to

reprogram the switch once a query arrives. However, this

could take upwards of a minute and may not be better than

to perform the query without Cheetah. Instead, we concur-

rently pack the different queries that we wish to support on

the switch data plane, splitting the ALU/memory resources

between these. This limits the set of queries we can accom-

modate in parallel, but allow for interactive query processing
in a matter of seconds and without recompiling the switch.

Further, not all algorithms are heavy in the same type of

resources. Some of our queries (e.g., SKYLINE) require many

stages but few ALUs and only a little SRAM. In contrast,

JOIN may use only a couple of stages while requiring most

of the SRAM in them. These differences enable Cheetah to

efficiently pack algorithms on the same stages.

At the switch, all queries will be performed on the incom-

ing data giving us a prune/no-prune bit for each query. Then

we have a single pipeline stage that selects the bit relevant

to the current query. We fit multiple queries by repurpos-

ing the functionality of ALU results and stages. We evaluate

one such combined query in figure 5. Query A is a filtering

query and query B is a SUM + group by query. To prune the

filtering query, we only use a single ALU and 32 bits of stage

memory (1 index of a 32 bit register) in a stage. We use the

remaining ALUs in the same stage to compute 1) hash values

and 2) sums required for query B as discussed in our pruning

algorithms. We also use the remaining stage memory in that

same stage to store SUM results ensuring the additional filter

query has no impact on the performance of our group by

query.

In more extreme examples, where the number of compu-

tation operations required exceeds the ALU count on the

switch, it is still possible to fit a set of queries by reusing

ALUs and registers for queries with similar processing. As an

example, an ALU that does comparisons for filtering queries

can be reconfigured using control plane rules to work as part

of the comparator of a TOP N or HAVING query. We can

also use a single stage for more than one task by partition-

ing its memory e.g dedicating part of to fingerprinting for

DISTINCT and another part to store SKYLINE prune points.

7 Implementation
7.1 Cheetah prototype
We built the Cheetah dataplane along with in-network prun-

ing using a Barefoot Tofino [39] switch and P4 [13]. Each

query requires between 10 to 20 control plane rules excluding

the rules needed for TCP/IP routing and forwarding. Any of

the Big Data benchmark workloads can be configured using

less than 100 control plane rules. We also developed a DPDK-

based Cheetah end-host service using about 3500 lines of C.

We deploy five Spark workers along with an instance of

CWorker connected to the switch via DPDK-compliant 40G

Mellanox NICs. We restrict the NIC bandwidth to 10G and

20G for our evaluation. All workers have two CPU cores

and 4 GB of memory. The CWorker sends data to the master

via UDP at a rate of ∼10 million packets per second (i.e a

throughput of ∼ 5.1 Gbps since the minimum ethernet frame

is 64 bytes) with one entry per packet.We use optimized tasks

for Spark for a fair comparison. We also mount a linux tmpfs

RAM disk on workers to store the dataset partitions allowing

Spark to take advantage of its main-memory optimized query

plans.

Spark optimizes the completion time by minimizing data

movement. In addition to running tasks on workers to reduce

the volume sent to the master, Spark compresses the data and

packs multiple entries in each packet (often, the maximum

allowed by the network MTU). In contrast, Cheetah must

send the data uncompressed while packing only a small

number of entries in each packet. Spark also leverages an

optimization called late materialization [3] in which only

Algorithm Defaults #stages #ALUs SRAM #TCAM

DISTINCT

FIFO
∗

𝑤 = 2, 𝑑 = 4096

⌈𝑤/𝐴⌉ 𝑤 (𝑑 ·𝑤)× 64b 0

LRU 𝑤 𝑤

SKYLINE

SUM

𝐷 = 2,𝑤 = 10

⌈
log

2
𝐷
⌉
+ 2𝑤

2

⌈
log

2
𝐷
⌉
− 1 +𝑤 (𝐷 + 1) 𝑤 (𝐷 + 1)× 64b 0

APH

⌈
log

2
𝐷
⌉
+ 2(𝑤 + 1) 𝑤 (𝐷 + 1)× 64b + 2

16× 32b 64 · 𝐷

TOP N

Det 𝑁 = 250,𝑤 = 4 𝑤 + 1 𝑤 + 1 (𝑤 + 1)× 64b

0

Rand 𝑁 = 250,𝑤 = 4, 𝑑 = 4096 𝑤 𝑤 (𝑑 ·𝑤)× 64b

GROUP BY 𝑤 = 8 𝑤 𝑤 𝑑 ·𝑤× 64b 0

JOIN

BF
∗

𝑀 = 4MB, 𝐻 = 3

2 𝐻 𝑀
0

RBF 1 1 𝑀 +
(
64

𝐻

)
× 64b

HAVING 𝑤 = 1024, 𝑑 = 3 ⌈𝑑/𝐴⌉ 𝑑 (𝑑 ·𝑤)× 64b 0

Table 2: Summary of the resource consumption of our algorithms. Here, 𝐴 is the number of ALUs per stage on
the switch. The algorithms denoted by (*) assume that same-stage ALUs can access the same memory space. For
SKYLINE the above assumes that the dimension satisfies 𝐷 ≤ 𝐴.

Figure 3: The control flow of Apache Spark and Cheetah

a metadata stream is sent in the first stage, and the entire

entries are requested by the master once it computes which

tuples are part of the result. We expand on how Cheetah

supports late materialization in the full version [50].

Currently, our prototype includes the DISTINCT, SKY-

LINE, TOP N, GROUP BY, JOIN, and filtering queries. We

also support combining these queries and running them in

parallel without reprogramming the switch.

Cheetah ModulesWe create two background services that

communicate with PySpark called Cheetah Master (CMaster)

and CheetahWorker (CWorker) running on the same servers

that run the Spark Master and Spark Workers respectively.

The CMaster bypasses a supported PySpark query and in-

stead sends a control message to all CWorkers providing the

dataset and the columns relevant to the query. The CWorker

packs the necessary columns into UDP packets with Cheetah

headers and sends them via Intel DPDK [25]. Our experi-

ments show a CWorker can generate over ≈12 million pack-

ets per second when the link and NIC are not a bottleneck.

In parallel, the master server also communicates with

the switch to install the control plane rules relevant to the

query. The switch parses and prunes some of the packets it

processes. The remaining packets are received at the mas-

ter using an Intel DPDK packet memory buffer, are parsed,

and copied into userspace. The remaining processing for

the query is implemented in C. The Cheetah master contin-

ues processing all entries it receives from the switch until

receiving FINs from all CWorkers, indicating that data trans-

mission is done. Finally, the CMaster sends the final set of

row ids and values to the Python PySpark script (or shell).

Switch logicWeuse Barefoot Tofino [39] and implement the

pruning algorithms (see §3) in the P4 language. The switch

parses the header and extracts the values which then proceed

to the algorithm processing. The switch then decides if to

prune each packet or forward it to the master. It also partic-

ipates in our reliability protocol, which takes two pipeline

stages on the hardware switch.

ResourceOverheadsAll our algorithms are parametric and

can be configured for a wide range of resources. We summa-

rize the hardware resource requirements of the algorithms

in Table 2 and expand on how this is calculated in the full

version of the paper [50].

7.2 Communication protocol
Query and response format: For communication between

the CMaster node and CWorkers (passing through and get-

ting pruned by the switch), we implement a reliable trans-

mission protocol built on top of UDP. Each message con-

tains the entry identifier along with the relevant column

values or hashes. Our protocol runs on a separate port from

Spark and uses a separate header. It also does not use Spark’s

Figure 4: Cheetah packet and ACK format. The pack-
ets encode the flow and entry identifiers in addition to
the relevant values.

serialization implementation. Its channel is completely de-

coupled from and transparent to the ordinary communi-

cation between the Spark master and worker nodes. Our

packet and header formats appear in Figure 4. We support

variable length headers to allow the different number of

columns / column-widths (e.g., TOP N has one value per

entry while JOIN/GROUP BY have two or more). The num-

ber of values is specified in an 8-bits field (𝑛). The flow

ID (fid) field is needed when processing multiple datasets

and/or queries concurrently.

For simplicity, we store one entry on each packet; We dis-

cuss how to handle multiple entries per packet in Section 9.

Reliability protocol: We use UDP connections for CWork-

ers to send metadata responses to CMasters to ensure low

latency. However, we need to add a reliability protocol on

top of UDP to ensure the correctness of query results.

The key challenge is that we cannot simply maintain a

sequence number at CWorkers and identify lost packets at

CMasters because the switch prunes some packets. Thus,

we need the switch to participate in the reliability proto-

col and acks the pruned packets to distinguish them from

unintentional packet losses.

Each worker uses the entry identifiers also as packet se-

quence numbers. It also maintains a timer for every non-

ACKed packet and retransmits it if no ACK arrives on time.

The master simply acks every packet it receives. For each

fid, the switch maintains the sequence number 𝑋 of the last

packet it processed, regardless of whether it was pruned.

When a packet with SEQ 𝑌 arrives at the switch the taken

action depends on the relation between 𝑋 and 𝑌 .

If 𝑌 = 𝑋 + 1, the switch processes the packet, increments

𝑋 , and decides whether to prune or forward the packet. If

the switch prunes the packet, it sends an ACK(𝑌) message to

the worker. Otherwise, the master which receives the packet

sends the ACK. If 𝑌 ≤ 𝑋 , this is a retransmitted packet that

the switch processed before. Thus, the switch forwards the

packet without processing it. If 𝑌 > 𝑋 + 1, due to a previous

packet 𝑋 + 1 was lost before reaching the switch, the switch

drops the packet and waits for 𝑋 + 1 to be retransmitted.

This protocol guarantees that all the packets either reach

the master or gets pruned by the switch. Importantly, the

protocol maintains the correctness of the execution even if
some pruned packets are lost and the retransmissions make it
to the master. The reason is that all our algorithms have the

property that any superset of the data the switch chooses

not to prune results in the same output. For example, in a

DISTINCT query, if an entry is pruned but its retransmission

reaches the master, it can simply remove it.

8 Evaluation
We perform test-bed experiments and simulations. Our test-

bed experiments show that Cheetah has 40 − 200% improve-

ment in query completion time over Spark. Our simulations

show that Cheetah achieves a high pruning ratio with a

modest amount of switch resources.

8.1 Evaluation setup
Benchmarks:Our test-bed experiments use the Big Data [4]

and TPC-H [2] benchmarks. From the Big Data benchmark,

we run queries A (filtering)
8
, B (we offload group-by), and

A+B (both A and B executed sequentially).

For TPC-H, we run query 3 which consists of two join

operations, three filtering operations, a group-by, and a top N.

We also evaluate each algorithm separately using a dedicated

query on the Big Data benchmark’s tables. All queries are

shown in the full version of the paper [50].

8.2 Testbed experiments
We run the BigData benchmark on a local cluster with five

workers and one master, all of which are connected directly

to the switch. Our sample contains 31.7 million rows for the

uservisits table and 18 million rows for the rankings table.

We run the TPC-H benchmark at its default scale with one

worker and one master. Cheetah offloads the join part of the

TPC-H because it takes 67% of the query time and is the most

effective use of switch resources.

8.2.1 Benchmark PerformanceFigure 5 shows that Cheetah
decreases the completion time by 64−75% in both BigData B,

BigData A+B, and TPC-H Query 3 compared to Spark’s 1
𝑠𝑡

run and 47 − 58% compared to subsequent runs. Spark’s sub-

sequent runs are faster than 1
𝑠𝑡
run because Spark indexes

the dataset based on the given workload after the 1
𝑠𝑡
run.

Cheetah reduces the completion time by 40 − 72% for other

database operations such as distinct, groupby, Skyline, TopN,

and Join. Cheetah improves performance on these compu-

tation intensive aggregation queries because it reduces the

expensive task computation Spark runs at the workers by

offloading it to the switch’s data plane instead.

BigData A (filtering) does not have a high computation

overhead. Hence Cheetah has performance comparable to

8
As the data is nearly sorted on the filtered column, we run the query on a

random permutation of the table.

BigData A BigData B BigData A + B TPC-H Q3 Distinct GroupBy
(Max)

Skyline Top-N Join
0

10

20

30
C

om
pl

et
io

n
ti

m
e

[s
ec

]
Spark (1st run)

Spark

Cheetah

Figure 5: A comparison of Cheetah and Spark in terms of completion time on the Big Data benchmark for the
benchmark queries (first four) and the other queries supported by Cheetah.

1 2 3 4 5
Number of workers

0

5

10

15

20

25

30

C
om

pl
et

io
n

ti
m

e
[s

ec
]

Cheetah

Spark

(a) Varying partition size

10M 20M 30M
Number of entries

0.0

2.5

5.0

7.5

10.0

C
om

pl
et

io
n

ti
m

e
[s

ec
]

Cheetah

Spark

(b) Varying partition count

Figure 6: The performance of Cheetah vs. Spark SQL onDIS-

TINCT query.
Spark’s 1st run but worse than Spark’s subsequent runs.

This is because Cheetah has the extra overhead of serializing

data at the workers to allow processing at the switches. This

serialization adds more latency than the time saved by switch

pruning. Cheetah performs the combined query A + B faster

than the sum of individual completion times. This is because

it pipelines the pre-processing of columns for the combined

query resulting in faster serialization at CWorker.

8.2.2 Effect of Data Scale and Number of Workers In Fig-

ure 6a, we vary the number of entries per partition (worker)

while keeping the total number of entries fixed. Not only is

Cheetah is quicker than Spark, the gap widens as the data

scale grows. Therefore Cheetah may also offer better scala-

bility for large datasets. Figure 6b shows the performance

when fixing the overall amount of entries and varying the

number of workers. Cheetah improves Spark by about the

same factor with a different number of partitions. In both

these experiments, we ignore the completion time of Spark’s

first run on the query and only show subsequent runs (which

perform better due to caching / indexing and JIT compilation

effects [36, 42]).

8.2.3 Effect of Network Rate Unlike Spark, which is often

bottlenecked by computation [42], Cheetah is mainly limited

by the network when using a 10G NIC limit. We run Cheetah

using a 20G NIC limit and show a breakdown analysis of

where each system spends more time. Figure 8 illustrates

how Cheetah diminishes the time spent at the worker at the

0 5 10 15 20 25 30 35 40
Result Size (% input dataset)

0.0

0.2

0.4

0.6

C
om

pl
et

io
n

ti
m

e
[s

ec
]

Cheetah

Lowerbound of NetAccel

Figure 7: Overhead of moving results from the switch dat-
aplane to the master server via packet draining on TPC-H
Q3’s order key join. We vary the result size by changing fil-
ter ranges in the query.

expense of more sending time and longer processing at the

master. The computation here for Cheetah is done entirely at

the master server, with the workers just serializing packets

to send them over the network. When the speed is increased

to 20G, the completion time of Cheetah improves by nearly

2x, meaning that the network is the bottleneck. Similarly to

Section 8.2.2, we discard Spark’s first run.

8.2.4 Comparison with NetAccel [32] NetAccel is a recent

system that offloads entire queries to switches. Since the

switch data plane limitations may not allow a complete com-

putation of queries, NetAccel overflows some of the data to

the switch’s CPU. At the end of the execution, NetAccel

drains the output (which is on the switch) and provides it

to the user. Cheetah’s fundamental difference is that it does

not aim to complete the execution on the switch and only

prunes to reduce data size. As a result, Cheetah is not lim-

ited to queries whose execution can be done on the switch

(NetAccel only supports join and group by), does not need

to read the output from the switch (thereby saving latency),

and can efficiently pipeline query execution.

As NetAccel stores results at switches, it must drain the

output to complete the execution. This process adds latency,

as shown in figure 7. We note that NetAccel’s code is not

publically available, and the depicted results are a lower

bound obtained by measuring the time it takes to read the

output from the switch. That is, this lower bound represents

Distinct Group-By
0

2

4

6

8

C
om

pl
et

io
n

ti
m

e
[s

ec
]

Left: Spark
Mid: Cheetah 10G
Right: Cheetah 20G

Computation

Network

Other

Figure 8: breakdown of Spark and Cheetah’s delay for dif-
ferent network rates. Spark’s bottleneck is not the network
and it does not improve when using a faster NIC.

0.1 0.2 0.3 0.4 0.5
Unpruned fraction

0

5

10

15

B
lo

ck
in

g
m

as
te

r
la

te
nc

y
(s

)

Top N

Distinct

Max Group-By

Figure 9: The time it takes theMaster to completeDISTINCT
and max-GROUP BY queries for a given pruning rate.

an ideal case where there are enough resources in the data

plane for the entire execution and no packet is overflowed

to the CPU. We also assume that NetAccel’s pruning rate

is as high as Cheetah’s. Moreover, the query engine can-

not pipeline partial results onto the next operation in the

workload if it stored in the switch.

8.3 Pruning Rate Simulations
We use simulations to study the pruning rates under vari-

ous algorithm settings and switch constraints. The pruning

rates dictate the number of entries that reach the master and

therefore impact the completion time.

To understand how pruning rate affects completion time,

we measure the time the master needs to complete the exe-

cution once it gets all entries. Figure 9 shows that the time it

takes themaster to complete the query significantly increases

with more unpruned entries. The increase is super-linear in

the unpruned rate since the master can handle each arriving

entry immediately when almost all entries are pruned. In

contrast, when the pruning rate is low, the entries buffer up

at the master, causing an increase in the completion time.

The desired pruning rate depends on the complexity of a

query’s software algorithm. For example, TOP N is imple-

mented on the master using an 𝑁 -sized heap and processes

millions of entries per second. In contrast, SKYLINE is compu-

tationally expensive and thus we should prune more entries

to avoid having the master become a bottleneck. We only

show three queries here. Experiments for remaining queries

appear in the full version [50].

Pruning Rate vs. Resources Tradeoff We evaluate the

pruning rate that Cheetah achieves for given hardware con-

straints. In all figures, OPT depicts a hypothetical stream

algorithm with no resource constraints. For example, in a

TOP N it shows the fraction of entries that were among the𝑁

largest entries from the beginning of the stream. Therefore,

OPT is an upper bound on the pruning rate of any switch

algorithm. The results are depicted in Figure 10a-10c. We ran

each randomized algorithm five times and used two-tailed

Student t-test to determine the 95% confidence intervals. We

configured the randomized algorithms to ≥99.99% success

probability. In 10a we see that using 𝑤 = 2 and 𝑑 = 4096

Cheetah can prune all non-distinct entries; with smaller 𝑑 or

the FIFO policy the pruning rate is slightly lower but Chee-

tah still prunes over 99% of the entries using just a few KB

of space. In 10b we see SKYLINE results; as expected, for the

same number of points, APH outperforms the SUM heuristic

and prunes all non-skyline points with 𝑤 = 20. Both APH

and SUM prune over 99% of the entries with 𝑤 ≤ 7 while

Baseline, which stands for an algorithm that store𝑤 arbitrary

points for pruning, requires 𝑤 = 20 for 99% pruning. Both

heuristics allow the switch to "learn" a good set of points

to use for the pruning. 10c shows TOP N and illustrates the

power of the randomized approach. While the deterministic

algorithm can run with fewer stages and ensure correctness,

if we allow just 0.01% chance of failure, we can significantly

increase the pruning rate. Here, the randomized algorithm

reaches about 99.995% pruning, leaving about 5 times the

optimal number of packets. The strict requirement for high-

success probability forces the algorithm to only prune entries

which are almost certainly not among the top N.

Pruning Rate vs. the Data Scale: The pruning rate of dif-

ferent algorithms behaves differently when the data scale

grows. Here, each data point refers to the first entries in the

relevant data set. Figures 10d - 10f show how the pruning rate

varies as the scale grows. For the shown queries, Cheetah

achieves better pruning rate for larger data. For DISTINCT it

is because we cannot prune the first occurrence of an output

key, but once our data structure has these reflected it gets

better pruning. In SKYLINE and TOP N, a smaller fraction

of input entries are needed for the output as the data scale

grows, allowing the pruning of more entries. In contrast,

the algorithms for JOIN and HAVING have better pruning

rates for smaller data sets, as shown in the full version [50].

In JOIN, the algorithm experiences more false positives as

the data keep on coming and therefore prunes a smaller

fraction of the entries. The HAVING query is conceptually

different; as it asks for the codes for languages whose sum-of-

ad-revenue is larger than $1M, the output is empty if the data

is too small. The one-sided error of the Count Min sketch

(a) DISTINCT (𝑤 = 2) (b) SKYLINE (c) TOP N (𝑑 = 4096)

(d) DISTINCT (𝑤 = 2) (e) SKYLINE (APH Heuristic) (f) TOP N

Figure 10: The pruning performance of our algorithms for a given resource setting ((a)-(c)) and vs. the data scale
((d)-(f)). Notice that the 𝑦-axis is logarithmic; for example, 10−3 means that 99.9% of the entries are pruned.

that we use guarantees that we do not miss any of the correct

output keys but the number of false positives increases as

the data grows. Nevertheless, with as few as 512 counters for

each of the three rows, Cheetah gets near-perfect pruning

throughout the evaluation.

9 Extensions
Multiple switches:Wehave considered a single programmable

switch in the path between the workers and the master. How-

ever, having multiple switches boosts our performance fur-

ther. For example, we can use a “master switch” to partition

the data and offload each partition to a different switch. Each

switch can perform local pruning of its partition and return

it to the master switch which prunes the data further. This

increases the hardware resources at our disposal and allows

superior pruning results.

DAG of workers: Our paper focuses on the case where

there is one master and multiple workers. However, in large

scale deployments or complex workloads, query planning

may result in a directed acyclic graph (DAG) of workers, each

takes several inputs, runs a task, and outputs to a worker

on the next level. In such cases, we can run Cheetah at each

edge in which data is sent between workers. To distinguish

between edges, each has a dedicated port number and a set

of resources (stages, ALUs, etc.) allocated to it. To that end,

we use the same packing algorithm described in §6.

Packing multiple entries per packet: Cheetah spends a

significant portion of its query processing time on transmit-

ting the entries from the workers. This is due to two factors;

first, it does not run tasks on the workers that filters many

of the entries; second, it only packs one entry in each packet.

While the switch cannot process a very large number of

entries per packet on the switch due to limited ALUs, we

can still pack several (e.g. four) entries in a packet thereby

significantly reducing this delay. P4 switches allow popping

header fields [13] and thereby support pruning of some of

the entries in a packet. The limit on the number of entries

in each packet depends on the number of ALUs per stage

(all our algorithms use at least one ALU per entry per stage),

the number of stages (we can split logical stage to several

if the pipeline is long enough). Our DISTINCT, TOP N, and

GROUP BY algorithms support multiple entries per packet

while maintaining correctness: if several entries are mapped

to the same matrix row, we can avoid processing them while

not pruning the entries.

System Server GPU [6] FPGA [38] SmartNIC [34] Tofino V2 [40]

Throughput 10-100Gbps 40-120Gbps 10-100Gbps 10-100Gbps 12.8 Tbps

Latency 10-100 𝜇s 8-25 𝜇s 10 𝜇s 5-10𝜇s < 1𝜇s

Table 3: Performance comparison of hardware
choices.

10 Related Work
This work has not been published elsewhere except for a

2-page poster at SIGCOMM [51]. The poster discusses sim-

ple filtering, DISTINCT, and TOP N. This work significantly

advances the poster by providing pruning algorithms for

4 additional queries, an evaluation on two popular bench-

marks, and a comparison with NetAccel [32]. This work also

discusses probabilistic pruning, optimizing multiple queries,

using multiple switches, and a reliability protocol.

Hardware-based query accelerators: Cheetah follows a

trend of accelerating database computations by offloading

computation to hardware. Industrial systems [1, 41] offload

parts of the computation to the storage engine. Academic

works suggest offloading to FPGAs [5, 15, 47, 53], SSDs [17],

and GPUs [19, 45, 48]. These either consider offloading the

entire operation to hardware [32, 53], or doing a per-partition

exact aggregation/filtering before transmitting the data for

aggregation [17]. However, exact query computation on hard-

ware is challenging and these only support basic operations

(e.g., filtering [1, 17]) or primitives (e.g., partitioning [31] or

aggregation [16, 53]).

Cheetah uses programmable switches which are either

cheaper or have better performance than alternative hard-

ware such as FPGAs. Compared to FPGAs, switches handle

two orders of magnitude more throughput per Watt [52]

and ten times more throughput per dollar [26] [52]. GPUs

consume 2-3x more energy than FPGAs for equivalent data

processing workloads [43] and double the cost of FPGA with

similar characteristics [43]. A summary of the attributes of

the different alternatives appears in Table 3. Switches are

also readily available in the networks at no additional cost.

We offload partial functions on switches using the prun-

ing abstraction and support a variety of database queries.

Sometimes, FPGAs and GPUs also incur extra data transmis-

sion overhead. For example, GPU’s separate memory system

also introduces significant performance overhead with extra

computation and memory demand [53]. When an FPGA is

attached to the PCIe bus ([1, 5]), we have to copy the data to

and from the FPGA explicitly [53]. One work has used FPGAs

as an in-datapath accelerator to avoid this transfer [53].

Moreover, switches can see the aggregated traffic across

workers and the master, and thus allow optimizations across

data partitions. In contrast, FPGAs are typically connected to

individual workers due to bandwidth constraints [1] and can

only optimize the query for each partition. That said, Cheetah

complements these works as switches can be usedwith FPGA

and GPU-based solutions for additional performance.

Offloading to programmable switches: Several works
use programmable switches for offloading different func-

tionality that was handled in software [12, 14, 21, 27–30, 33,

35, 46]. Cheetah offloads database queries, which brings new

challenges to fit the constrained switch programming model

because database queries often provide a large amount of

data and require diverse computations across many entries.

One opportunity in databases is that the master can complete

the query from the pruned data set.

In the network telemetry context, researchers proposed

Sonata, a general monitoring abstraction that allows script-

ing for analytics and security applications [20]. Sonata sup-

ports filtering, map and a constrained version of distinct in

the data plane but relies on a software stream processor for

other operations (e.g., GROUP BY, TOP N, SKYLINE). Con-

ceptually, as Sonata offloads only operations that can be fully

computed in the data plane, its scope is limited. Sparser [44]

accelerates text-based filtering using SIMD.

Recently, NetAccel [32] suggested using programmable

switches for query acceleration. We discuss and evaluate the

differences between Cheetah and NetAccel in §8.2.4. Jump-

gate [37] also suggests accelerating Spark using switches. It

uses a method similar to NetAccel. However, while Cheetah

and NetAccel are deployed in between the worker and mas-

ter server, Jumpgate stands between the storage engine and

compute nodes. Jumpgate does not include an implemen-

tation, is specific to filtering and partial aggregation, and

cannot cope with packet loss.

11 Conclusion
We present Cheetah, a new query processing system that

significantly reduces query completion time compared to the

current state-of-the-art for a variety of query types. Cheetah

accelerates queries by leveraging programmable switches

while using a pruning abstraction to fit in-switch constraints

without affecting query results.

12 Acknowledgements
We thank the anonymous reviewers for their valuable feed-

back. We thank Mohammad Alizadeh and Geeticka Chauhan

for their help and guidance in the early stages of this project,

andAndrewHuang for helping us validate Spark SQL queries.

This work is supported by the National Science Foundation

under grant CNS-1829349 and the Zuckerman foundation.

References
[1] IBM/Netezza. The Netezza Data Appliance Architecture: A Platform

for High Performance Data Warehousing and Analytics, 2011. www.

redbooks.ibm.com/abstracts/redp4725.html.

[2] TPC-H Benchmark. http://www.tpc.org/tpch/.

[3] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden. Materialization

strategies in a column-oriented dbms. In ICDE, 2007.
[4] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David

J. DeWitt, Samuel Madden, Michael Stonebraker. A Comparison of

www.redbooks.ibm.com/abstracts/redp4725.html
www.redbooks.ibm.com/abstracts/redp4725.html
http://www.tpc.org/tpch/

Approaches to Large-Scale Data Analysis. ACM SIGMOD, 2009.
[5] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann,

R. Ramamurthy, P. Upadhyaya, and R. Venkatesan. Secure database-

as-a-service with cipherbase. In ACM SIGMOD, 2013.
[6] M. Bauer, H. Cook, and B. Khailany. Cudadma: Optimizing gpumemory

bandwidth via warp specialization. In SC, 2011.
[7] B. H. Bloom. Space/time trade-offs in hash coding with allowable

errors. Communications of the ACM, 1970.

[8] S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In

IEEE ICDE, 2001.
[9] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,

F. Mujica, and M. Horowitz. Forwarding metamorphosis: Fast pro-

grammable match-action processing in hardware for SDN. In ACM
SIGCOMM Computer Communication Review, 2013.

[10] Broadcom. Broadcom Trident 3. https://www.broadcom.com/

blog/new-trident-3-switch-delivers-smarter-programmability-for-

enterprise-and-service-provider-datacenters.

[11] Cavium. Cavium XPliant Switch. https://www.cavium.com/xpliant-

packet-trakker-programmable-telemetry-solution.html.

[12] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, and O. Rottenstreich. Catch-

ing the microburst culprits with snappy. In ACM SIGCOMM SelfDN
Workshop, 2018.

[13] P. Consortium. P4 language spec. https://p4.org/p4-spec/p4-14/v1.0.5/

tex/p4.pdf.

[14] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé. Netpaxos:

Consensus at network speed. In ACM SOSR, 2015.
[15] C. Dennl, D. Ziener, and J. Teich. On-the-fly composition of fpga-based

sql query accelerators using a partially reconfigurable module library.

In IEEE FCCM, 2012.

[16] C. Dennl, D. Ziener, and J. Teich. Acceleration of sql restrictions and

aggregations through fpga-based dynamic partial reconfiguration. In

IEEE FCCM, 2013.

[17] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt. Query pro-

cessing on smart ssds: opportunities and challenges. In ACM SIGMOD,
2013.

[18] P. et al. Big Data benchmark run on Amazon Redshift. https://amplab.

cs.berkeley.edu/benchmark.

[19] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast

computation of database operations using graphics processors. In

ACM SIGMOD, 2004.
[20] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and W. Will-

inger. Sonata: Query-driven streaming network telemetry. In ACM
SIGCOMM, 2018.

[21] R. Harrison, Q. Cai, A. Gupta, and J. Rexford. Network-wide heavy

hitter detection with commodity switches. In ACM SOSR, 2018.
[22] X. Hu, K. Yi, and Y. Tao. Output-optimal massively parallel algorithms

for similarity joins. ACM Transactions on Database Systems (TODS),
2019.

[23] R. Hunt. Amazon Redshift and Google BigQuery performance. https:

//aws.amazon.com/blogs/big-data/fact-or-fiction-google-big-query-

outperforms-amazon-redshift-as-an-enterprise-data-warehouse/.

[24] F. Inc. Facebook Engineering - Presto Interacting with

Petabytes of Data. https://www.facebook.com/notes/facebook-

engineering/presto-interacting-with-petabytes-of-data-at-

facebook/10151786197628920/.

[25] Intel. Data plane developer kit (dpdk). https://software.intel.com/en-

us/networking/dpdk.

[26] C. International. https://www.colfaxdirect.com/store/pc/home.asp. In

Colfax International, 2020.
[27] T. Jepsen, M. Moshref, A. Carzaniga, N. Foster, and R. Soulé. Life in

the fast lane: A line-rate linear road. In ACM SOSR, 2018.

[28] T. Jepsen, M. Moshref, A. Carzaniga, N. Foster, and R. Soulé. Packet

subscriptions for programmable asics. In HotNets, 2018.
[29] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica.

Netchain: Scale-free sub-rtt coordination. In USENIX NSDI, 2018.
[30] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica.

Netcache: Balancing key-value stores with fast in-network caching.

In ACM SOSP, 2017.
[31] K. Kara, J. Giceva, and G. Alonso. Fpga-based data partitioning. In

ACM SIGMOD, 2017.
[32] A. Lerner, R. Hussein, P. Cudre-Mauroux, and U. eXascale Infolab. The

case for network-accelerated query processing. In CIDR, 2019.
[33] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and I. Stoica.

Distcache: Provable load balancing for large-scale storage systems

with distributed caching. In USENIX FAST, 2019.
[34] Mellanox. Mellanox SmartNIC. https://www.mellanox.com/products/

smartnic/.

[35] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad: Making stateful

layer-4 load balancing fast and cheap using switching asics. In ACM
SIGCOMM, 2017.

[36] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,

Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,

Ali Ghodsi, Matei Zaharia. Spark SQL: Relational Data Processing in

Spark. ACM SIGMOD, 2015.
[37] C. Mustard, F. Ruffy, A. Gakhokidze, I. Beschastnikh, and A. Fedorova.

Jumpgate: In-network processing as a service for data analytics. In

USENIX HotCloud, 2019.
[38] netfpga.org. NetFGPA high bandwidth model (Xilinx based) specs.

https://netfpga.org/site/#/systems/1netfpga-sume/details/.

[39] B. Networks. Barefoot Tofino and Tofino 2 Switches. https://www.

barefootnetworks.com/products/brief-tofino-2/.

[40] B. Networks. Tofino V2. In Barefoot Networks, 2019.
[41] Oracle. A Technical Overview of the Oracle Exadata

Database Machine and Exadata Storage Server, 2012.

http://www.oracle.com/technetwork/database/exadata/exadata-

technical-whitepaper134575.pdf.

[42] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun.

Making sense of performance in data analytics frameworks. In Pro-
ceedings of the 12th USENIX Conference on Networked Systems Design
and Implementation, NSDI’15, pages 293–307, Berkeley, CA, USA, 2015.
USENIX Association.

[43] M. Owaida, G. Alonso, L. Fogliarini, A. Hock-Koon, and P.-E. Melet.

Lowering the latency of data processing pipelines through fpga based

hardware acceleration. Proc. VLDB Endow., 2019.
[44] S. Palkar, F. Abuzaid, P. Bailis, and M. Zaharia. Filter before you parse:

Faster analytics on raw data with sparser. Proc. VLDB Endow., 2018.
[45] J. Paul, J. He, and B. He. Gpl: A gpu-based pipelined query processing

engine. In ACM SIGMOD, 2016.
[46] Ran Ben Basat, Xiaoqi Chen, Gil Einzinger, Ori Rottenstreich. Effi-

cient Measurement on Programmable Switches Using Probabilistic

Recirculation. In IEEE ICNP, 2018.
[47] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo, D. Dil-

lenberger, and S. Asaad. Database analytics acceleration using fpgas.

In PACT, 2012.
[48] C. Sun, D. Agrawal, and A. El Abbadi. Hardware acceleration for

spatial selections and joins. In ACM SIGMOD, 2003.
[49] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma,

R. Murthy, and H. Liu. Data warehousing and analytics infrastructure

at facebook. In ACM SIGMOD, 2010.
[50] M. Tirmazi, R. B. Basat, J. Gao, and M. Yu. Full paper version. arXiv

preprint arXiv:2004.05076, 2020.
[51] M. Tirmazi, R. Ben Basat, J. Gao, and M. Yu. Cheetah: Accelerating

database queries with switch pruning. In Proceedings of the ACM

https://www.broadcom.com/blog/new-trident-3-switch-delivers-smarter-programmability-for-enterprise-and-service-provider-datacenters
https://www.broadcom.com/blog/new-trident-3-switch-delivers-smarter-programmability-for-enterprise-and-service-provider-datacenters
https://www.broadcom.com/blog/new-trident-3-switch-delivers-smarter-programmability-for-enterprise-and-service-provider-datacenters
https://www.cavium.com/xpliant-packet-trakker-programmable-telemetry-solution.html
https://www.cavium.com/xpliant-packet-trakker-programmable-telemetry-solution.html
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://amplab.cs.berkeley.edu/benchmark
https://amplab.cs.berkeley.edu/benchmark
https://aws.amazon.com/blogs/big-data/fact-or-fiction-google-big-query-outperforms-amazon-redshift-as-an-enterprise-data-warehouse/
https://aws.amazon.com/blogs/big-data/fact-or-fiction-google-big-query-outperforms-amazon-redshift-as-an-enterprise-data-warehouse/
https://aws.amazon.com/blogs/big-data/fact-or-fiction-google-big-query-outperforms-amazon-redshift-as-an-enterprise-data-warehouse/
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920/
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920/
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920/
https://software.intel.com/en-us/networking/dpdk
https://software.intel.com/en-us/networking/dpdk
https://www.mellanox.com/products/smartnic/
https://www.mellanox.com/products/smartnic/
https://netfpga.org/site/#/systems/1netfpga-sume/details/
https://www.barefootnetworks.com/products/brief-tofino-2/
https://www.barefootnetworks.com/products/brief-tofino-2/
http://www.oracle.com/technetwork/ database/exadata/exadata-technical-whitepaper134575.pdf
http://www.oracle.com/technetwork/ database/exadata/exadata-technical-whitepaper134575.pdf

SIGCOMM 2019 Conference Posters and Demos, SIGCOMM Posters and

Demos ’19, page 72–74, New York, NY, USA, 2019. Association for

Computing Machinery.

[52] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman. The

case for in-network computing on demand. In EuroSys, 2019.
[53] L. Woods, Z. István, and G. Alonso. Ibex: an intelligent storage engine

with support for advanced sql offloading. VLDB, 2014.

	Abstract
	1 Introduction
	2 Using programmable switches
	2.1 Benefits of programmable switches
	2.2 Constraints of programmable switches

	3 Cheetah design
	4 Query Pruning Algorithms
	4.1 Handling Function Constraints
	4.2 Handling Stage/ALU Constraints
	4.3 Handling Memory Constraints
	4.4 Projection for High-dimensional Data

	5 Pruning w/ Probabilistic Guarantees
	6 Handling multiple queries
	7 Implementation
	7.1 Cheetah prototype
	7.2 Communication protocol

	8 Evaluation
	8.1 Evaluation setup
	8.2 Testbed experiments
	8.3 Pruning Rate Simulations

	9 Extensions
	10 Related Work
	11 Conclusion
	12 Acknowledgements
	References

