This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

Latency Equalization as a New
Network Service Primitive

Minlan Yu, Student Member, IEEE, Marina Thottan, Member, IEEE, ACM, and Li (Erran) Li, Senior Member, IEEE

Abstract—Maultiparty interactive network applications such as
teleconferencing, network gaming, and online trading are gaining
popularity. In addition to end-to-end latency bounds, these appli-
cations require that the delay difference among multiple clients of
the service is minimized for a good interactive experience. We pro-
pose a Latency EQualization (LEQ) service, which equalizes the
perceived latency for all clients participating in an interactive net-
work application. To effectively implement the proposed LEQ ser-
vice, network support is essential. The LEQ architecture uses a few
routers in the network as hubs to redirect packets of interactive ap-
plications along paths with similar end-to-end delay. We first for-
mulate the hub selection problem, prove its NP-hardness, and pro-
vide a greedy algorithm to solve it. Through extensive simulations,
we show that our LEQ architecture significantly reduces delay dif-
ference under different optimization criteria that allow or do not
allow compromising the per-user end-to-end delay. Our LEQ ser-
vice is incrementally deployable in today’s networks, requiring just
software modifications to edge routers.

Index Terms—Algorithm, interactive network applications,
latency equalization (LEQ), next-generation network service.

I. INTRODUCTION

HE INCREASED availability of broadband access has
T spawned a new generation of netizens. Today, consumers
use the network as an interactive medium for multimedia com-
munications and entertainment. This growing consumer space
has led to several new network applications in the business and
entertainment sectors. In the entertainment arena, new applica-
tions involve multiple users participating in a single interactive
session, for example, online gaming [1] and online music (or-
chestra) [2]. The commercial sector has defined interactive ser-
vices such as bidding in e-commerce [3] and telepresence [4].
Depending on the number of participants involved, interactive
applications are sensitive to both end-to-end delay and delay
difference among participants. Minimizing the delay difference
among participants will enable more real-time interactivity.
End-to-end delay requirements can be achieved by traffic
engineering and other QoS techniques. However, these ap-
proaches are insufficient to address the needs of multiparty

Manuscript received March 25, 2010; revised October 07, 2010 and
December 14, 2010; accepted May 09, 2011; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor Z. M. Mao.

M. Yu is with Princeton University, Princeton, NJ 08540 USA (e-mail:
minlanyu@cs.princeton.edu).

M. Thottan and L. Li are with Bell Laboratories, Murray Hill, NJ 07974 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2011.2155669

interactive network applications that require bounded delay
difference across multiple clients to improve interactivity [5].
In online gaming, the delay difference experienced by gamers
significantly impacts game quality [6]-[8]. To improve the
interactive experience, game servers have even implemented
mechanisms by which participating players can vote to exclude
players with higher lag times. In distributed live music con-
certs [2], individual musicians located at different geographic
locations experience perceptible sound impairments introduced
by latency differences among the musicians, thus severely
degrading the quality of the music. In e-commerce, latency
differences between pairs of shopping agents and pricing agents
can result in price oscillations leading to an unfair advantage to
those pairs of agents who have lower latency [3].

Previous work on improving online interactive application
experiences considered application-based solutions either at the
client or server side to achieve equalized delay [9]-[11]. Client-
side solutions are hard to implement because they require that all
clients exchange latency information to all other clients. They
are also vulnerable to cheating [7]. Server-side techniques rely
on the server to estimate network delay, which is not sufficiently
accurate [12] in some scenarios. Moreover, this delay estima-
tion places computational and memory overhead on the appli-
cation servers [13], which limits the number of clients the server
can support [1]. Previous studies [8], [14]-[16] have investi-
gated different interactive applications, and they show the need
for network support to reduce delay difference since the prime
source of the delay difference is from the network. The im-
portance of reducing latency imbalances is further emphasized
when scaling to wide geographical areas as witnessed by a press
release from AT&T [17].

In this paper, we design and implement network-based
Latency EQualization (LEQ), which is a service that Internet
service providers (ISPs) can provide for various interactive
network applications. Compared to application-based latency
equalization solutions, ISPs have more detailed knowledge of
current network traffic and congestion, and greater access to
network resources and routing control. Therefore, ISPs can
better support latency equalization routing for a large number
of players with varying delays to the application servers. This
support can significantly improve game experience, leading to
longer play time and thus larger revenue streams.

Our network-based LEQ service provides equalized-latency
paths between the clients and servers by redirecting interac-
tive application traffic from different clients along paths that
minimize their delay difference.! We achieve equalized-latency

10nly interactive application traffic uses LEQ routing; other traffic can use
the default routing mechanism.

1063-6692/$26.00 © 2011 IEEE

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

paths by using a few routers in the network as hubs, and inter-
active application packets from different clients are redirected
through these hubs to the servers. Hubs can also be used to
steer packets away from congested links. Since the redirection
through the hubs is implemented through IP encapsulation, our
hub routing mechanism can be deployed in today’s existing
routing infrastructure.

Our LEQ architecture provides a flexible routing framework
that enables the network provider to implement different delay
and delay difference optimization policies in order to meet
the requirements of different types of interactive applications.
In one policy scenario, latency equalization among different
interactive clients can be achieved without compromising the
end-to-end delay of individual clients. This is because in some
networks where OSPF weights are typically used to optimize
traffic engineering objectives and not just delay [18], the de-
fault network path may not correspond to the lowest end-to-end
latency due to path inflation [19] or due to transient network
congestion. Akamai’s SureRoute service [20] and other re-
search [21], [22] show that overlay paths can be used to reduce
end-to-end latency by getting around congestion and network
failures. Similar to these works, our LEQ routing can minimize
delay difference without compromising the end-to-end delay.
In the other policy scenario, if the application can tolerate some
moderate increase in the end-to-end delay, it is possible to
achieve even better latency equalization among clients.

To achieve LEQ routing, we formulate the hub selection
problem, which decides which routers in the network can be
used as hubs and the assignment of hubs to different client edge
routers to minimize delay difference. We prove that this hub
selection problem is NP-hard and inapproximable. Therefore,
we propose a greedy algorithm that achieves equalized-latency
paths. Through extensive simulation studies, we show that our
LEQ routing significantly reduces delay difference in different
network settings (e.g., access network delay and multiple
administrative domains).

The paper is organized as follows. Section II motivates
the need for network support for interactive applications.
Section III describes the LEQ architecture and its deployment
issues. Section IV provides our theoretical results and algo-
rithms for the hub selection problem. Section V evaluates the
LEQ architecture and algorithms in different network settings
and under both static and dynamic scenarios. Sections VI and
VII discuss related work and conclude the paper.

II. MOTIVATION FOR NETWORK-BASED LATENCY
EQUALIZATION SUPPORT

To achieve equalized delay for interactive applications, pre-
vious approaches are implemented either at the client or server
side without any network support. We use online gaming as an
example to discuss the limitations of these approaches.

Client-side latency compensation techniques are based on
hardware and software enhancements to speed up the pro-
cessing of event updates and application rendering. These
techniques cannot compensate for network-based delay differ-
ences among a group of clients. Buffering event update packets
at the client side is hard to implement because this requires the
coordination of all the clients regarding which packets to buffer

IEEE/ACM TRANSACTIONS ON NETWORKING

and for how long. This leads to additional measurement and
communication overhead and increased application delay [23].
Some gaming clients implement dead reckoning, a scheme that
uses previously received event updates to estimate the new po-
sitions of the players. Dead reckoning has the drawback that the
prediction error increases significantly with increasing network
delays. In one racing game, where estimating the position of
the players is critical, it was shown that the average prediction
error using dead-reckoning was 17 cm for a delay of 100 ms
and 60 cm for a delay of 200 ms, a factor of 3.5 [24]. Client-side
solutions are also prone to cheating. Players can hack the com-
pensation mechanisms or tamper with the buffering strategies
to gain unfair advantage in the game [7].

Due to the problems of client-side solutions, several delay
compensation schemes are implemented at the server side.
However, while introducing CPU and memory overhead on the
server, they still do not completely meet the requirements of
fairness and interactivity. For example, with the bucket syn-
chronization mechanism [9], the received packets are buffered
in a bucket, and the server calculations are delayed until the
end of each bucket cycle. The performance of this method is
highly sensitive to the bucket (time window) size used, and
there is a tradeoff between interactivity versus the memory
and computation overhead on the server. In the time warp
synchronization scheme [10], snapshots of the game state are
taken before the execution of each event. When there are late
events, the game state is rolled back to one of the previous
snapshots, and the game is reexecuted with the new events.
This scheme does not scale well for fast-paced, high-action
games because taking snapshots on every event requires both
fast computation and large amounts of fast memory, which is
expensive [23]. In [11], a game-independent application was
placed at the server to equalize delay differences by constantly
measuring network delays and adjusting players’ total delays
by adding artificial lag. However, experiments in [12] suggest
that using server-based round-trip-time measurements to design
latency compensation across players fails in the presence of
asymmetric latencies.

Based on the above limitations of the end-system based tech-
niques, we conclude that it is difficult for end-hosts and servers
to compensate for delay differences without network support.
In a survey of online gamers [16], 85% of the users requested
additional network state information to improve game quality,
clearly demonstrating the inefficiency of existing techniques.
Thus, there is a pressing need to provide a network support for
latency equalization as a general service to improve user experi-
ence for all interactive network applications. With network sup-
port for LEQ, the network delay measurement can be offloaded
from the application server and performed more accurately. The
network-based solutions can achieve LEQ and also react faster
to network congestion or failure. By providing LEQ service, ISP
can gain larger revenue through significantly improving the user
experience of interactive applications.

Network support for LEQ is complementary to server-side
delay compensation techniques. Since network-based LEQ
service can reduce both delay and delay difference among par-
ticipants of the interactive applications, the application servers
can better fine-tune their performance. For example, in the case

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

YU et al.: LATENCY EQUALIZATION AS A NEW NETWORK SERVICE PRIMITIVE

of gaming applications, the servers can use smaller bucket sizes
in bucket synchronization, or use fewer snapshots in time warp
synchronization. Therefore, for the same memory footprint,
servers can increase the number of concurrent clients supported
and improve the quality of the interactive experience.

III. LATENCY EQUALIZATION ARCHITECTURE

In this section, we first present the deployment scenario of
LEQ routing in a single administrative domain. We achieve LEQ
routing by selecting a few routers as hubs and directing inter-
active application traffic through these hubs. Next, we extend
the basic LEQ architecture to support access network delay and
multiple administrative domains (e.g., across a content distribu-
tion network and ISPs).

A. llustration of Basic LEQ Hub Routing

Our deployment scenario is within an ISP network. The
ISP can leverage the proposed LEQ routing architecture to
host multiple interactive applications or application providers
on the same network. The network-based LEQ architecture
is implemented using a hub routing approach: Using a small
number of hubs in the network to redirect application packets,
we equalize the delays for interactive applications. To explain
the basic LEQ architecture, we consider a single administrative
domain scenario and focus on equalizing application traffic
delays between the different client edge routers and the server
edge routers without considering access delay. Based on the
application’s LEQ requirements, the application traffic from
each client edge router is assigned to a set of hubs. Client
edge routers redirect the application packets corresponding to
the LEQ service through the hubs to the destined servers. By
redirecting through the hubs, application packets from different
client edge routers with different delays to the servers are guar-
anteed to reach the servers within a bounded delay difference.

For example, in Fig. 1, client traffic from an interactive appli-
cation enters the provider network through edge routers 1 and
R2. The server for the interactive application is connected to the
network through edge router #10. Using the LEQ routing archi-
tecture, R6 and R7 are chosen as hubs for R1, and R7 and R8
are chosen as hubs for R2. Using redirection through hubs, R1
has two paths to the server edge router R10: R1 — R6 — R10
and R1 — R7 — R10, both of which have a delay of 10 ms. R2
also has two paths: R2 — R7 — R10 and R2 — R8 — R10,
whose delay is also 10 ms. Thus, LEQ is achieved by optimized
hub selection and assignment.2 Each client edge router is as-
signed to more than one hub, so it has the flexibility to select
among its assigned hubs to avoid congestion. For example, in
Fig. 1, R1 and R2 are both assigned two hubs.

To illustrate the advantage of our LEQ routing concept on
real networks, we conducted experiments on the Abilene [25]
network in VINI test bed [26] as shown in Fig. 2. We set up a
server at the Washington DC node and measured the delay

2In contrast, since OSPF weights are set for traffic engineering goals [18] and
not necessarily the shortest latency paths, if we assume the default paths based
on OSPF weights are R1 — R3 — R9 — R10 (14 ms) and R2 — R5> —
R8 — R10 (10 ms), the delay difference is 4 ms. Our evaluations on large ISP
networks in Section V show that we can reduce delay difference compared to
latency-based shortest path routing.

clientl

Fig. 1. LEQ hub routing example (R1 ... R10 are routers in the network. For
simplicity, we only consider client edge routers R1, R2 and server edge router
R10. The numbers on the links represent the latency (ms) of each link. RG, R7
and RS are the hubs for R1 and R2.)

Seattle

Chicago
New York |

Indianapolis

Washington D.C.

Denver }—4 Kansas City

Los Angeles

Houston

Hub

Fig. 2. LEQ routing on Abilene network.

difference among players at the 11 different sites using ping
packets. The average delay difference using the default shortest
path routing was 58 ms. We then evaluated the performance
of LEQ routing using two hubs, one at Atlanta, GA, and the
other at Houston, TX, and measured the average delay differ-
ence for packets from different sites to the server through these
two hubs. The average delay difference is 25 ms using the LEQ
architecture, which is a 56% reduction compared to shortest path
routing. A more detailed analysis of the LEQ architecture using
various network settings is provided in Section V.

B. LEQ Routing Architecture

To implement the hub routing idea, our LEQ architecture in-
volves three key components.

LEQ Service Manager: The LEQ service manager serves as
a centralized server to decide hub selection and assignment. We
choose an offline hub selection algorithm. This is because an
online hub selection algorithm would require significant mon-
itoring overhead and fast online path calculation to keep pace
with client dynamics (clients join and leave applications) and
network dynamics (failures and transient network congestion).
The offline algorithm assumes the presence of clients at all edge
routers. The inputs to the algorithm are the server edge router lo-
cations, network topology, and the propagation delay. The ser-
vice manager selects a group of routers to serve as hubs for each
client edge router and sends this information of the assigned
hubs (IP addresses) to the client edge routers.

Hubs: Hubs are just conventional routers that are either in
the core network or at the edge. Packet indirection through hubs

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

is implemented through IP encapsulation without any changes
to today’s routing architecture. Since we consider all edge
routers as potential client edge routers, the selected hub nodes
can be shared among different interactive applications. Our
evaluations in Section V on ISP network topologies show that
we are able to find enough equalized-delay paths by redirecting
packets through hubs, and that we only require a few (5-10)
hubs to achieve latency equalization. The evaluations also show
that the LEQ architecture with a few hubs scales well with
increase in the number of servers.

Edge Routers: The edge router first identifies interactive ap-
plication packets by their port number and server IP addresses
(known to the service provider in advance), and then redirects
the packets via one of its assigned hubs. Each edge router moni-
tors the end-to-end delay to the server edge routers through each
of its assigned hubs. When congestion is detected along a path,
the client edge router can redirect packets to another assigned
hub to get around the point of congestion.

Using the above LEQ routing architecture, we can imple-
ment different delay and delay difference optimization policies
to meet the requirements of different types of interactive ap-
plications. We can either reduce delay difference without com-
promising the end-to-end delay of individual application users,
or further improve the overall latency equalization performance
for the application at the cost increasing the end-to-end delays
of a few application users.3 The evaluations of LEQ routing
performance under different optimization policies are shown in
Section V.

C. Benefits of LEQ Architecture

No Significant Impediments to Deployment: Our analysis on
ISP network topologies shows that the LEQ architecture re-
quires only a few routers to serve as hubs. Hubs are just conven-
tional routers in the network, and it is not necessary to modify
any underlying routing protocol. The architecture only requires
minimal functions on the edge router such as application packet
identification and end-to-end path monitoring. The LEQ archi-
tecture can even be implemented as an overlay on the under-
lying routing infrastructure. Our LEQ architecture is incremen-
tally deployable. We show that even with one hub, we can reduce
the delay difference by 40% on average compared with shortest
path routing.

Handling Network Failure and Congestion: The LEQ archi-
tecture assigns multiple hubs for each client edge router so that
the client edge routers can select hubs to get around network
failure and congestion. Since the LEQ service is supported by
the service provider, we assume that congestion detection is pos-
sible with lightweight probes between the server and the edge
router. The hub-based packet redirection will not cause con-
gestion at the hubs or the network because interactive applica-
tion traffic is small (e.g., in gaming, heavy-duty graphics are
loaded to the clients in advance, while the interactive traffic is
small) [27].

In fact, in the LEQ architecture, there is a tradeoff regarding
the appropriate number of hubs for each client. More hubs
would lead to more diversity of equalized-latency paths for one

3The increased end-to-end application delay for some clients is a small price
to pay for a richer interactive session.

IEEE/ACM TRANSACTIONS ON NETWORKING

client, and thus provide more reliable paths in the face of tran-
sient congestion or link/node failure. However, these additional
equalized-latency paths are realized by a small compromise in
the delay difference that can be achieved. We study this tradeoff
through our dynamic simulation setting in Section V-F.

D. Comparison to Alternative Network-Based Solutions

The LEQ architecture is scalable to many clients and appli-
cations with only minor modifications to edge routers. We com-
pare LEQ architecture to other possible network-based solutions
to implement latency equalization.

Buffering by Edge Routers: One obvious approach of using
the network to equalize delays is to buffer packets at the edge
routers. This would require large buffers for each interactive
application, making the router expensive and power ineffi-
cient [28]. Edge routers also need complex packet-scheduling
mechanisms that: 1) take into account packet delay require-
ments, and 2) cooperate with other edge routers to decide how
long to buffer these packets. These modifications introduce
significant changes to the normal operation of today’s routers.
Our LEQ architecture can reduce the delay difference (with
and without compromising delay) without any modification of
the routing infrastructure.

Source Routing: One could use source routing to address the
problem of latency equalization. Source routing [29] can be used
by the sender (i.e., the client or the client edge router) to choose
the path taken by the packet. However, this requires that all
clients are aware of the network topology and coordinate with
each other to ensure that the delay differences are minimized.
This function is harder to implement than our proposed LEQ
architecture.

Set Up MPLS Paths: We can set up MPLS paths with equal-
ized latency between each pair of client and server edge routers.
This approach is more expensive than our LEQ architecture in
that it requires Nc X Ng MPLS paths to be configured. (N¢
and Ng are the number of client and server edge routers, re-
spectively.) This solution does not scale well for large numbers
of client and server edge routers.

E. LEQ in the Presence of Access Network Delay

The latency difference in interactive applications also arises
from the disparity in the access network delays. Multiple clients
may connect to the same client edge router through different ac-
cess networks. Access network delay depends on the technology
used, and the current load on the last mile link [30], [31]. For dif-
ferent access network types, the average access network delay
can be: 180 ms for dial-up, 20 ms for cable, 15 ms for asym-
metric digital subscriber line (ADSL), and negligible for fiber
optic service (FiOS).4

In our LEQ architecture, we account for this disparity of ac-
cess network types by grouping clients into latency equivalence
groups.> We provide different hubs for each latency group to
achieve latency equalization among all the clients. When a client

4We assume servers are connected to the network on dedicated high-speed
links and thus do not have access delay.

SLatency equivalence groups could be set up for delay variations within an

access network type if stateful delay measurements are implemented at the edge
router.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

YU et al.: LATENCY EQUALIZATION AS A NEW NETWORK SERVICE PRIMITIVE

connects to a game server, the edge router can determine the in-
coming access network type of the client. The router then identi-
fies the appropriate latency group the client belongs to and then
forwards the application traffic to the corresponding hub. This
implies that multiple clients connected to the same edge router
but with widely different access delays are assigned to different
hubs to achieve latency equalization. The proposed LEQ routing
in the backbone network can also be used in conjunction with
QoS mechanisms in the access networks to provide equalized
latency for interactive application traffic.

F. Hosting Applications in a Content Distribution Network

In today’s Internet, many content distribution net-
works (CDNs) have become the major contributor for in-
terdomain traffic [32]. These CDNs may also host servers for
interactive applications. In this scenario, the application traffic
from the clients must traverse a transit ISP and a CDN to reach
the application server. Achieving LEQ under these two different
administrative domains is challenging. There are two possible
scenarios. The first scenario is a cooperative environment,
where the ISP and the CDN cooperate to provide LEQ service
within their respective domains. In this cooperative environ-
ment we consider the application of the LEQ architecture over
the combined topology of both providers. Therefore, similar
to the single administrative domain, the LEQ architecture can
significantly reduce delay differences.

The second scenario is the service agnostic peering environ-
ment where the CDN and the transit ISP do not have any knowl-
edge of topology and routing in the other domain and do not
cooperate in placing hubs. In this case, the CDN treats users
coming from the transit ISP with differing delays at a border
router as similar to users with different access delays. Our eval-
uation in Section V shows that we can indeed reduce delay dif-
ferences significantly with only the application hosting provider
supporting the LEQ routing service.

IV. ALGORITHMS FOR LATENCY EQUALIZATION

The key component of our LEQ architecture is the hub selec-
tion algorithm, which focuses on the problem of hub selection
and the assignment of hubs to the client edge routers. Hubs are
selected with the goal of minimizing the delay difference across
all client edge routers. We first formulate the basic hub selection
problem without considering access delay and prove that it is
NP-hard and inapproximable. Therefore, we propose a greedy
heuristic algorithm to solve this basic problem and extend the
algorithm to handle access delays. We show that delay differ-
ences can be significantly reduced using the selected hub nodes
as compared to shortest-path routing.

A. Formulating the Basic Hub Selection Problem

We use an undirected graph G = (V, E) to represent the net-
work. The node set V' consists of client edge routers, candidate
hubs, and servers. Let Vo C V denote the set of client edge
routers, Vs C V denotes the set of server nodes, Vg denotes
the set of routers that can be chosen as hub nodes. We denote
d(u,v), u,v € V as the propagation delay of the underlying
network path between routers « and v. In order to balance the
load among these Ng = |Vs| servers, we associate each client

TABLE 1
NOTATIONS OF BASIC HUB SELECTION PROBLEM
d(u,v) | Propagation delay between routers u and v
Se; Set of servers associated with client edge router c;
He, Set of hub nodes assigned to client edge router ¢;
N Number of servers in the network
r Number of servers associated with each client edge router
M Total number of hubs
m Number of hubs selected for each client edge router
D;y. Maximum delay bound between client edge router c;
and its associated server sg
Dmazx Maximum delay bound of all end-to-end paths
0 Delay difference

edge router with its r closest servers (in terms of propagation
delay). We denote by S,, the set of servers that are associated
with client edge router c;. Note that the choice of S, is inde-
pendent of the hub locations.

We also define D;;, as the maximum delay each client edge
router ¢; can tolerate on its path to the server in Sy. If we set
Dy, to be the delay experienced by the default routing path, then
we enforce that the latency for each end-to-end path should not
get worse. Our algorithm will try to equalize path delay differ-
ence while making sure that no path’s absolute delay increases.
If we set D;, = Dpax for all ¢, k, then we allow path delay
to increase. Thus, the D;;, parameter allows us to set different
policies depending on application needs.

To reduce the deployment and management overhead, we set
up at most M hubs in the network. For reliability, we require
that each client edge router has at least m hubs chosen from M
hubs. Thus, each client edge router has m different paths to the
servers. The notations are summarized in Table I.

Given M, m, 7, Dmax, Dii, our goal is to find a set H,, of
m hubs for each client edge router ¢; so that we can minimize
the delay difference ¢. Let d(c;, hj) denote the delay from a
client edge router ¢; to a hub h;. Similarly let d(h;, si) denote
the delay from a hub h; to a server s;. We use the notation
dijx for d(c;, h;) + d(hj, si). Let y; = 1 denote router h; is a
hub, 0 otherwise. z;; = 1 denotes router h; is a hub for client
edge router ¢;, 0 otherwise. We present the integer programming
formulation for the hub selection problem as follows:

Minimize delay difference

= max (duk) — min (dijk>
c;€Ve,hj€H,,; ,sKES,, c;€Ve,h;€H,; 51 ES,,
such that
E y; <M
JEVH
zi; < yj Ve; € Vo, hy € Vi
E Tij >m Ve; € Vo
JEVH

dijrzi; < Dig Ve, € Vo, hj € Vu, s € S,
|dijr — dirjrnr (i + @iy — 1) <6,
Vei, ¢ € Vo, hj, hl; € Vi, g, 5), € S,
Vi1 <j<|Val
Vi, j:1<j<|Vul, 1 <i<|V

Y; € {0,1}
zi; € {0,1}

The first equation in the formulation is the constraint that
the total number of hubs cannot be more than M. The second

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

equation means that each client edge router can only select its
hubs from the hub set V1. The third equation is the constraint
that each client must have at least m hubs. The fourth equa-
tion bounds the delay between an edge router ¢; and its associ-
ated server s;. D;;, is defined with different values to address
different policy requirements. The fifth constraint specifies that
pairwise delay differences between pairs x;; and x;;; cannot
exceed 0. It takes effect only when z;; = 1 and 25 = 1,
otherwise the constraint is trivially true. The last two equations
indicate that y; and z;; are binary variables.

B. Complexity of the Basic Hub Selection Problem

We now prove that the basic hub selection problem is NP-hard
and inapproximable even for a single server.

Theorem 1: When m < M, the basic hub selection problem
is NP-hard and is not approximable.

Proof: We reduce the hub selection problem to the well-
known set cover problem that is NP-hard.

Set Cover Problem: Consider a ground set U =
{e1,ea,--+,en}, and a collection of n subsets B; C U of
that ground set. Given an integer M, the set cover problem
is to select at most M subsets such that taken together they
“cover” all the elements in U. In other words, is there a set
C C{Biy,---,Bn}suchthat |C| < M and Ug,ccB; = U?

Hub Selection Is NP-Hard: Given an instance of the set cover
problem, we construct an instance of the hub selection problem.
We map each element e; to a client edge router c;, and map each
subset B, to a candidate hub h;. If e; € B;, we set d(c;, hj) =
€; otherwise, we set it to ¢;;D, where D > D, and g;; is a
positive integer. In addition, g;; = ¢;-j if and only if ¢ = ¢
and j = j'. We set the same delay from each candidate hub
to each server (d(hj,s;) = «,Vj,k).6 Let m = 1, i.e., each
client edge router has to have at least one hub. Because a valid
hub selection cannot use edges with delay D > D ., all valid
delays from any given client edge router to any given server
are equal to € + «. That is, the construction ensures that the
maximum delay difference of a valid hub selection is zero. Thus,
there is a set cover of size M if and only if we have M hubs with
delay difference equal to zero where each client gets assigned
at least one hub. Thus, we reduce the set cover problem to the
hub selection problem. Therefore, the hub selection problem is
NP-hard.

The proof for m # 1 is similar, as long as m is a small
constant, we can construct a reduction from set cover problem
where each element must be covered m times.

Hub Selection Is Inapproximable: Suppose we can approxi-
mate the problem within a A factor. Let the maximum delay dif-
ference of this algorithm be APX and the optimal delay differ-
ence be OPT. Then APX < AOPT since we cannot pick links
with delay ¢;;D > Dy (since it exceeds maximum delay),
and the rest of the paths (from client edge routers through candi-
date hubs to servers) all have e+« delay. Thus, if a valid solution
exists, OPT must be zero. This means APX < A\OPT = 0, so
the algorithm gives a valid solution for the set cover problem
(i.e., a set cover of size < M exists). If there is no valid solu-
tion, the maximum delay must be at least D — e. Therefore, if

6This proof holds for both one server or multiple-server cases.

IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE II
HUB SELECTION PROBLEM SUMMARY
Hub Constraint Complexity Algorithm
NP hard .
m < M Inapproximable Greedy (Algorithm 1)
m = M P Optimal (Algorithm 2)

Algorithm 1 Greedy algorithm for basic hub selection

Step 1. Sort all the delays from client edge router ¢;
to server s through hub h; in increasing order,
which is denoted as array A.

Step 2. For each A[t], binary search to find the min
delay difference:
for each delay A[t]

left =0, right=Dypq. — Alt]

while(le ft not equal right)
0y = (left + right)/2
L = greedycover(A[t], d¢, m, {d(u,v)}, D;)
if (|L¢| > M) left = 6 else right = 0.

Step 3. Pick L; with smallest J;. If there are multiple
solutions that achieve the minimum J;, pick the
smallest A[t]. If 64 = Dyaq, then output no solutions
found.

Fig. 3. Pseudocode of greedy algorithm for basic hub selection.

APX > D —g¢, then there is no solution to the set cover problem.
Thus, an approximate solution of hub selection would yield a so-
lution to the set cover problem. This is a contradiction. |

C. Greedy Hub Selection Algorithm and a Special Case

We first provide a greedy algorithm for the basic hub selec-
tion problem and then show that when m = M, there exists a
polynomial-time optimal solution (Table II).

1) Greedy Algorithm for m < M (Fig. 3): To solve the hub
selection problem, we design a simple greedy heuristic algo-
rithm to pick the M hubs. Our algorithm first sorts in increasing
order all the delays from each client edge router through each
possible hub to its associated servers (Step 1). This sorted list is
denoted by the array A. For example, in Fig. 1, the delays from
client 1 through hubs R6, R7, and R8 are 10, 10, and 11. The
delays from client 2 through hubs R6, R7, and RS are 18, 10,
and 10. We set the following variables: A[0] = 10, A[1] = 11,
A[2] = 18. We select the hubs to optimize for delay difference.

We use a binary search to find a feasible solution with min-
imum delay difference 6 (Step 2). For each possible minimum
delay value in A[t], we perform a binary search. The search
range for the maximum delay difference is [0, Dyax — A[t]]-
The goal of the binary search is to find a solution such that
the maximum delay difference bound ¢; is within the preset
range, the minimum absolute delay is no smaller than A[t], and
other constraints of our hub selection problem are satisfied (e.g.,
the per-client server delay bound). In each round of the binary
search, given a possible minimal delay A[t] and a maximum
delay difference bound §¢;, we use the conventional greedy set
cover algorithm [33] (greedycover in Algorithm 1) to pick the
M hubs. That is, each time we pick the hub that “covers” the
maximum number of uncovered client edge routers until all the

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

YU et al.: LATENCY EQUALIZATION AS A NEW NETWORK SERVICE PRIMITIVE

Algorithm 2 Optimal algorithm for m = M
Step 1. Let By, B be the candidate hub records sorted
by their min delay and max delay in increasing order.
Step 2. for each b} € By in sorted order
Ly = {b%hzd}a (st = Dz
for each b]2- € Bs in sorted order
if (b3.ming > bf.ming and |L,| < M)
Lt = Lt U {bz.hid}
0t = bjz.maxd — b}.ming
Step 3. Pick L; such that ¢§; is the smallest.

Fig. 4. Pseudocode of the optimal algorithm for m = M.

client edge routers are covered. By “covering,” we mean all the
constraints associated with that client are satisfied. For example,
if there is abound D;y, for client ¢, then this constraint is satisfied
by the chosen hub. A client must be covered at least m times.
L, is the set of hubs returned by greedycover when the min-
imal absolute delay is A[t]. Note that a client edge router will
not be covered in greedycover by a hub if its inclusion causes
the maximum delay difference to exceed the preset bound 6;. If
m > 1, each client edge router has to be covered m times. If no
feasible solution exists, greedycover will set L; to some value
larger than M, and binary search will output D, .« as the 8;.

Finally, we pick the solution with the minimum &; (Step 3).
If there are multiple optimal solutions, we pick the one with
smallest min delay A[t] among them because applications may
also be sensitive to delay.

2) Optimal Algorithm for the Special Case m = M (Fig. 4):
Since each client edge router is allowed to use all M hubs, we
know the minimal delay and maximum delay for all the paths
going through a given hub h; (paths from any ¢; via h; to any
sk € S.,). This is in contrast to the general case where these two
delays depend on the assignment of hubs to client edge routers.
This is the intuition for why we can design an optimal algo-
rithm for the special case, but not for the general case. Let B be
a set of all candidate hub records where each record b € B has
three fields: hub ID h;q, minimal delay ming, and maximum
delay max4. We prune a candidate hub if the delay from edge
router ¢; to server edge router s through it exceeds the Dy
bound. Denote the records sorted in increasing order of maing
and mazq by By and Bs, respectively (Step 1). For each can-
didate hub record b}, the algorithm computes a candidate so-
lution L, by adding in M hubs with smallest b?.maa:d whose
b3.ming > b;.ming (Step 2). The algorithm then picks the L,
with minimal 6; (Step 3).

Theorem 2: Algorithm 2 is optimal when m = M.

Proof: Note that L; is optimal for each possible ming.
Therefore L; with minimal ¢; must be an optimal solution for
the problem. [|

D. Hub Selection With Access Delays

The basic hub placement problem can be easily extended to
account for access delays by extending the definition of the
nodes V in the general graph G(V, H) to include client groups.
For the clients that connect to the same client edge router, we di-
vide them into groups based on their access delay. For example,
we can partition clients of an edge router into four groups with

Algorithm 3 Hub selection algorithm with access delay
Step 1.a For each client group, calculate the median
access delay and the delay from the edge router to the
hubs.
Step 1.b Sort all the delays no larger than D,,,, from
client group g; to server sy, through candidate hub
h; in increasing order, which is denoted as array A
Step 2 and 3: Same as Step 2. and 3. in Algorithm 1.

Fig. 5. Pseudocode of hub selection algorithm with access delay.

access delays in [0, 30), [30, 60), [60, 100), [100, o). For each
client group g;, we define access delay a(g;) as the median delay
between clients in the group and their associated edge router.
We use the median delay to characterize the client groups in
our algorithm. Furthermore, we define the delay between the
client groups and the hubs as d(g;, h;), which consists of two
parts: the access delay and the delay from the edge router to
hub h;. Similarly the delay from h; to the server s;, denoted
by d(h;, si) consists of the delay from the hub h; to the server
edge router and the delay from the server edge router to s;. We
extend the greedy hub placement algorithm in Fig. 3 to consider
access delay as shown in Fig. 5.

The use of client groups simplifies the management of the
LEQ architecture. For a newly arrived client, we only need to
determine the client group it belongs to. The client edge router
forwards the packets from the new client to the hubs associated
with its client group. The access delay for a client may change
over time based on the access link load. We can periodically
measure access delay changes [34] and assign the client to dif-
ferent delay groups accordingly.

V. EVALUATION

We evaluate our LEQ routing architecture using both static
and dynamic scenarios on ISP network topologies. In the static
case, we only consider propagation delays, and this corresponds
to the scenario of a lightly loaded network. We also evaluate
the delay difference under different optimization policies both
with and without compromising the delay of individual clients,
and different network settings such as considering access net-
work delay and multiple administrative domains. In the dynamic
case, we evaluate the LEQ routing architecture under transient
congestion. In each simulation scenario, we compare the per-
formance of the LEQ routing scheme to that of shortest-path
routing (OSPF).

A. Simulation Setup

For our network simulations, we use large ISP network
topologies such as AT&T and Telstra. These topologies were
obtained from Rocketfuel [35]. For the dynamic case, we
consider the Abilene network topology [25]. The key charac-
teristics of these networks are summarized in Table III.

Our evaluation uses several parameters that define the LEQ
architecture: the total number of hubs M, the number of hubs se-
lected for each client edge router m, the number of servers in the
network Ng, and the number of servers allocated for each client
edge router . We evaluate the LEQ routing architecture with
and without access delay. We use “acd” to denote the range of

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

TABLE III
MAIN CHARACTERISTICS OF EXAMPLE NETWORKS
ISP AT&T | Telstra | Abilene
Number of nodes 391 97 11
Number of links 1280 132 14

access delay. The performance metric is the delay difference 6,
which is the maximum difference in delay among all the selected
paths.

We use all the edge nodes in the backbone topology as client
edge routers and randomly choose Ng edge nodes as the loca-
tion of servers. Each client would communicate with r servers
that are nearest to it in terms of propagation delay. We then run
the LEQ routing and shortest-path routing algorithms to com-
pute the paths between these clients and servers. Note that, in
the static case, the LEQ path computation is based on the prop-
agation delay in the network. We compute the propagation delay
of these networks based on the geographical distances between
any two nodes. To eliminate the bias introduced by server lo-
cation, when Ng = 1, we test all the possible locations of the
servers; when Ng > 1, we run each simulation 1000 times with
randomized the server locations.

B. LEQ Without Compromising End-to-End Delay

We first explore the potential of the LEQ routing architecture
to discover latency equalized paths, under the optimization con-
straint that the end-to-end delays of individual clients are not
compromised.

In a typical service provider network, OSPF weights are opti-
mized for traffic engineering [18], and thus OSPF paths may not
always correspond to lowest delay paths [19]. Our evaluation
uses OSPF weights from Rocketfuel [35]. The delay and delay
differences obtained using OSPF routing are compared to that
obtained using LEQ routing. To not compromise on end-to-end
delay, in our LEQ path calculation algorithm, we add the op-
timization constraint that we do not increase the delay of any
client. Fig. 6(a) shows that LEQ reduces the average delay dif-
ference by 60%. This latency equalization is achieved without
sacrificing the end-to-end delay obtained using OSPF. Fig. 6(b)
shows that the average end-to-end delay of LEQ and OSPF are
similar, but LEQ reduces the maximum end-to-end delay com-
pared to OSPF since some end-to-end path delays have been
improved by the LEQ scheme. This is consistent with the work
in [22], where the authors show that end-to-end delay can be re-
duced by packet indirection.

C. LEQ With Compromising End-to-End Delay

In the scenarios where the interactive application permits
increasing the delay of some clients application traffic in order
to reduce the overall delay difference, a further reduction in
the delay difference can be achieved. Under this optimization
policy, we do not have any delay constraint for individual
client’s application traffic in our algorithm. To highlight the
main features of the LEQ architecture, we first consider the
provider network without network access delays.

1) LEQ Routing Architecture Reduces Delay Difference
Significantly Compared to Shortest-Path Routing and Only Re-
quires a Few Hubs: Fig. 7 shows the average delay difference

IEEE/ACM TRANSACTIONS ON NETWORKING

40
g IS
330 1
5
% 20
210+ 1
H ©©OSPF
o r |==LEQ

00 2 4 6 8 10

Number of Hubs (M)
(@)
60 : .
++ OSPF-max

50 Heo© OSPF-avg |
oA LEQ-max

2 40 H**LEQ-avg 4
=30 e S U
©
/A 20+ 1
s i
10 1
00 2 4 6 8 10
Number of Hubs (M)

(b)

Fig. 6. Comparison of OSPF and LEQ without compromising delay (AT&T
network, Ng = 1, m = 3). (a) Delay difference. (b) Delay.

between all the client paths to any one server for both LEQ
routing and OSPF. In all the networks we tested, we find that
LEQ routing with a single hub per client (m = 1) reduces
delay difference to 5 ms, which is an 85% reduction for AT&T,
85% for Telstra, and 90% for Abilene over the default OSPF
routing. Even with just one hub in the entire network (M = 1),
LEQ routing has on average 40% reduction in delay difference.
Also, the best performance for LEQ routing is achieved when
the number of hubs per client (m) is set to 1. As the number of
hubs per client increases, we find that, due to the increased path
diversity, the average delay difference increases. However, even
with three hubs per client, the performance of LEQ routing is
significantly better than OSPF.

From Fig. 7, we note that increasing the total number of hubs
in the network to more than five does not provide any signifi-
cant improvement in the delay difference measurements. This
result holds with varied topologies (AT&T with 391 nodes, and
Abilene with 11 nodes). This reduction in the delay difference
significantly improves application interactivity as seen later in
Fig. 11.

2) Improvement in Overall Delay Difference Can be
Achieved With Some Compromise in End-to-End Delay: In
Fig. 8, we first compare the maximum, average, and median
delay of the selected paths of LEQ routing with those of OSPF
whose weights are optimized for minimizing end-to-end delay.
We can see that the maximum delay of LEQ is similar to that
obtained with OSPF. However, the average delay of LEQ is
larger than that of OSPF. This is because to achieve better LEQ
(as compared to the case in Fig. 6), the end-to-end delay of
some paths has to be compromised.

3) With Multiple Servers, LEQ Architecture Also Reduces
the Delay Difference: In some applications such as P2P gaming

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

YU et al.: LATENCY EQUALIZATION AS A NEW NETWORK SERVICE PRIMITIVE

40 T T T ! 60 L A
z 2 201 o OSPF 2 ol |
E 3ol 59 OSPF E . s LEQm=1) | & 55 O5PF
g s LEQm=1)| 8 15/ H'\\ ~LEQm=2) | 8 40| =5 LEQ (m=1)
5} ++ LEQ (m=2) 8 #* LEQ (m=3) 5 ++LEQ (m=2)
& 207 ~LEQm=3)| & I g3or #* LEQ (m=3)
@) a o) 20+ * ‘ 4
Z 10 < & st & ‘ *—y
] LR a2 101 g =R B e LA
% 2 4 6 8 10 % 2 4 6 8 10 % 2 4 6 8 10
Number of Hubs (M) Number of Hubs (M) Number of Hubs (M)
(@) (b) (©

Fig. 7. Delay difference evaluation of OSPF and LEQ routing with compromising delay. (Ns = 1). (a) AT&T network. (b) Telstra network. (c) Abilene network.

++ OSPF-max
70 | G© OSPF-avg B
60 245 OSPF-median
** LEQ-max

50 | =5 LEQ-avg 4
v LEQ-median

Delay (ms)
N
=)

0o 2 4 6 8 10
Number of Hubs (M)
()

50 -+—+ OSPF (max delay)
GO OSPF (avg delay) 1
4() |44 OSPF (median delay) 2
s LEQ (max delay)
£ LEQ (avg delay)
30 v LEQ (median delay)

Delay (ms)

0o 2 4 6 8 10
Number of Hubs (M)
(®)

Fig. 8. Delay evaluation of OSPF and LEQ routing with compromising delay.
(m = 3, Ns = 1). (a) AT&T network. (b) Telstra network.

and distributed live music performances, there are multiple
servers at different places, and each client is associated with
several servers. Fig. 9 shows the influence of the number of
servers (Ng) and servers per client 7 on delay difference 6.
With OSPF, keeping the number of servers per client (r) fixed,
increasing the total number of servers reduces the average delay
difference. This is because with more servers, the clients can
choose nearer servers. Thus, their shortest path delay to the
servers decreases, and correspondingly the delay difference also
decreases. As compared to OSPF, with LEQ routing, increasing
the total number of servers does not have as significant an
impact. Even with 20 servers, LEQ routing still performs better
than OSPF (e.g., 50% delay difference reduction when = 1).

D. LEQ With Access Delay

The grouping of access delay is discussed in Section III. For
simplicity, we consider two ranges of access network delays
(acd): [0 ms, 50 ms] and [0 ms, 100 ms] (we omit ms in the fol-
lowing text). These large delay ranges were chosen since even

GO OSPF (r=1)
2 sol 35 LEQ (r=1)
£ +—+ OSPF (r=5)
8
5
=
=
>
=
)
(]
L L L 1 L L 1 n
00 5 10 15 20
Number of Servers (Ns)
(a)
30 GO OSPF (r=1)
o5l =61 LEQ (r=1) ||
++ OSPF (r=5) |
200 %% LEQ (1=5)

Delay Difference (ms)
5

10 15 20
Number of Servers (Ns)
(®)

Fig. 9. Influence of number of servers (Ns) and servers per client r in LEQ
routing (M = 5, m = 2). (a) AT&T network. (b) Telstra network.

within a single access network technology, the delays experi-
enced by the clients are highly variable and dependent on net-
work load [31]. We assume 20 clients on each edge router with
access delays that are randomly chosen within the range.

1) Improvement in Delay Difference Depends on the Range
of Variation in the Access Network Delays: Fig. 10(a) shows
that in AT&T network, with access delay ranging from 0 to 50
ms, the delay difference can be reduced by 45%. However, with
access delays ranging from 0 to 100 ms [Fig. 10(b)], the delay
difference is reduced only by 35%. Similarly in the Telstra net-
work, the delay difference is reduced by 50% for acd : [0 — 50]
and 25% for acd : [0 — 100]. These results show that when
the access network delay difference is very large, LEQ routing
performance will benefit from improvements in access network
technologies that reduce access delay variations for interactive
applications by giving them higher priority.

2) LEQ Improves User Experience—An Important Criteria
for Interactive Applications: The user experience of interac-
tive applications relates to both delay difference among the in-

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

o0
(=]

Delay Difference (ms)
N
S
T

20 & OSPF g
= LEQ
n 1 I 1 1 1 1 1 y
00 2 4 6 8 10
Number of Hubs (M)
(a)
80 T T T T

D
[«
T

Delay Difference (ms)
N
)

20 o OSPF| 1
== LEQ]
00 2 4 6 8 10
Number of Hubs (M)

(©)

Fig. 10. Delay difference with access delay (m = 2, Ns = 1,r = 1). (a) AT&T network, acd :

network, acd : [0 — 50]. (d) Telstra network, acd : [0 — 100].

90 =
o OSPF, Ns=1

80 ||+ OSPF, Ns=5 ﬁ

o LEQ, Ns=1
70 ||« LEQ, Ns=5

60 i+
50
40 X x oo
30 d

Delay Difference (ms)

0 20 40 60 80
Maximum Delay (ms)

(a)

100

80

70 =

60 a?ﬁ

50|[o OSPF, Ns=1
+ OSPF, Ns=5
40||o LEQ, Ns=1 e
« LEQ, Ns=5 3865 °
0 20 40 60 80

Maximum Delay (ms)
(b)

Delay Difference (ms)

30

Fig. 11. User experience comparison of max delay and delay difference
(acd = [0,50], M = 5,m = 2,r = 1). (a) AT&T network. (b) Telstra
network.

teracting parties and the individual end-to-end delay. Fig. 11
shows that in both Telstra and AT&T networks, LEQ routing
has smaller delay difference and thus better interactivity while
providing the same maximum end-to-end delay as with OSPF
routing. The increased delay difference in OSPF reduces the in-
teractive experience. In the case when there are multiple servers
(Ns = 5), and each client is associated with just one server,

IEEE/ACM TRANSACTIONS ON NETWORKING

120 -
100 -
80
60
40

Delay Differene (ms)

20 .

Number of Hubs (M)
(b)
120

100

80
60
40
20

G© OSPF
=5 LEQ

OO 2 4 6 8 10

Number of Hubs (M)
(d)

[0 — 50]. (b) AT&T network, acd :

| . L L L
|

Delay Differene (ms)

[0 = 100]. (c) Telstra

the maximum end-to-end delay for both OSPF and hub routing
is reduced. However, as compared to OSPF, LEQ routing still
has significant improvement in user interactive experience due
to reduced delay difference among clients.

E. LEQ With a CDN and a Transit ISP

We consider the case of supporting LEQ on a CDN network
(AT&T7) over a transit ISP (Sprint), where the server resides
on the CDN and the clients exist on both the transit ISP and
the CDN with different access delay ranges. We investigate the
following scenarios for the two autonomous systems (ASs):
1) ASs cooperate on routing (labeled as “joint OSPFE,” “joint
LEQ”); and 2) ASs make routing decisions independently
(labeled as “OSPF-LEQ,” “LEQ-LEQ”). We also investigate
different server location scenarios: 1) the servers are located
close to the peering nodes of the two networks (labeled as fixed
server); and 2) the servers are randomly located (labeled as
“rand server”). For each scenario, we randomly choose client
and server locations and plot one point of delay and delay
difference for each choice. Our observations are as follows.

1) If the CDN and the Transit ISP Cooperate, LEQ Archi-
tecture Can Improve User Experience: Fig. 12 plots the delay
difference and maximum delay for several scenarios. In the
joint OSPF and joint LEQ scenarios, we assume that the routing
scheme has complete knowledge of both network topologies.
Joint LEQ routing always performs significantly better than
joint OSPF.

2) If the CDN and the Transit ISP Do Not Cooperate, Ap-
plying LEQ Routing in the CDN Is Enough to Improve User Ex-
perience Significantly: As shown in Fig. 12, even without the

7Since we do not have a CDN network topology, we use AT&T’s topology as
the CDN network.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

YU et al.: LATENCY EQUALIZATION AS A NEW NETWORK SERVICE PRIMITIVE

200
2 150
£ o
3 o ¥
= ¥ 2
o N A
o
e, O O fim —
= % joint OSPF
A 50 - o | o joint LEQ
® © o OSPF-LEQ; rand server
+ OSPF-LEQ); fix server
& LEQ-LEQ; fix server
0

120 140 160 180
Maximum Delay (ms)

200

Fig. 12. LEQ in peering ASs with access delay (acd: [0-50]1%, Ns = 1)
(OSPF-LEQ means applying OSPF in Sprint, LEQ in AT&T; LEQ-LEQ means
applying LEQ separately in both Sprint and OSPF.)

knowledge of the peering Sprint network topology, the AT&T
network can use LEQ in its own network (OSPF-LEQ, which
also provides better performance than using the standard OSPF
routing on the joint topology (joint OSPF).

When the server is placed near the peering nodes (fixed
server case), applying LEQ only in AT&T achieves better user
experience than applying LEQ independently in both Sprint
and AT&T. This is because the two networks do not cooperate
but independently optimize for LEQ. By applying LEQ routing
in Sprint, within the Sprint network the clients may experience
equal delay with each other, but when they come in to the
AT&T network, their delay difference with clients in AT&T
is worse than if they had taken the shortest path through the
Sprint network.

3) Placing the Server Close to Peering Nodes (Labeled
“Fixed Server” in Figs. 12 and 13) Improves User Experience,
When Two ASs Have Equal Access Delay: From Fig. 12, we
see that when the server is placed close to the peering node,8
and AT&T applies LEQ routing (OSPF-LEQ, fixed server
case), we can achieve similar delay difference to the case when
we have full knowledge of both topologies (joint LEQ case).
Furthermore, in Fig. 13, when the access delay range of Sprint
and AT&T are both [0-50], we note that the application perfor-
mance is improved by placing servers close to the peering node
locations.

The proximity of the server to peering nodes helps only when
access delays from both networks are in the same range. Fig. 13
shows that when the access delay of players in Sprint is close to
0,° the location of the servers does not affect performance. This
is because although players from the Sprint edge router have less
access delay, they take longer paths to reach the AT&T network
where the server is located. Therefore, they can be viewed as
players in the AT&T network with some access delay. When the
access delays across the networks have large variability, LEQ
routing does not benefit from placing servers near the peering
nodes.

8Peering nodes are the nodes that connect the two ASs.

9Some application servers may only allow players with low access delay in
Sprint to join the application in order to improve user experience.

11

90
o
80|[o rand server, [0-50][0-50]
Té? F fix server, [0-50][0-50] g 9 odm
< 70|| © rand server, [0][0-50]
% % fix server, [0][0-50]
£ 60
()]
g 50 -
2 |« oo £
40| o o &P
3% 100 110 120 130 140

Maximum Delay (ms)

Fig. 13. Effect of access delay in peering ASs. (The first range is Sprint acd,
which is either close to 0 or [0-50]; the second range is AT&T acd range, which
is always [0-50]. We apply OSPF in Sprint, LEQ in AT&T.)

F. Dynamic Analysis

In a typical service provider network, links are usually provi-
sioned at below 50% average utilization. However, it has been
observed that in the presence of traffic bursts, it is possible that
on the timescale of minutes, the average utilization could be
close to 90%—-95% of the link capacity [36]. Under these con-
ditions, the queue size builds up at the links and contributes to
the overall delay between the clients and the server. Therefore,
we investigate the performance of LEQ architecture under these
dynamic traffic conditions.

We implemented LEQ routing as a new routing module in
ns-2 for packet-level simulations. We generated two classes of
packets: packets of background traffic and probing packets. The
background traffic denotes traffic of all the other applications
in the network. Since the interactive application traffic such
as gaming traffic is much smaller than background traffic and
will not influence the network conditions, we do not simulate
them explicitly in our experiment. Instead, we use small probing
packets that go through LEQ routing paths, and we measure the
actual latency experienced by these packets. To force some of
the probing packets to go through LEQ routing paths, each client
edge router marks the probing packets with the address of the
destination node and sends them to a hub. The hub is selected in
around-robin schedule among the m hubs allocated to the client
edge router through the hub selection algorithm. Upon receiving
the probing packets, the hub looks up the destination server
from the packet and redirects it to the server. For comparative
purposes, we also send probing packets through shortest-path
routes computed using Dijkstra’s algorithm parametrized by the
propagation delay metric.

For the dynamic analysis, we use the Abilene network
topology (Fig. 2). We use a single server that is located at
Washington, DC. All the 11 edge nodes have clients. The band-
width capacity of each link in Abilene is fixed at 10 Gb/s. For
background traffic, we generated real traffic matrices based on
the Abilene Netflow data [25]. The size of the probing packet
is 48 B, which is similar to the size of general UDP packets in
interactive applications [27]. Probing packets are sent at a fixed
interval of 0.01 s.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

400

5o OSPF
58 LEQ (m=1) 1
3007 LEQ (m=2) !
#% LEQ (m=3)

200+ i .

100+ 1

Delay Difference (ms)

sH—p - RS ¥ ; ¢
05 6 7 8 9 10 11 12 13 14 15
Amount of Traffic on the Hot Spot Link (Mbps)

Fig. 14. Abilene network: single-bottleneck link.

300 T — OSPF
2 i)= S sy
% 250 {M/W'Vw\v M&W LEQ (m=3)
% 200 |
3 150]
A 100]
&
3 50
a _

0g 500 1000 1500

Time (second)

Fig. 15. Transient congestion in LEQ routing.

1) LEQ Achieves Reliability in the Single-Bottleneck-Link
Scenario by Providing Multiple Hubs for Each Client: We first
experiment with a single-bottleneck link. We start with a uni-
form traffic matrix (0.1 Gb/s), and then increase the traffic load
on the hotspot link between Denver, CO, and Kansas City, MO.
Fig. 14 shows the real-time evolution of the delay difference
of hub routing and shortest-path routing. When the amount of
traffic on this link approaches the capacity of the link, both
OSPF and LEQ routing with m = 1 experience significant
queuing delay. Using LEQ routing with m = 2 or 3, we main-
tain the delay difference due to path diversity. When the amount
of traffic continues to increase, packets from different clients are
also influenced by this heavy traffic, and thus the delay differ-
ence among all the clients decreases in both cases: OSPF and
LEQ routing with m = 1. From this study, we show that with
two or three hubs per client, LEQ routing can get around tran-
sient congestion in the network and reduce the corresponding
queuing delay.

2) LEQ Also Achieves Reliability Under Transient Network
Congestion: To evaluate the performance of hub routing under
more realistic scenarios where the traffic matrix is not uniform
and transient congestion may happen at any place, we run the
experiment with 150 realistic Abilene traffic matrices, each ap-
plied for 10 s. During the time interval of 500—1000 s, we in-
sert traffic burst on several selected links by increasing the uti-
lization to 90% of the link capacity. The overloaded links were
chosen based on a snapshot of the Abilene network operation
center [37]. As shown in Fig. 15, when transient congestion hap-
pens, LEQ routing with m = 2,3 has alternate routes to get
around the congested link. Thus, the impact of transient conges-
tion is less prominent on LEQ routing than it is on shortest-path
routing.

IEEE/ACM TRANSACTIONS ON NETWORKING

70 T T T T T

50+
40}
30¢
20+) 1
10f :

0O 2 4 6 8 10

Number of Hubs Per Client (m)
(a)
500 T T T T T

Delay Difference (ms)

300 - 1
G© OSPF

200 -

Delay Difference (ms)

0 2 4 6 8 10
Number of Hubs Per Client (m)
(®)

Fig. 16. Influence of hubs per client (m) on LEQ. (a) Static analysis of prop-
agation delay. (b) Packet-level simulation of delay during congestion.

3) Considering the Tradeoff of Robustness and Performance,
We Need to Assign Each Client Edge Router Two or Three Hubs
From the Hub Set: Fig. 16 compares the performance from
both the static and dynamic analysis. In the static analysis in
Fig. 16(a), with one hub per client, we can achieve the min-
imal delay difference in terms of propagation delay. However,
in Fig. 16(b), during transient congestion, queuing delay be-
comes more critical than propagation delay. Thus, adding one
more hub (changing m from 1 to 2) provides more path diver-
sity while reducing the average delay difference. Robustness to
traffic variability and transient network congestion are impor-
tant requirements for any real-time interactive application. In
LEQ architecture, this robustness can be achieved with m = 2
or 3 without severe impact on delay difference. This is consis-
tent with the work in [38], where they prove that load balancing
becomes much easier by just having two routing paths and the
flexibility to split traffic between them.

VI. RELATED WORK

Network support for gaming and other interactive services is
a relatively new topic since the scalability and commercial sig-
nificance of these services has only recently become important.
In [1], the authors provide the motivation for network support
for gaming and design a game booster box—a network-based
game platform that combines low-level network awareness and
game-specific logic. The goal of the booster box is to offload
network functions from the game server, specifically network
monitoring. Shaikh er al. [39] and Saha et al. [40] proposed an
online game hosting platform, a middleware solution based on
existing grid components. The platform performs functions such
as addition and removal of servers and administrative tasks such
as new game deployment, directory management, player redi-
rection to server, and game content distribution. Our preliminary

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

YU et al.: LATENCY EQUALIZATION AS A NEW NETWORK SERVICE PRIMITIVE

study in [41] presented the basic idea of LEQ as a service that
could run on programmable routers. In this paper, we consider
the deployment of LEQ architecture on today’s Internet, pro-
vide hub selection algorithms for different network settings, and
present a complete simulation and evaluation of LEQ in various
scenarios (e.g., with access network delay, multiple administra-
tive domains).

The authors in [42] provide a method to predict latency be-
tween machine pairs and use this information to help players
preselect the other players that have similar delay. In contrast,
the LEQ architecture aims at improving the game experience for
players already participating in the game session by routing the
game packets through equalized latency paths during the game
session. Our work can leverage the techniques in [42] to provide
better prediction of the delay metric used in our hub selection
algorithm.

From the network performance optimization perspective, pre-
vious work focused on reducing delay in the overlay network
(e.g., RON [22]) or reducing bandwidth costs with bounded
delay (e.g., VPN tree routing [43]). There are no theoretical re-
sults thus far aimed at optimizing latency difference in the net-
work. In this paper, we formulate the hub selection problem
that is a critical component for optimizing latency differences
and show its NP-hardness. We also design and implement algo-
rithms for hub selection that achieves latency-equalized paths in
the network. Cha et al. [44] proposed a strategy to place relay
nodes in the intradomain network. However, their selection al-
gorithm is aimed at reducing cost, not delay difference.

VII. CONCLUSION

The LEQ routing architecture and algorithms presented in
this paper clearly provide a pathway for networks to support
scalable and robust multiparty interactive applications. Based on
the evaluation of our LEQ architecture, we conclude that, with
only minor enhancements to the edge routers, provider networks
can easily support and enhance the quality of multiparty inter-
active applications. We show that the LEQ scheme can support
different optimization policies that can achieve overall applica-
tion performance in terms of latency equalization both with and
without compromising end-to-end application latencies.

REFERENCES

[1] D. Bauer, S. Rooney, and P. Scotton, “Network infrastructure for mas-
sively distributed games,” in Proc. NetGames, 2002, pp. 36-43.

[2] A.Kapur, G. Wang, P. Davidson, and P. R. Cook, “Interactive network
media: A dream worth dreaming?,” Organized Sound, vol. 10, no. 3,
pp- 209-219, 2005.

[3] A. R. Greenwald, J. O. Kephart, and G. Tesauro, “Strategic pricebot
dynamics,” in Proc. ACM Conf. Electron. Commerce, 1999, pp. 58—67.

[4] “Cisco telepresence solutions,” Cisco, San Jose, CA
[Online]. Available: http://www.cisco.com/en/US/netsol/
ns669/networking_solutions_solution_segment_home.html

[5] L. Pantel and L. C. Wolf, “On the impact of delay on real-time multi-
player games,” in Proc. NOSSDAV, New York, 2002, pp. 23-29.

[6] S. Zander and G. Armitage, “Empirically measuring the QoS sensi-
tivity of interactive online game players,” in Proc. ATNAC, Dec. 2004,
pp. 511-518.

[7] J. Brun, F. Safaei, and P. Boustead, “Managing latency and fairness in
networked games,” Commun. ACM, vol. 49, no. 11, pp. 46-51, Nov.
2006.

13

[8] M. Dick, O. Wellnitz, and L. Wolf, “Analysis of factors affecting

players’ performance and analysis of factors affecting players’ per-

formance and perception in multiplayer games,” in Proc. NetGames,

2005, pp. 1-7.

C. Diot and L. Gautier, “A distributed architecture for multiplayer in-

teractive applications on the Internet,” JEEE Netw., vol. 13, no. 4, pp.

6-15, Jul.—Aug. 1999.

[10] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin, “An efficient syn-
chronization mechanism for mirrored game architectures,” in Proc.
NetGames, 2002, pp. 67-73.

[11] S.Zander, I. Leeder, and G. J. Armitage, “Achieving fairness in multi-
player network games through automated latency balancing,” in Proc.
Adv. Comput. Entertain. Technol., 2005, pp. 117-124.

[12] J. Nichols and M. Claypool, “The effects of latency on online Madden
NFL football,” in Proc. NOSSDAV, 2004, pp. 146-151.

[13] A. Abdelkhalek and A. Bilas, “Parallelization and performance of in-
teractive multiplayer game servers,” in Proc. IPDPS, 2004.

[14] T.Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Clay-
pool, “The effects of loss and latency on user performance in unreal
tournament 2003,” in Proc. NetGames, 2004, pp. 144-151.

[15] P. Quax, P. Monsieurs, W. Lamotte, D. D. Vleeschauwer, and N. De-
grande, “Objective and subjective evaluation of the influence of small
amounts of delay and jitter on a recent first person shooter game,” in
Proc. NetGames, 2004, pp. 152-156.

[16] M. Oliveira and T. Henderson, “What online gamers really think of the
Internet?,” in Proc. NetGames, 2003, pp. 185-193.

[17] “AT&T renews hosting agreement with Blizzard Entertainment
Inc. for online games,” Press release, 2009 [Online]. Available:
http://www.reuters.com/article/2009/03/03/idUS 159848+03-Mar-
2009+PRN20090303

[18] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proc. IEEE INFOCOM, 2000, vol. 2, pp. 519-528.

[19] N. Spring, R. Mahajan, and T. Anderson, “The causes of path inflation,”
in Proc. SIGCOMM, 2003, pp. 113-124.

[20] “SureRoute,” Akamai, Cambridge, MA, 2003 [Online]. Available:
http://www.akamai.com/dl/feature_sheets/fs_edgesuite_sureroute.pdf

[21] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A.
Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan,
“Detour: Informed internet routing and transport,” IEEE Micro, vol. 19,
no. 1, pp. 50-59, Jan.—Feb. 1999.

[22] D. G. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Re-
silient overlay networks,” in Proc. Symp. Oper. Syst. Principles, Banft,
AB, Canada, 2001, vol. 35, no. 5, pp. 131-145.

[23] L. Gautier and C. Diot, “Design and evaluation of MiMaze, a
multi-player game on the internet,” in Proc. IEEE Int. Conf. Multi-
media Comput. Syst., 1998, pp. 233-236.

[24] L. Pantel and L. C. Wolf, “On the suitability of dead reckoning schemes
for games,” in Proc. NetGames, 2002, pp. 79-84.

[25] “Internet2 network,” Internet2, Ann Arbor, MI [Online]. Available:
http://abilene.internet2.edu/

[26] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In
VINI veritas: Realistic and controlled network experimentation,” in
Proc. ACM SIGCOMM, Pisa, Italy, Sep. 20006, pp. 3—14.

[27] J. Farber, “Network game traffic modelling,” in Proc. NetGames, 2002,
pp. 53-57.

[28] S. Iyer, R. Zhang, and N. McKeown, “Routers with a single stage of
buffering,” in Proc. ACM SIGCOMM, 2002, pp. 251-264.

[29] J. Postel, “Internet protocol: DARPA Internet program protocol speci-
fication,” RFC 791, 1981.

[30] T. Jehaes, D. D. Vleeschauwer, B. V. Doorselaer, E. Deckers, W.
Naudts, K. Spruyt, and R. Smets, “Access network delay in networked
games,” in Proc. NetGames, 2003, pp. 63-71.

[31] N. Barakat and T. E. Darcie, “Delay characterization of cable access
networks,” IEEE Commun. Lett., vol. 11, no. 4, pp. 357-359, Apr.
2007.

[32] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F.
Jahanian, “Internet inter-domain traffic,” in Proc. ACM SIGCOMM,
2010, pp. 75-86.

[33] V. Chvatal, “A greedy heuristic for the set-covering problem,” Math.
Oper. Res., vol. 4, no. 3, pp. 233-235, 1979.

[34] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu, “Char-
acterizing residential broadband networks,” in Proc. ACM SIGCOMM
IMC, 2007, pp. 43-56.

[35] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1, pp. 2-16,
Feb. 2004.

[9

—

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

[36] R.Prasad, C. Dovrolis, and M. Thottan, “Router buffer sizing revisited:
The role of the output/input capacity ratio,” in Proc. ACM CoNEXT,
2007, Article no. 15.

[37] “Indiana University Global Research Network Operations Center
weathermaps,” Global Research Network Operations Center, Indiana
University, Indianapolis, IN [Online]. Available: http://weath-
ermap.grnoc.iu.edu/

[38] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10, pp.
1094-1104, Oct. 2001.

[39] A. Shaikh, S. Sahu, M. Rosu, M. Shea, and D. Saha, “Implementation
of a service platform for online games,” in Proc. NetGames, 2004, pp.
106-110.

[40] D. Saha, S. Sahu, and A. Shaikh, “A service platform for on-line
games,” in Proc. NetGames, 2003, pp. 180-184.

[41] M. Yu, M. Thottan, and L. Li, “Latency equalization: A programmable
routing service primitive,” in Proc. ACM PRESTO, 2008, pp. 39-44.

[42] S. Agarwal and J. R. Lorch, “Matchmaking for online games and other
latency-sensitive P2P systems,” in Proc. ACM SIGCOMM, 2009, pp.
315-326.

[43] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener, “Provi-
sioning a virtual private network: A network design problem for mul-
ticommodity flow,” in Proc. ACM STOC, 2001, pp. 389-398.

[44] M. Cha, S. Moon, C. D. Park, and A. Shaikh, “Placing relay nodes
for intra-domain path diversity,” in Proc. IEEE INFOCOM, 2006, pp.
1-12.

p

N

IEEE/ACM TRANSACTIONS ON NETWORKING

Marina Thottan (M’00) received the Ph.D. degree in
electrical and computer engineering from Rensselaer
Polytechnic Institute, Troy, NY, in 2000.

She is Director of the Mission-Critical Commu-
nications and Networking Group, Bell Laboratories,
Murray Hill, NJ. Most recently, she has been leading
work on smart grid communication networks. She
has published over 40 papers in scientific journals,
book chapters, and refereed conferences.

Dr. Thottan is a member of the Association for
Computing Machinery (ACM).

Li (Erran) Li (M’99-SM’10) received the B.E. de-
gree in automatic control from Beijing Polytechnic
University, Beijing, China, in 1993, the M.E. degree
in pattern recognition from the Institute of Automa-
tion, Chinese Academy of Sciences, Beijing, China,
in 1996, and the Ph.D. degree in computer science
from Cornell University, Ithaca, NY, in 2001.

Since graduation, he has been with the Networking
Research Center, Bell Laboratories, Murray Hill, NJ.
He has published over 40 papers.

Dr. Li is an Editor of Wireless Networks and the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. He was a
Guest Editor for the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATION

Minlan Yu (S’10) received the B.A. degree in Special Issue on Non-Cooperative Behavior in Networking.

computer science and mathematics from Peking
University, Beijing, China, in 2006, and the M.A. de-
gree in computer science from Princeton University,
Princeton, NJ, in 2008, and is currently pursuing
the Ph.D. degree in computer science at Princeton
University.

She has interned at Microsoft, Redmond, WA;
AT&T Laboratories Research, Florham Park, NJ;
and Bell Laboratories, Murray Hill, NJ. Her research
interest is in network virtualization, enterprise, and

data center networks.

